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Optimal phase description of chaotic oscillators
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We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones.
On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincaré surfaces
showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled
from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The
method is illustrated with the Rössler and Lorenz systems.
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I. INTRODUCTION

Phase description lies in the base of the theory of self-
sustained, autonomous oscillators [1–3]. A prudently defined
phase variable yields a one-dimensional description of the
oscillator, allowing one to characterize important aspects of
its dynamics, such as regularity of oscillation, sensitivity
to external forcing, etc. Moreover, the concept of phase is
important in the data analysis of oscillatory processes in
physics, chemistry, biology, and technical applications, where
various approaches exist for extracting different variants of
phase variables from oscillatory scalar time series.

On a very basic level, every phase description starts with
the identification of those states of the oscillator that are in the
same phase. For a good phase description, the identification
must be done in an invariant way, independent of the variables
and observables used, in order to make statements about the
oscillator’s phase dynamics nonarbitrary and comparable. The
standard procedure of phase reduction is valid for periodic
oscillators that possess a stable limit cycle. There, a certain
family of Poincaré sections, called isochrones or isophases, is
used for the identification of states with the same phase: Each
isochrone consists of those states that are mapped onto each
other after one oscillation period T and that converge to the
corresponding state on the limit cycle for which the phase is
defined unambiguously [4,5]. A limit cycle oscillator can be
thought of as a perfect chronometer whose state can be used to
measure time; this property is stressed by the term isochrone.
For stable periodic oscillations isophases coincide with the
isochrones, while for stochastic and chaotic oscillations one
can hardly speak of isochrones but nevertheless can try to
introduce isophases.

Even though chaotic oscillators do not possess a stable limit
cycle, a phaselike variable has been used for their description.
In this sense, the phase dynamics of chaotic systems has been
initially discussed in relation to the diffusion properties of the
phase [6,7] and to phase synchronization [8–10]. However,
to describe these features, one does not need a microscopic
definition of the phase that is precise on time scales smaller
that the characteristic period T , because both diffusion and
synchronization are defined macroscopically, i.e. for time
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scales much larger than T . On the other hand, in the theoretical
description of phase synchronization a proper microscopic
phase definition was presumed [11,12], although no practical
algorithm for the construction of a phase variable with good
properties has been presented. The main problem is that chaotic
phase diffusion destroys the perfect chronometric properties
of the oscillator because any two of its states that are thought
to show the same phase will diverge as their respective phases
diffuse. An attempt to define isochrones or isophases of chaotic
oscillators as smooth hypersurfaces thus fails, leading to fractal
sets, as we demonstrate below.

In this paper, we suggest a numerical technique for the
phase description of chaotic oscillations. To overcome the
fractality mentioned above, we construct isophases as Poincaré
sections in a smoothness-constrained optimization problem.
With examples we demonstrate how these optimal isophases
yield phase dynamics with better properties compared with
simpler definitions of phase. Specifically, we demonstrate an
intimate relation between optimal isophases, chaotic phase dif-
fusion, and unstable periodic orbits. Furthermore, we discuss
the reduced phase dynamics of chaotic oscillations and the
decoupling of the amplitudes from the phase dynamics. Next,
we use the optimal phase to introduce a proper framework for
the description of the phase response of chaotic oscillators.

Before proceeding, we would like to specify terminology
that we use below (the exact meaning will be clear when the
corresponding terms are introduced). Phaselike variable and
protophase are basically the same; the former term is suitable
in a theoretical consideration, while the latter one is suitable in
data analysis. For periodic oscillations, a phaselike variable,
or a protophase, is a 2π -periodic variable on the limit cycle
in an arbitrary parametrization. For periodic oscillations, the
genuine phase is defined as a reparametrized phaselike variable
on the limit cycle that grows linearly with time. The extension
of the genuine phase to a vicinity of the limit cycle (Sec. II A)
allows one to define the sets of the same phase in this vicinity;
these sets are called isochrones or isophases. Neither a genuine
phase nor isochrones or isophases exist for general chaotic
oscillators. Nevertheless, in Sec. II B we introduce protophases
on the attractor as arbitrarily parametrized variables that
increase by 2π in one oscillation. Then we “improve” these
variables to ensure that they rotate as uniformly as possible,
thus obtaining optimal phases (and optimal isophases as the
sets of constant optimal phases).
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Starting with an outline of the standard phase definition
for periodic oscillators via the isochrones, we introduce
the generalized concept of isophases of chaotic oscillators
in Sec. II. In Sec. III, certain dynamical properties of the
optimal phase are highlighted by the example of the Rössler
oscillator. Thereafter, the relation between optimal isophases
and unstable periodic orbits is presented (Sec. IV). In Sec. V,
certain aspects of the theory are presented for the Lorenz
oscillator. In the last section we discuss our results.

II. ISOPHASES OF PERIODIC
AND CHAOTIC OSCILLATORS

A. Periodic oscillators and their isochrones

Phase is a natural variable for the description of periodic
motions in dynamical systems. It can be introduced in different
ways, with different levels of mathematical rigor [1,2,4,5].
Here we outline an approach that is mostly suited for a
generalization to the case of chaotic systems.

The consideration starts with a general dissipative dynam-
ical system showing stable periodic oscillations; the system’s
state x(t) is thus attracted to the limit cycle x0(t) having period
T . In a vicinity of this periodic attractor the state space can
be foliated by a nonintersecting family of Poincaré sections
J (ϕ) parametrized by a phaselike variable ϕ with period 2π .
With J (ϕ), a phaselike variable ϕ(t) can be assigned to each
state of the trajectory x(t) ∈ J (ϕ(t)). Therefore, the family of
isophases J (ϕ) provides a precise definition of what is meant
by an oscillation: The system completes one oscillation if the
variable ϕ grows by 2π , i.e., if the trajectory returns to a
chosen isophase, consequently passing through all sections in
J (ϕ). Introducing coordinates on the sections J (ϕ), one can
parametrize each point by a vector of amplitudes a and the
phaselike variable ϕ.

There are various equivalent ways to foliate the state space
in such a way that ϕ grows monotonically; for periodic
oscillators with a period T , the optimal foliation does exist [4].
It can be introduced by considering the stroboscopic map
x(t) → x(t + T ). Clearly, all points on the limit cycle are
stable fixed points of this map. Hence, for each fixed point x0

there exists a stable manifold which converges to x0 under the
action of the stroboscopic map. These stable manifolds, called
isochrones, constitute a special foliation of the neighborhood
of the limit cycle, for which by construction the Poincaré map
is the same as the stroboscopic map.

In this way one introduces the phase of oscillation so that
its time evolution does not depend on the amplitudes a. By
virtue of a trivial reparametrization ϕ → θ = 2π

T

∫
dt
dϕ

dϕ of
this foliation, one can introduce the genuine phase θ , which
grows strictly uniformly in time, with a constant instantaneous
frequency θ̇ = ω = 2π/T . This phase, defined in the whole
basin of attraction of the limit cycle, serves as a basis for a
theoretical description of perturbed periodic oscillations [1]. In
particular, one can easily formulate phase response properties
in terms of this phase: If a state on the limit cycle x′ is instantly
perturbed to some other state (even outside of the limit cycle),
x′ → x′′, then the phase is reset by a value �θ = θ (x′′) − θ (x′),
which remains constant in the course of further evolution (see
also Sec. III D).

It is worth noting that the extension of the phase
to a vicinity of a periodic orbit can be defined for either
a stable or unstable limit cycle. In the latter case, instead
of using the stable manifold, one constructs the isophases
by using the unstable manifolds of the fixed points of the
stroboscopic map. However, for saddle limit cycles having
both stable and unstable directions, this construction fails.
Here one can construct isochrones on the stable and unstable
manifolds separately, but not in the whole vicinity of the cycle.
With this in mind, we use below for the chaotic case, where
isochrones do not exist, the term “isophases” instead of the
usual “isochrones.”

B. Protophase for chaotic oscillators

We start the generalization of phase description to chaotic
oscillators by discussing the construction of the protophase.
For this purpose, we need the chaotic attractor to show the same
property as a limit cycle, namely, that there exists a family
of nonintersecting Poincaré sections J (ϕ), monotonically
parametrized by a protophase ϕ. The requirement includes
periodicity, J (ϕ + 2π ) = J (ϕ), and it is also required that any
trajectory on the attractor successively crosses each Poincaré
section J (ϕ) transversally. Of course, not all chaotic attractors
possess such a family, but those that have such a foliation can
be described in terms of phases and are the subject of further
consideration here.

Let us consider as an example the Rössler oscillator [13]

ẋ = −y − z, ẏ = x + 0.15y, ż = 0.2 + z(x − 10), (1)

and take a family of Poincaré sections J (ϕ1) defined via the
cylindrical coordinates

ϕ1 = tan−1 y

x
; a = (r,h) = (

√
x2 + y2,z). (2)

This family of Poincaré sections with constant protophase ϕ1 is
shown in Fig. 1(a) with red solid lines. However, other families
can be defined as well; an example of another foliation based on
the protophase ϕ2 = ϕ1 + 0.7 ln r is counterposed in Fig. 1(a)
with blue dashed lines.

Because the difference of any two protophases is bounded,
the asymptotic properties of their phase dynamics, such
as the mean frequency and the diffusion constant of
the phase rotations, do not depend on the definition of
the protophase. However, local, microscopic properties of the
dynamics for two protophases are different, which becomes
apparent through the irregularly fluctuating phase difference
ϕ1(t) − ϕ2(t) shown in Fig. 1(b). The fluctuations show a
bounded and irregular pattern that is specific to arbitrarily
chosen variants of the Poincaré sections. In order to define
a “genuine” phase, such as that of periodic oscillators, we
need to define the “isophases” of chaotic attractors. (We recall
that for chaotic oscillators the isochrones generally do not
exist.) Because the phase of a chaotic system is, in fact,
not as “genuine” and unique as in the periodic case (see
discussion below), we will refer to it as the optimal phase,
in the sense that it is obtained by means of an optimization
procedure. Performing optimization, we minimize the variance
of the return times (or, equivalently, minimize variations of
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FIG. 1. (Color online) (a) Two different families of Poincaré
sections of the Rössler system, φ1 and φ2, are shown by red solid and
blue dashed lines, respectively. Both families yield a proper definition
of an oscillation. (b) The corresponding protophases ϕ1,2 are, however,
different, so that ϕ2(t) − ϕ1(t) shows irregular bounded fluctuations,
specific to the particular shapes of the Poincaré surfaces.

the instantaneous frequency) be means of a smooth coordinate
transformation and therefore obtain smooth isophases. (Notice
that for the genuine phase the variance would be zero.)

C. Optimal isophases for chaotic oscillators

The genuine phase of periodic oscillators is defined by
the basic property that there exist Poincaré sections where all
return times are exactly equal to the period of oscillations;
i.e., the corresponding Poincaré maps are stroboscopic maps
as well. Naturally, such a situation does not occur for general
chaotic oscillators. This is plausible because, on one hand,
different periodic orbits embedded in chaos usually have
different basic periods [total period divided by the number of
intersections with a Poincaré surface, see Eq. (7)]. On the other
hand, a coincidence of Poincaré and stroboscopic maps would
also imply the absence of phase diffusion, which, however, is
a degenerate, rarely observed situation [14].

Since isophases of chaotic oscillators defined as sections
with constant return times do not exist in the strict sense,
we introduce optimal isophases that approximate the property
above with some accuracy. Practically, we construct the
optimal isophases as a smooth Poincaré section with a minimal
(bounded by the smoothness) variation of return times. As this
condition is not unambiguous, we describe below an algorithm
that we practically use.

The starting point of our construction is a suitable vector
time series of chaotic dynamics x(t) in a time interval 0 �
t � tend which can be obtained by numerical simulation or
by embedding observed oscillations [15]. The first step is to
introduce an arbitrary protophase ϕ as described above. Using
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FIG. 2. (Color online) The stroboscopic sets Eq. (3) for the
Rössler attractor for two lengths of the trajectory, (a) tend = 103 and
(b) tend = 5 × 103, are shown with squares. The trajectories are shown
with gray lines, an the optimal local isophases obtained by fitting the
set by a polynomial ϕ(r) of order 4 are shown with black lines.

it, we can estimate the average period of oscillations as

T = 2πtend

ϕ(tend) − ϕ(0)
.

With this period, we define a family of stroboscopic sets for
the trajectory x(t) as

xk(θ̃ ) = x
(

θ̃

2π
T + kT

)
, k = 0,1,2, . . . ,Kend. (3)

Here θ̃ ∈ [0,2π ) serves as a periodic parameter (neither phase
nor protophase) parametrizing stroboscopic sets, and each set
consists of Kend points. These sets are invariant under the
stroboscopic map with time interval T but cannot serve as
Poincaré maps as they do not form smooth curves because
the rotation in chaotic systems is nonuniform. The larger
the total time interval tend is, the stronger the spreading of
the points of the stroboscopic set is. We illustrate this in
Fig. 2. We note that only in a degenerate case where the
phase diffusion of the chaotic oscillator vanishes would these
stroboscopic sets be smooth lines that can be used as Poincaré
sections; such degenerate chaotic attractors (see an example
in Ref. [16]) possess the same rigorous phase description as
periodic oscillators.

In order to obtain a proper smooth Poincaré section, we
fit the stroboscopic set, in the sense of least squares, by a
polynomial ϕ = ϕ(a) (we use a standard fitting procedure as
described in Ref. [17]). The resulting curves shown in Fig. 2
are our optimal isophases, i.e., the curves of constant phase θ .

If we restrict ourselves to rather smooth isophases only, a
good practical approximation can be achieved if one introduces
a global phase correction function � according to smooth
coordinate transformation:

θ = ϕ + �(ϕ,a). (4)

Then, one represents � in terms of polynomial basis functions:
For each of the amplitude components aj we use the powers an

j ,
and for the phase variable ϕ we use trigonometric polynomials
exp(iϕl). For example, for the Rössler system in 1 + 2
dimensions, consisting of phase ϕ, radius r , and height h,
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FIG. 3. (Color online) A global approximation of optimal
isophases (blue dots, which look like thick lines) obtained for
the Rössler attractor (gray) using approximation (5) with Nϕ = 4,
Nr = 3, and Nh = 1.

the phase correction is represented using a set of coefficients
cmnl :

�(ϕ,r,h) =
Nr∑

m=0

Nh∑
n=0

Nϕ∑
l=0

cmnlr
mhneilϕ. (5)

The coefficients can be computed by applying a linear least
squares fit [17] to the stroboscopic sets. In this way it is easy to
find an optimal phase globally, as a function of the state space
coordinates x. We illustrate the isophases obtained in this way
in Fig. 3.

In Fig. 4 we compare the quality of the optimal isophases
obtained via representation (5) with the results of the local
fitting of stroboscopic sets as in Fig. 2. We compare the return
times for these isophases with the return times of the Poincaré
section y = 0,x < 0. One can see that globally defined smooth
isophases in the form (5) give a quite good minimization of
the variability of return times.

III. DYNAMICS OF THE OPTIMAL PHASE

In this section we discuss dynamical properties of the
optimal phase introduced with the help of optimal isophases.
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FIG. 4. (Color online) Return times Tn for the Rössler oscillator
Eq. (1). Solid black squares correspond to an arbitrary Poincaré
section y = 0,x < 0, where the spreading of the return times is
large. Local (as in Fig. 2, blue open circles) and global (as in Fig. 3,
red crosses) approximations (nearly coinciding on the figure) of the
optimal isophases yield a strongly reduced variation of the return
times.

FIG. 5. (Color online) (a) The return time map Eq. (6) of
the Rössler oscillator Eq. (1) for the cylindrical Poincaré section
ϕ = 4π/3 [Eq. (2)] can be described as a one-dimensional chaotic
map (black dots). (b) Using the optimal isophase, one obtains a map
in a much smaller range [small box in (a) is enlarged]; this map
corresponds to what we expect for a noisy limit cycle oscillator.

A. Return time map

A natural way to characterize the time intervals Tn between
successive crossings of a Poincaré surface is to construct the
return time map,

Tn+1 = M(Tn). (6)

In fact, because Tn is a function of the Poincaré map coordinate,
it is just a scalar observable, and M(Tn) is not a function
but rather a one-dimensional projection of a Cantor set.
Nevertheless, for nearly two-dimensional strange attractors
the Poincaré map is nearly one-dimensional, and (6) looks like
a curve [see Fig. 5(a)]. In Fig. 5 we demonstrate how this
return time map changes if one uses an optimal isophase as a
Poincaré surface. First, the range of variations of Tn drastically
shrinks. Second, one can hardly recognize the one-dimensional
structure of the map: because now Tn is a “bad” observable, it
does not reproduce the nearly one-dimensional nature of the
Poincaré map an → an+1. This means that the dynamics of
the new optimal phase looks like a random process even on a
microscopic time scale of the order of the period T .

B. Uniformity of phase rotations

The basic property of the phase for a periodic oscillator
is that it rotates uniformly. For the optimal phase of a chaotic
oscillator we cannot expect pure uniformity, but nevertheless it
should be considerably increased compared to any protophase
that is typically used. We illustrate this in Fig. 6. Here we show
the velocities of the protophase ϕ defined according to Eq. (2)
and that of the optimal phase θ defined according to isophases
shown in Fig. 3. While fluctuations in the protophase velocity ϕ̇

heavily depend on ϕ, the fluctuations of θ̇ are almost uniformly
distributed and, notably, in some regions are larger than those
of the protophase. Similar results are reported in Ref. [18].
We conclude that optimal isophases not only eliminate the
amplitude dependence of the phase velocity but also flatten
the phase dependence of its velocity fluctuations.
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FIG. 6. The phase velocities for the Rössler system for the
protophase defined (a) according to (2) and (b) according to isophases
(Fig. 3).

C. Decoupling of amplitude and phase dynamics

One of the goals of introducing a phase is to decouple
its dynamics from that of the amplitude variables. For
periodic oscillators this decoupling is perfect, whereas for
chaotic oscillators, it is only approximate. To illustrate how
correlations of the phase dynamics with the amplitudes are
reduced when the optimal phase is introduced, we performed
a “mixing” experiment; the results are depicted in Fig. 7.
We started an ensemble of initial conditions on a certain
Poincaré surface and followed them for a time interval of
length 5T (five average rotation periods). The trajectories
starting at small, medium, and large amplitudes a are marked
separately in Fig. 7. In Figs. 7(a) and 7(b), where the Poincaré
surface φ1 = const is used, we see that the states that started at

FIG. 7. (Color online) Two “mixing” setups where initial states
of the Rössler oscillator Eq. (1) (marked as symbols) are chosen
either (a) on the Poincaré section φ1 = 4π/3 [Eq. (2)] or (c) on
the optimal isophase. (b) and (d) The same points at time t = 5T ,
where T is the average oscillation period. States on the optimal
isophase show less diffusive broadening in the direction of the phase
than the points on the arbitrary Poincaré section. Moreover, states
of different amplitude become indistinguishable only for the optimal
isophase, as seen by the mixing of symbols.

small amplitudes lag behind, while those that started at large
amplitudes are advanced. Contrary to this, using the optimal
isophase as an initial condition, we see that after five rotations
all points are mixed and one can hardly distinguish the points
that had different amplitudes at the beginning. This is another
illustration of the fact that the dynamics of the optimal phase
is effectively decoupled from the amplitude.

D. Phase response of chaotic oscillators

A basic application of the phase description of periodic
oscillators is quantification of the system response to pulse
stimulation by means of phase response curves. Given a state
on the limit cycle x(θ ), one can determine the phase shift due
to the change of the state x(θ ) → x′ = x(θ ) + k simply by
calculating θ ′ = θ (x′). Because the phase rotates uniformly
also outside of the limit cycle, the phase shift θ ′ − θ remains
invariant and characterizes the phase response (for noise-
induced oscillations this notion can be also introduced [19]).

This approach has to be slightly modified when applied to
chaotic oscillators. If both states x and x + k lie on the attractor,
then their optimal phases are well defined, and the phase
shift can be simply calculated as θ (x + k) − θ (x). However,
generally state x + k lies outside of the attractor, and we have
to generalize the definition of the optimal phases from the
attractor to its vicinity. This is ambiguous because the optimal
isophases are not genuine isophases. They are not strictly
invariant under time shifts, and we cannot define the phase of
state x + k by following its time evolution for arbitrarily large
times. Instead, we have to fix the time interval after which
the phase of state x + k is defined. For the Rössler model we
choose the mean period T as such an interval, as the relaxation
time of approaching the attractor is typically smaller. So we
define θ (x + k) = θ [T̂ (x + k)], where T̂ is the operator of
time evolution over the average period T (see Fig. 8). Applying
now representation (5), we obtain the phase response plot
(PRP) of the Rössler attractor R(k,x) = θ [T̂ (x + k)] − θ (x),
as shown in Fig. 9.

To stress the advantage of the optimal phase (compared
to a nonoptimal protophase variable) for the description of
phase response, we show in Fig. 10 the dynamics of the phase

FIG. 8. (Color online) A state x of the Rössler attractor (gray
trajectory) is kicked to state x + k (black points with an arrow).
After one period the perturbed trajectory (dashed line) returns to the
attractor and now lies on the isophase θ [T̂ (x + k)] (red dots). The
kick’s effect on the oscillator’s phase is therefore given by the phase
shift R(k,x) = θ [T̂ (x + k)] − θ (x).
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FIG. 9. (Color online) The phase response plot R(k,x) for
the states on the Rössler attractor, color (gray scale) coded, for
k = (1,0,0).

difference δθ (t) and of the protophase difference δϕ [where
ϕ is defined according to (2)]. The phase and protophase
differences are defined for the initial state x = (−8,0,0) and
kick k = (−2,0,0). Altogether 20 characteristic periods of
oscillations after the kick are shown. In this time interval,
δθ remains close to 0.12, compared with δϕ, which widely
oscillates around this value. Moreover, initially, the protophase
difference δϕ is nearly zero, indicating a vanishing phase
response, and only after half of a period does an effect of
the kick on the protophase become visible.

IV. ISOPHASES AND UNSTABLE PERIODIC ORBITS

In this section we discuss a relation between optimal
isophases of a chaotic system and unstable periodic orbits
(UPOs) x0(t + τ ) = x0(t) embedded in chaos. For each UPO
one can define the phase on this orbit just from the condition
of uniform rotation. This approach is discussed in Sec. IV A.
Similar to the construction discussed in Sec. II A, we can
extend the notion of the phase for each periodic orbit to
its stable or unstable manifold; these ideas are presented in
Sec. IV B.

A. Approximation of orbit phase sets

For each UPO one can introduce a topological period (lap
number) p as the number of intersections with a Poincaré
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FIG. 10. (Color online) Evolution of phase (red solid line) and
protophase (blue dashed line) differences (see text for details).

FIG. 11. (Color online) (a) The optimal isophase (black line,
obtained using a fit with a high-degree polynomial) of the Rössler
oscillator [Eq. (1)] overlapped with orbit phase sets [Eq. (8)] of two
orbits having topological periods nine (green circles) and ten (red
squares). (b) A distance measure d [Eq. (9)] quantifies how close the
orbit phase set is to the isophase, here shown for 80 p orbits with
p � 10. One can see weak correlations to the instability of the UPOs
measured by the Floquet multiplier |ρ|.

section. With this number p and the total period τ , we define
the oscillation period,

S = 2π

ν
= τ

p
, (7)

which is expected to be close, but not identical, to the mean
period of chaotic oscillations (mean return time of the Poincaré
map). Next, for the UPO we can introduce the phase θ̃ that
rotates uniformly with frequency 2π/ν so that θ̃(τ ) = θ̃ (0) +
2πp. With the help of this phase, a family of point sets I (θ̃ ),
called orbit phase sets, can be defined as points that are attained
at constant time intervals, equal to the oscillation period S:

I (θ̃ ) =
{

x0

(
θ̃

2π
S + nS

)
|n = 0, . . . ,p − 1

}
, (8)

with some arbitrary choice of the zero phase.
Let us now take a Poincaré surface that passes through the

orbit phase set I (θ̃ ). (Of course, there are many possibilities
to draw such a surface; e.g., one can use splines.) Then it will
be an approximation to an optimal isophase, as, at least on
the orbit phase set, all the return times will be equal to S. We
illustrate this in Fig. 11(a), where we show orbit phase sets
of two UPOs, with topological periods p = 10 and p = 9,
for the Rössler system (1). Since the orbits do not share any
state, the zero phases can be chosen separately. Practically,
the phase offsets have been chosen in a way that the orbit phase
sets are mostly close to each other and approximate the same
isophase, which is also drawn for comparison. One can see
that the orbit phase states indeed can serve as approximations
for the isophases.

This approximation is expected to work better for larger
periods and for periodic orbits that are the most “typical.”
The probability for a trajectory to approach the orbit depends
on the stability of the UPO, quantified by its unstable
Floquet multiplier [20]. Therefore, it is expected that the
correspondence between isophases and the orbit phase sets
will be better for UPOs that are visited more often because
they are less unstable. To check this for the Rössler system,
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we introduce a measure d of the distance of a p-orbit y to the
optimal isophase shown in Fig. 2(a) with a thick black line as

d =
√√√√p−1

p−1∑
k=0

∣∣∣∣yJ
k − yk

∣∣∣∣2
, (9)

where yJ
k are coordinates of the orbit phase set (for which

we also optimized the zero phase to achieve a minimum of
d) and yk are the crossings of the periodic orbits with the
isophase. This measure was calculated for the 80 available
UPOs together with their Floquet multipliers. It was found
that orbits showing a larger distance had a tendency to be less
stable [cf. Fig. 11(b)].

B. Orbit isophase

As described in Sec. II A, after the phase on a periodic
orbit is introduced, the isophases in its vicinity can be defined
separately on the stable and unstable manifolds of the orbit
as the stable and the unstable manifolds of the fixed points
of the stroboscopic (with the period of the orbit) map. This
definition can be applied to the UPOs in chaos, where the
unstable manifolds are especially interesting as they lie in the
attractor.

Let us consider the simplest UPO of the Rössler oscillator
that has topological period p = 1. Its oscillation period is
S ≈ 6.024, whereas the mean period of a typical trajectory
is T ≈ 6.073. Numerically, we calculated the isophase on the
unstable manifold of this orbit using the oscillation period S for
the stroboscopic map and obtained the blue line in Fig. 12. This
isophase becomes folded together with the unstable manifold
and is not close to the optimal isophases obtained by methods
above.

It is instructive to try to construct the isophase on the
unstable manifold of the UPO using not its period S but the
mean period T . It is clear that such an isophase cannot exist,

FIG. 12. (Color online) For a UPO of the Rössler oscillator
(dashed line), the orbit phase set Eq. (8) can be extended to the
unstable manifold in two ways. The blue solid line shows
the extension where the orbit’s period S is used. Red circles depict
the extension based on the mean period of the chaotic attractor. The
singularity of the latter curve indicates a divergence of the phase
correction (see the Appendix for the analytic form of this correction
for the unstable Stuart-Landau oscillator.)

but trying to approximate it (see the Appendix for details) we
obtain a singular curve (Fig. 12). This is another representation
of the nonsmoothness of stroboscopic sets that appears in the
algorithm described in Sec. II C due to the nonexistence of
true isophases. In fact, when one tries to construct an isophase,
such a singularity will appear for every periodic orbit, and the
procedure should be constrained by the requirement that the
isophase should be sufficiently smooth.

V. PHASE OF THE LORENZ SYSTEM

In our presentation above we have used the Rössler model
Eq. (1) as the basic example. Here we discuss how the approach
works for the Lorenz system,

ẋ = 10(y − x), ẏ = 28x − y − xz, ż = − 8
3z + xy. (10)

Chaotic phase diffusion of the Lorenz system is orders of
magnitude stronger than that of the Rössler oscillator, Eq. (1);
thus introducing its phase is a more challenging task. The main
difficulty lies in the unboundedness of the return times of the
Poincaré map due to the presence of the saddle steady state at
the origin (x = y = z = 0). Due to this, the stroboscopic sets
are spread over the attractor and cannot serve as a basis for
the construction of isophases as described above. Therefore
we applied the following iterative procedure for obtaining
smooth optimal isophases. First, we use projections of the
trajectory onto the plane (u =

√
x2 + y2,z). On this plane the

trajectory rotates around a center approximately at (12,27), and
the protophases can be easily defined (cf. [21]). We choose
a Poincaré surface and find the points of the trajectory at
the intersection with this surface; these are x(tk),y(tk),z(tk),
k = 1,2, . . . Of course, the times tk are not equidistant because
the Poincaré map is far from the stroboscopic one. We adjust
the times tk , trying to make them equal by introducing a
parameter s on which these times depend and letting them
evolve according to

dtk

ds
= −∂V (t1,t2, . . .)

∂tk
, V = 1

2

∑
k

(tk+1 − tk − T )2 , (11)

where T is the average period. One can easily see that the
“evolution” of tk according to Eq. (11) leads to equalization
of the intervals tk+1 − tk because of the minimization of the
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 40
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FIG. 13. (Color online) Optimal isophases (depicted by different
symbols or colors) of the Lorenz attractor Eq. (10) (gray line).
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FIG. 14. (Color online) Return times for the Poincaré section
u = 12,z < 27 (solid circles) and for the optimal isophase (open
circles) resulting from it iterations (this isophase is shown in Fig. 13
with solid black squares). The variations of the return times only
slightly decrease.

Lyapunov function V . However, we “evolve” the times tk only
for a finite interval of s and obtain new times t̃k = tk(s). The
new points x̃(t̃k),ỹ(t̃k),z̃(t̃k) form a new distorted and singular
Poincaré section. We smoothen this set by applying a kernel
technique [22] and obtain a smooth new Poincaré section with
more equidistant time intervals. We make several iterations
of this procedure and finally obtain the approximate smooth
isophases as depicted in Fig. 13.

To characterize the quality of the introduced isophases for
the Lorenz system, we plot the return times for an initial
arbitrary Poincaré section and for the obtained isophase in
Fig. 14. We see that the variations of the return times decrease
only slightly, and the singularity (corresponding to the stable
manifold of the origin) remains.

In Fig. 15 we use orbit phase sets of UPOs of the Lorenz
system to approximate isophases. Nine periodic orbits of the
Lorenz system with topological period 6 are shown with gray
line. By manually adjusting phase shifts of these orbits, it is
possible to arrange the isophase sets for each orbit (different
markers) to build a set close to a curve (drawn manually as a
black line) that can serve as an optimal isophase. The form of
this curve is close to one of the optimal isophases presented in
Fig. 13.

 0

 20

 40

-40 -20  0  20  40

x + y

z

FIG. 15. (Color online) Building an isophase using nine UPOs of
the Lorenz system with p = 6 (see text for details).

VI. CONCLUSION

In summary, we have proposed a method of phase de-
scription of chaotic oscillators by generalizing the concept
of standard isophases (isochrones) of periodic oscillators.
In the absence of a stable limit cycle, the definition of
optimal isophases of chaotic oscillations is solely based on
their return times. Because of nonvanishing chaotic diffusion
and embedded unstable periodic orbits with different periods,
isophases could only be obtained in an optimal, approximate
way constrained by certain smoothness conditions. In the
case of the Rössler attractor, where the phase diffusion is
relatively small, we obtain the optimal isophases by smoothing
the stroboscopic sets of a chaotic trajectory. For the Lorenz
attractor, where phase diffusion is large, an iterative numerical
scheme was proposed. Using the Rössler oscillator as an
example, we have presented different aspects of the phase
dynamics. Specifically, the decoupling of the phase dynamics
from the amplitudes and a way to describe the phase response
of chaotic oscillators have been outlined. The optimal phase
has also other advantages when compared to arbitrary phase-
like variables. We have demonstrated that, while the optimal
phase yields a proper description of the phase response,
phaselike variables do not provide reasonable phase response
plots. Furthermore, the optimal phase, contrary to phaselike
variables, is directly related to the phase of unstable periodic
orbits inside chaos.

The theory of optimal isophases can possibly provide
a refined understanding of emergent behavior of weakly
coupled oscillating systems. For example, a theoretical phase
description of weakly coupled limit cycle oscillators can be
extended to ones of greater complexity, such as stochastic
or chaotic oscillators (cf. [11,12]). In this way, one can treat
more realistic models of natural systems. Furthermore, the
theory can easily be utilized in the analysis of observed chaotic
oscillations, where the numerical scheme described above can
be used to refine a preliminary phase description. This can
help to reduce certain systematic errors that may be present in
phase-related quantities such as coupling strengths.

The theory is easily adaptable for the analysis of nonlinear
oscillations with a random component (for theoretical ap-
proaches, see, e.g., [23–25]). Here the return times to optimal
isophases have to be interpreted in an average sense. The
corresponding results will be presented elsewhere.

In the present form, the approach is applicable to relatively
simple chaotic and irregular systems, described by a single
phase variable. The next step would be a generalization
to systems with two time scales, generating mixed mode
regular or chaotic oscillations (e.g., bursting regimes of neuron
models). Such a step requires a substantial refinement of the
present approach, and it remains a challenging problem for the
future.
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APPENDIX: ISOPHASES OF THE UNSTABLE
STUART-LANDAU OSCILLATOR

To give an analytically tractable example of isophases of
UPOs on their unstable manifold, let us consider the unstable
Stuart-Landau oscillator governed by

ṙ = r(r2 − 1); ϕ̇ = α − κr2. (A1)

It is exactly solvable: For the initial conditions r(0) = R and
ϕ(0) = �, it has the well-known solution

r(t) =
[

1 + 1 − R2

R2
e2t

]−1/2

, (A2)

ϕ(t) = (α − κ)t − κ ln r(t) + � + κ ln R. (A3)

Oscillator (A1) shows an unstable periodic orbit (UPO) with
frequency ω = α − κ . Depending on the initial conditions, it
either performs decaying oscillations (for R < 1) or diverges
in finite time (for R > 1).

As the characteristic period we first choose that of the UPO:
S = 2π

ω
. In order to obtain a phase that rotates independently of

r , we set θ = ωt + � + κ ln R. Inserting θ into Eq. (A3), we
find that optimal isophases I (θ ) are solutions of the equation

θ = ϕ + κ ln r. (A4)

For each (�,R) ∈ I (θ ) the return time for θ → θ + 2π is
equal to S because θ̇ = ω. This is the standard definition of
the isophases.

Alternatively, one may think of the unstable Stuart-Landau
oscillator as a rarely visited part of the state space of a bigger
chaotic system that has a different characteristic frequency
2π
T

= ω0 = ω + �ω. This means that average period T is
different from the period S of the UPO. Therefore, the
condition that the return time for a Poincaré surface is equal
to T cannot be fulfilled on the orbit. To fulfill the condition
for states off the periodic orbit, we now seek a phase with the
dynamics θ̇ = ω0. Therefore, we rewrite Eq. (A3) in terms of
ω0t :

ϕ(t) = ω0t + � + κ ln R − κ ln r − �ωt(r). (A5)

Here we need to rewrite time as a function of the radius, using
(A2). We get

t(r) = 1

2
ln |r2 − 1| − ln r + ln

R√
1 − R2

. (A6)

After the substitution, a uniformly rotating phase is given by
θ = ω0t + � + κ ln R + �ω ln(

√
1 − R2/R). Comparing the

result with Eq. (4), we obtain the phase correction as

�(r) = −(κ − �ω) ln r − �ω

2
ln |r2 − 1|. (A7)

While the return time is equal to T off the periodic orbit,
the phase correction diverges as ln |1 − r| in the limit r → 1.
Thus, the “isophase” is singular and winds itself infinitely
often around the limit cycle.

[1] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence
(Springer, Berlin, 1984).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization:
A Universal Concept in Nonlinear Sciences (Cambridge
University Press, Cambridge, 2001).

[3] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT
Press, Cambridge, MA, 2007).

[4] J. Guckenheimer, J. Math. Biol. 1, 259 (1975).
[5] A. T. Winfree, The Geometry of Biological Time (Springer,

Berlin, 1980).
[6] J. D. Farmer, Phys. Rev. Lett. 47, 179 (1981).
[7] A. S. Pikovsky, Radiophys. Quantum Electr. 29, 1076 (1986).
[8] A. S. Pikovsky, Sov. J. Commun. Technol. Electron. 30, 85

(1985).
[9] E. F. Stone, Phys. Lett. A 163, 367 (1992).

[10] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 76, 1804 (1996).

[11] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 78, 4193 (1997).
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