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Global dynamics of oscillator populations under common noise
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Abstract – Common noise acting on a population of identical oscillators can synchronize them.
We develop a description of this process which is not limited to the states close to synchrony, but
provides a global picture of the evolution of the ensembles. The theory is based on the Watanabe-
Strogatz transformation, allowing us to obtain closed stochastic equations for the global variables.
We show that at the initial stage, the order parameter grows linearly in time, while at the later
stages the convergence to synchrony is exponentially fast. Furthermore, we extend the theory to
nonidentical ensembles with the Lorentzian distribution of natural frequencies and determine the
stationary values of the order parameter in dependence on driving noise and mismatch.
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Introduction. – Synchronization of oscillations by a
periodic forcing is a general phenomenon observed in
numerous experiments. In this setup the system follows
the driving and has, in particular, the same frequency,
so one often speaks on frequency entrainment. Much
more nontrivial is the effect of synchronization by an
external noise. Here one can also distinguish between
the cases when the driven system is entrained by the
noise (synchrony) and the situations when the noise is
not followed (asynchrony). While the difference between
these regimes can be hardly seen by observing just one
responding oscillator, it becomes evident if an ensemble
of identical systems driven by the same noise is observed:
in the case of synchronization all the oscillators in the
ensemble follow the forcing and their states thus coin-
cide, while in the asynchronous state the states of systems
remain different. This effect is therefore called synchro-
nization by common noise [1–6]. An interesting realization
of this type of synchronization is the effect of reliability of
neurons [7]. Here one does not use an ensemble of iden-
tical neurons, but takes one neuron and applies the same
pre-recorded noise to it several times. The synchronous
case appears as a reliable response to the forcing where
all the noise-induced spikes are at the same position at all
runs, while for asynchrony (antireliability) the same noise
produces different spike patterns [8,9]. Synchronization by
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common noise was also observed in physical experiments
with phase-locked loop [10] and noise-driven lasers [11].
Synchronization by common noise can be character-

ized by the largest Lyapunov exponent of the noise-driven
dynamics. This exponent governs the growth/decay of
small perturbations of a synchronous state; a negative
exponent corresponds to synchrony while a positive one to
asynchrony [1–6] (notice that here the largest Lyapunov
exponent can be interpreted as a “transverse” one, deter-
mining the growth/decay of the difference between oscilla-
tors in the ensemble). For periodic oscillators, which in the
noise-free case have a zero maximal Lyapunov exponent,
small noise generally leads to a negative exponent (while
large noise can desynchronize); for chaotic systems with a
positive Lyapunov exponent, strong noise can synchronize
(see examples of the synchronization-desynchronization
transition in [1,2,12–14]). Calculation of the Lyapunov
exponent is a relatively easy numerical task, and in many
cases it can be obtained analytically [4–6]. This theory is,
however, restricted to the linear analysis of a stability of
the synchronous state, and does not allow one to follow the
evolution starting from a broad distribution of the phases.
The goal of this letter is to present a global analytic

theory of the synchronization by common noise, i.e. a
theory describing the evolution toward synchrony of the
population starting from the distributed, asynchronous
state. Our theory is based on the Watanabe-Strogatz
ansatz [15] that allows one to describe a population
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of phase oscillators under common forcing via closed
equations for the macroscopic, global variables. We will
show that the resulting equations can be written as a
noise-driven Hamiltonian system, and will analyze the
evolution of ensembles close to synchrony (where the
results of the Lyapunov analysis will be recovered) as well
as the evolution starting from the maximally asynchronous
state.

Global variables description of ensembles. – Our
goal is to describe an ensemble of identical (phase)
oscillators, and one can show that the following model is
general enough to describe all interesting cases:

ϕ̇k =Ω(t)+ Im(F (t)e
−iϕk), k= 1, . . . , N. (1)

Here oscillators are described by their phases ϕk, and Ω(t)
and F (t) are time-dependent common forces (without loss
of generality we can assume that F (t) is real, otherwise
one shifts the phases ϕ by the argument of complex F and
correspondingly redefines Ω). We want to characterize the
evolution of the ensemble especially for noisy forces.
Now we present two particularly important applica-

tions, which can be described using eqs. (1). One is an
ensemble of self-sustained oscillators under common exter-
nal force. Unforced oscillators are described by ϕ̇k = ω,
and a noisy forcing is typically described by

ϕ̇k = ω−σξ(t) sinϕk. (2)

This system, previously considered in [4,6], reduces to
eq. (1) with constant Ω= ω and F (t) = σξ(t). Another
relevant physical setup is a sequential array of shunted
Josephson junctions subject to a common current I(t):

�

2eR

dϕk
dt
+ Ic sinϕk = I(t). (3)

Here ϕk is the junction’s phase (difference of the phases
of the macroscopic wave functions in superconductors
constituting the junction), R is the resistance of the shunt,
Ic is the critical current. Supposing that the current I(t)
has a constant and noisy component I = I0+ I1(t), then
by rescaling time t→ Ic2eR

�
t, we can write system (3) as

ϕ̇k = ω+σξ(t)− sinϕk, (4)

which is also eq. (1) with constant F = 1 and time-
dependent Ω(t) = (I0+ I1(t))(Ic)

−1 = ω+σξ(t).
In the seminal work [15] Watanabe and Strogatz (WS)

demonstrated that the ensemble (1), for any N > 3, can
be fully described with three global variables and N − 3
constants of motion. We will use here the formulation
of the WS theory given in [16]. The transformation to
the global variables ρ,Φ,Ψ and constants ψk is performed
according to

eiϕk = eiΦ
ρ+ ei(ψk−Ψ)

ρei(ψk−Ψ)+1
, (5)

with an additional constrain
∑

k e
iψk = 0. Unfortunately,

there are no explicit formulas expressing ψk, ρ,Φ,Ψ in
terms of the known phases ϕk. Still, in sect. 4.2 of ref. [15] a
stable numerical procedure to perform this transformation
is presented. The closed system of equations for ρ,Φ reads
(as Ψ does not enter in the dynamical equations for ρ̇ and
Φ̇, it does not have to be taken into account)

ρ̇ =
1− ρ2
2
Re(F (t)e−iΦ),

(6)

Φ̇ = Ω(t)+
1+ ρ2

2ρ
Im(F (t)e−iΦ).

The physical meaning of the global variables ρ,Φ is clear
from their definition (5). The case of uniformly spread
constants of motion ψk is easiest to interpret, because as
it has been shown in [16,17], for a uniform distribution of
constants ψk one has ρ exp(iΦ)=N

−1
∑

k exp(iϕk). This
means that z = ρeiΦ is the complex Kuramoto order para-
meter widely used for characterizing synchrony in the
ensemble. Thus, ρ is roughly proportional to the mean
field amplitude: for ρ= 0 the phases ϕk are uniformly
spread while for ρ= 1 they form a cluster (from which
at most one oscillator with ψk −Ψ= π may deviate) of
perfect synchrony. The variable Φ, being the phase of
the mean field, characterizes the position of the maxi-
mum in the distribution of phases. Finally, the variable
Ψ characterizes the offset of the phases of individual oscil-
lators with respect to Φ. For a non-uniform distribution
of the constants ψk, the complex variable z does not coin-
cide with the Kuramoto order parameter; nevertheless, the
limits ρ→ 0 and ρ→ 1 correspond to fully asynchronous
and fully synchronous cases, so ρ yields a proper charac-
terization of synchrony.

Hamiltonian formulation. – Our goal in this paper
is to describe the evolution of the ensemble (1) for noisy
Ω(t), F (t), by virtue of the global variables dynamics (6).
Remarkably, one can reformulate the basic equations (6)
as a Hamiltonian system [18]. Indeed, in variables

q=
ρ cosΦ
√

1− ρ2
, p=− ρ sinΦ√

1− ρ2
, (7)

the equations read

q̇=
∂H

∂p
=Ω(t)+F (t)

1+ q2+2p2

2
√

1+ p2+ q2
,

ṗ=−∂H
∂q
=−Ω(t)q−F (t) qp

2
√

1+ p2+ q2
,

(8)

with the Hamiltonian

H(q, p, t) =Ω(t)
p2+ q2

2
+F (t)

p
√

1+ p2+ q2

2
. (9)

One can also formulate the dynamics in “action-angle”
variables [19], where the angle is the WS variable Φ and
the action is defined according to

J =
q2+ p2

2
=

ρ2

2(1− ρ2) . (10)
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The Hamiltonian equations now read

J̇ = F (t)

√

2J(2J +1)

2
cos(Φ) =−∂H

∂Φ
,

Φ̇ = Ω(t)−F (t) 4J +1

2
√

2J(2J +1)
sin(Φ) =

∂H

∂J
,

(11)

with the Hamiltonian

H(J,Φ, t) = Ω(t)J −F (t)
√

2J(2J +1)

2
sinΦ. (12)

Without forcing, F (t) = 0, H(J,Ψ, t) =H(J, t) is an inte-
grable Hamiltonian and (J,Φ) play the role of action-angle
variables [19]. The forcing term can be considered as a
perturbation Hamiltonian. The action J yields, accord-
ing to its relation to the Kuramoto order parameter ρ, a
natural characterization of synchrony in the population of
oscillators: J→ 0 corresponds to a maximally asynchro-
nous, uniformly spread state, while J→∞ corresponds to
a perfect synchrony where all oscillators cluster in a single
point in phase space.
The Hamiltonian formulation allows us to give a

general qualitative description of the dynamics. Notice
that since the Hamiltonian is time dependent, the energy
in eqs. (8), (11) is not conserved. Typically, noise leads
to a growth of energy, either diffusive or exponential
(in exceptional cases, e.g., if in (12) F (t) vanishes, the
system possesses an integral and no growth of energy
is observed). Thus, the action variable J grows and the
system tends to synchrony. We analyze below this growth
for large and small values of J , i.e., close to synchrony
and close to asynchrony, using 〈J〉 as the order parameter
characterizing the level of synchrony.

Dynamics close to synchrony. – Close to synchrony,
i.e., for J≫ 1, we can approximate the Hamiltonian (12)
as H(J, φ, t) = (Ω(t)−F (t) sinΦ)J , which leads to a skew
system where the dynamics of Φ does not depend on J :

J̇ = F (t)J cos(Φ), (13)

Φ̇ =Ω(t)−F (t) sin(Φ). (14)

This yields ln J(t) = lnJ(0)+
∫ t

0
F (t′) cosΦ(t′)dt′ and

Φ(t) is a solution of (14). On average, lnJ grows linearly
in time with the rate given by the Lyapunov exponent

〈

d

dt
lnJ

〉

=−λ= 〈F (t) cos(Φ)〉 . (15)

(We use here the negative sign of the exponent to be
consistent with the traditional definition of Lyapunov
exponents (cf. eq. (16) below).) The same Lyapunov
exponent appears when one directly analyses stability
of the cluster ϕ1 =ϕ2 = . . .=ϕN =Φ in system (1). The
phase of the cluster obeys (14) and the small deviation of
one of the phases δϕ obeys

d

dt
δϕ=−F (t) cos(Φ)δϕ, (16)

which is the same as eq. (13) but with the opposite sign.
This means that δϕ∼ exp(λt) with the Lyapunov expo-
nent defined in (15). For both applications (2) and (4),
the calculations of the Lyapunov exponent for a white
Gaussian noise ξ(t) have been already reported in the liter-
ature (see fig. 9.4 in ref. [3] for (4) and refs. [4–6] for (2)).

Dynamics close to asynchrony. – Here we describe
the dynamics for small values of J , i.e. close to the
asynchronous regime with nearly uniform distribution of
the phases ϕk. We perform the analysis separately for
the noise-driven oscillators (2) and noise-driven Josephson
junctions (4).
An ensemble of noise-driven oscillators (2) is described

by Hamiltonian (9) with F (t) = σξ(t) and Ω= ω= const.
For small q, p≪ 1 we can approximate the Hamiltonian as

H(q, p, t) = ω
p2+ q2

2
+σξ(t)

p

2
. (17)

Assuming for simplicity of presentation that we start from
the vanishing order parameter, i.e. q(0) = p(0) = 0, we can
easily solve the resulting linear equations:

q(t)+ ip(t) =
σ

2

∫ t

0

exp[iω(t′− t)]ξ(t′)dt′, (18)

which yields for the action J , after averaging,

〈J(t)〉= 1
2

〈

q2+ p2
〉

=

σ2

8

∫ t

0

∫ t

0

eiω(t
′−t′′) 〈ξ(t′)ξ(t′′)〉dt′dt′′.

Introducing τ = t′− t′′ and assuming that 〈ξ(t′)ξ(t′′)〉
depends only on τ one can integrate over t′ so that

〈J(t)〉= tσ
2

8

∫ t

−t

〈ξ(0)ξ(τ)〉 cosωτ
(

1− |τ |
t

)

dτ. (19)

Asymptotically, for large t this describes a diffusive linear
growth of J (provided the integral converges, i.e. the
correlation function of noise decays fast enough); in the
case of white noise, when 〈ξ(0)ξ(t′)〉= δ(t′), we get

〈J(t)〉= σ
2

8
t. (20)

In fig. 1 we compare for model (2) the theoretical results
with the numerical ones (obtained from eqs. (8), (11)).
In the case of noise-driven Josephson junctions (4) we

need to analyze the Hamiltonian

H(J,Φ, t) = (ω+σξ(t))J −
√

2J(2J +1)

2
sinΦ. (21)

We restrict our attention to the nontrivial case ω > 1, so
that the Hamiltonian is bounded from below. The “lowest-
energy” state here for σ= 0 is the steady state with Φ0 =
π/2, J0 = (ω−

√
ω2− 1)/(4

√
ω2− 1). This steady state
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Fig. 1: (Color online) Evolution of 〈J(t)〉 for noise-driven
oscillators for different σ (right panel: the same in a rescaled
time), for ω= 2 and different noise intensities σ. The dashed
line corresponds to relation (20).

does not correspond to full asynchrony (which is not a
stationary solution of the equations, because the phases
rotate non-uniformly), but to a stationary distribution of
the phases of the ensemble (4). Close to this equilibrium,
we can linearize the equations of motion, so that the
Hamiltonian in the vicinity of J0,Φ0 reads

H(δJ, δΦ, t) =H0+σξ(t)δJ +
ω1(δΦ)

2+ω2(δJ)
2

2
, (22)

with ω1 = 0.5
√

2J0(2J0+1), ω2 = 2(ω
2− 1)(2J0(2J0+

1))−1/2. The solution of the linear equations of motion
(starting from the equilibrium point) is, similarly to (18),

δΦ+ i
ω2
κ
δJ = σ

∫ t

0

exp[iκ(t′− t)]ξ(t′)dt′,

where κ2 = ω2− 1. After averaging we obtain
〈

(δΦ)2+
ω22
κ2
(δJ)2

〉

=

tσ2
∫ t

−t

〈ξ(0)ξ(τ)〉 cosκτ
(

1− |τ |
t

)

dτ.

This relation means that, asymptotically, the “energy”
defined as H −H0 = 0.5(ω1(δΦ)2+ω2(δJ)2) grows
linearly in time, for the white noise we get

〈H −H0〉=
ω1σ

2

2
t. (23)

This relation is checked in in fig. 2, where numerical
simulations of eqs. (8), (11) are presented.
The results above show that there are two stages for

the transition to synchrony in ensembles of oscillators
driven by common noise. As the system is described by
a noise-driven Hamiltonian, it is natural to characterize
the evolution through the “energy” —the value of the
noise-independent part of the Hamilton function. At the
initial stage, close to asynchrony, the growth of the energy
is diffusive, its averaged square grows linearly in time
according to (20) and (23). When the energy reaches a
level of order one, a crossover to the other type of behavior,
namely to an exponential growth of energy, is observed
from numerical simulation (cf. figs. 1, 2). This latter
stage means that the final convergence of the ensemble of
oscillators to a synchronous cluster is exponentially fast.
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Fig. 2: (Color online) Evolution of 〈H −H0〉 for the ensemble
of Josephson junctions (4) for ω= 5 and different σ (right
panel: in a rescaled time). The dashed line corresponds to
formula (23).

Nonidentical oscillations. – Here we extend the
theory to the case of nonidentical oscillators (2) having
a distribution of frequencies g(ω). In this case one first
generalizes the WS description by assuming the frequency
dependence of the variables ρ(ω),Φ(ω) [16]. It is conve-
nient to introduce one complex variable z(ω) = ρeiΦ that
obeys

ż = iωz+
σξ(t)(1− z2)

2
. (24)

The distribution of the phases is now characterized by the
global order parameter Z =

∫

z(ω)g(ω)dω. Following the
approach of Ott and Antonsen [20], it is possible to obtain
a closed equation for this order parameter in the case of
a Lorentzian distribution g(ω) = π−1γ(γ2+(ω−ω0)2)−1.
Then, assuming that z(ω) as function of complex ω does
not have singularities in the upper half-plane, one can
perform the integration to get Z = z(ω0+ iγ). Thus, the
equation for Z follows from (24) with ω→ ω0+ iγ:

Ż = iω0Z − γZ +
σξ(t)(1−Z2)

2
. (25)

Transforming from Z to the canonical variables as
in (7), (10), we obtain the same equations as (8) and (11)
but with additional non-Hamiltonian, damping terms:

q̇ = ω0p+σξ(t)
1+ q2+2p2

2
√

1+ p2+ q2
− γq(1+ p2+ q2),

ṗ = −ω0q−σξ(t)
qp

2
√

1+ p2+ q2
− γp(1+ p2+ q2),

(26)

and

J̇ = σξ(t)

√

2J(2J +1)

2
cos(Φ)− 2γJ(1+ 2J),

Φ̇ = ω0−σξ(t)
4J +1

2
√

2J(2J +1)
sin(Φ).

(27)

With damping terms, the energy does not grow indefi-
nitely, but saturates as shown in fig. 3. The saturation
level corresponds to a bunch of oscillators that do not
form a perfect cluster, but have a finite spread.
The stationary level of the order parameter can be

estimated for a state close to synchrony and for a wide
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Fig. 4: (Color online) The stationary level of the order para-
meter for an ensemble of the oscillators with a Lorentzian
distribution of frequencies, vs. the distribution width. Parame-
ters: ω0 = 2, σ= 0.3. Squares: modeling eqs. (26), (27); filled
circles: modeling the ensemble of N = 5000 oscillators for the
same parameters. The solid green line describes the analytic
estimate for small actions 〈J〉= σ2/(16γ).

distribution (asynchrony). Close to synchrony, i.e., for
J≫ 1, we have instead of (13)

d

dt
lnJ = σξ(t) cosΦ− 2γJ. (28)

If we neglect the fluctuations of the growth rate and
assume σξ(t) cosΦ= 〈σξ(t) cosΦ〉=−λ, then the station-
ary value of J is Jst = |λ|/(2γ). Close to asynchrony we
can use the same approximation as in (17), but now the
equations read

q̇= ω0p− γq+0.5σξ(t), ṗ=−ω0q− γp,
with the average stationary energy

〈q2+ p2〉= σ
2

8γ

∫ ∞

−∞

〈ξ(0)ξ(t)〉 cosω0te−γ|t|dt,

which in the case of the white noise yields 〈J〉= σ2/(16γ).

Remarkably, in both limits the average value of J scales
as γ−1. This is confirmed by numerics presented in fig. 4.
In this figure we present also simulations of the oscillator
populations, which fit nicely the results from the modeling
of the WS variables. Surprisingly, the analytical estimate
for small actions, 〈J〉σ2/(16γ) (green line in fig. 4) works
very well in the whole range of J , probably due to a
numerical coincidence.

Discussion. – In this letter we have developed a global
theory of synchronization of oscillator populations by
common noise. Our analysis is based on the Watanabe-
Strogatz ansatz [15], which is not restricted by a number
of elements in the populations and results in an explicit
time dependence of the global variables on the common
forcing terms. These variables can be interpreted as order
parameters characterizing the population of identical oscil-
lators. For noisy forcing we thus obtained a closed set of
stochastic differential equations for the global variables.
An important step in our consideration is a representa-
tion of the WS equations as a nonautonomous Hamil-
tonian system; transition to synchrony then appears as
the growth of energy due to the noisy driving. While for
the situations close to synchrony the results are essen-
tially the same as the previous ones derived from the linear
perturbation approach, we have demonstrated that when
starting from a broad initial distribution, the energy first
grows linearly, and only after a formation of a concentrated
cluster the exponential convergence to synchrony sets on.
Furthermore, by virtue of the Ott-Antonsen theory [20]
we have extended the analysis to populations of noniden-
tical oscillators with a Lorentzian distribution of natural
frequencies. Here the theory is valid in the thermodynamic
limit of very large ensembles only.
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