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We study the properties of energy spreading in a lattice of elastically colliding harmonic oscillators

(Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized

initial state is mediated by compactons and chaotic breathers. In a disordered lattice, the

compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with

a few chaotic spots. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695369]

In a linear medium, energy propagates in the form of

waves, e.g., as phonons in a chain of linearly interacting

particles. Disorder leads to Anderson localization which

blocks the spreading. In a nonlinear medium, chaos may

appear, so the Anderson localization is destroyed and a

weak subdiffusive spreading of energy is observed. Still,

it is not clear how the final stage of this very slow process

looks like. There is a class of systems where the interac-

tion between particles is purely nonlinear, here phonons

do not exist and all spreading mechanisms are essentially

nonlinear. In such ordered strongly nonlinear lattices,

nonlinear waves—compactons—may transport energy to

large distances, while in disordered case, one observes a

slow subdiffusive energy spreading due to chaos. The

Ding-Dong model that we study in this paper is a simple

although singular realization of a strongly nonlinear lat-

tice, where linear oscillators interact due to elastic colli-

sions. Numerical simulations of this system are very

effective and allow us to characterize the properties of

compactons and energy spreading in disordered lattices

at very large times. Our conclusion is that in the disor-

dered case the spreading eventually stops, resulting in a

few chaotic spots where 3-4 neighboring particles collide

in an irregular manner.

I. INTRODUCTION

Dynamics of nonlinear lattices is one of the central

topics of nonlinear science. Since the pioneering works of

Fermi, Pasta, and Ulam (see Refs. 1 and 2) enormous pro-

gress have been achieved in understanding of different

aspects of interesting dynamical properties of such systems,

in particular of solitary waves (solitons and compactons),

thermalization, and transition to chaos. Very popular in these

studies are models of elastically colliding particles. Indeed,

such systems have been proved to be tractable in deriving

foundations of statistical mechanics from dynamical equa-

tions.3 In the context of one-dimensional lattices, in papers4,5

a so-called “Ding-a-Ling” model has been introduced, con-

sisting of an alternate sequence of equal mass, hard point,

free and bounded by harmonic forces elastically colliding

particles. For further studies of this model, see Refs. 6 and 7.

In this paper, we study a more simple Ding-Dong model,

introduced by Prosen and Robnik.8 This is a lattice of collid-

ing harmonic oscillators. Our main interest is in the general

features of energy spreading in such lattices: how an initially

localized perturbation (wave packet) spreads. We will see

that this process can be regarded as an interplay of compac-

tons (strongly localized solitary waves) and chaos.

The problem of energy spreading in nonlinear lattices

has attracted large interest recently in the context of disor-

dered systems. It is known that linear disordered lattices

demonstrate Anderson localization, i.e., the spreading is

effectively blocked by disorder. Nonlinearity typically

destroys the localization, leading to a very slow energy

spreading.9–21 One of the still unsolved issues here is

whether the spreading occurs indefinitely (although slowly)

or is eventually stopped. The last possibility might be rea-

sonable, as in course of spreading the energy density

decreases and the system becomes closer and closer to the

linear one. In general nonlinear disordered lattices, the an-

swer to this dilemma is very difficult and relies on a heavy

numerical integration (cf. Refs. 20 and 21). In this paper, we

attack this problem for the Ding-Dong model, where numeri-

cal simulations are much more effective.

The paper is organized as follows. First, we introduce the

Ding-Dong model. Then, we discuss compactons and chaotic

breathers. Spreading of energy is studied next for homogene-

ous and disordered lattices. We conclude with a discussion.

II. DING-DONG MODEL

The Ding-Dong model has been first formulated and

studied by Prosen and Robnik.8 It is a chain of harmonic

oscillators with a Hamiltonian

H ¼
X

k

p2
k

2
þ q2

k

2

� �
: (1)

The oscillators are aligned along a line with a spacing dis-

tance 1, so that if qk ¼ 1þ qkþ1, an elastic collision between

the oscillators k and k þ 1 occurs, at which they exchange

their momenta pk ! pkþ1; pkþ1 ! pk. Together with the

total energy, the energy of the center of mass motion

Ecm¼ 1
2
ðð
P

k pkÞ2 þ ð
P

k qkÞ2Þ is conserved.
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The simplicity of the dynamics allows one a very effi-

cient integration strategy of this nonlinear oscillator chain, at

which the collision times are determined explicitly by using

standard inverse trigonometric functions only. This allows

one to proceed to very large times with the accuracy of the

double precision numerical arithmetic. Contrary to previous

studies of the model (1), where the focus of the interest was

on the heat conductivity properties of the lattice attached to

thermostats,8,22–24 we are interested in the energy spreading
problem. We assume that initially only a small localized part

of the lattice is excited, while all other oscillators are at rest,

and characterize the spreading of the energy from such an

initial configuration. We will see that the main ingredients of

the dynamics are compactons and chaotic breathers, which

we discuss in Sec. III.

III. COMPACTONS AND CHAOTIC STATES

A. Examples of compactons

The notion of compactons as of solitary waves with a

compact support in nonlinear systems has been introduced

by Rosenau.25–27 Such compact solutions exist in strongly

nonlinear partial differential equations. In strongly nonlinear

lattices, the corresponding traveling waves and breathers are

not strictly compact but have superexponentially fast decay-

ing tails.28–32 Remarkably, in the Ding-Dong model (1)

strictly compact traveling waves exist. One family of such

waves has been found by Prosen and Robnik,8 we call these

one-particle compactons, as these are solutions where at

some moment of time just one oscillator in the lattice is

excited (i.e., has non-zero energy). The family is determined

by the coordinate and the momentum at the excited site:

q ¼ 0; p ¼ ½cosðp=ð2ðnþ 1ÞÞÞ��1
.

We have found several other compactons, which are

many-particle pulses, i.e., at each moment of time at least

several oscillators are excited (only for one of these waves

we have found an analytical formula, all other are obtained

numerically). These compactons, together with two represen-

tatives of the Prosen-Robnik family, are presented in Fig. 1.

B. Stability of compactons

One-particle compactons possess a remarkable one-side

stability. We illustrate this in Fig. 2, where we show the evo-

lution for a slightly disturbed compacton with n¼ 1 (it has

unit energy) from the Prosen-Robnik family. For initial ener-

gies slightly less than 1, the compacton survives for a very

long time, even if the perturbation is relatively large

(Fig. 2(a)), while for energies slightly larger than E¼ 1 its

life time is very short (Fig. 2(b)).

To understand the one-side stability, we apply a pertur-

bative approach. Suppose that the initial energy of particle 0

is E0 ¼ 1� e0; e0 � 1. Then at the next collision, the parti-

cle 1 will get velocity V1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0 � 1
p

. After some time t,
defined from the equation V1sin t� cos tþ 1 ¼ 0, particles 0

and 1 will collide again, and after this collision the particle 0

will have energy ~E0 ¼ E0 cos2t. This energy is “lost” due to

the perturbation. Determining t to the leading order in �0, we

find ~E0 ¼ e2
0. Thus, particle 1 will have energy

FIG. 1. In (a) we show two Robnik-Prosen compactons (upper and lower pulses) with n¼ 1, 2, together with the only one two-particle compacton, for which

we have an analytic expression �q�1 ¼ q1 ¼ 0:5; p1 ¼ �1; q0 ¼ p�1 ¼ p1 ¼ 0. All other multi-particle compactons shown in (b),(c) have been found numeri-

cally. Lines are trajectories of the particles, markers depict collisions.

FIG. 2. Evolution of the perturbed com-

pacton (cf. top pulse in Fig. 1(a)). (a):

relatively large negative perturbation

e0 ¼ 0:016, (b): small positive perturba-

tion �0 ¼ �10�10.
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E1 ¼ 1� e0 � e2
0, and the whole cycle repeats. Summarizing,

we obtain the following equation for the energy losses:

enþ1 ¼ en þ e2
n: (2)

Approximating the evolution as a continuous one by replac-

ing enþ1 � en ! de
dn we obtain that the losses grow as

en ¼
e0

1� ne0

: (3)

Thus, the life time of the compacton (in propagation sites) is

� ðe0Þ�1
.

The life time for the positive perturbations (e0 < 0) is

extremely small, so that we could not construct a perturba-

tion theory and find an expression for it. One can see from

Fig. 2(b) that for e0 ¼ �10�10 the life time of a compacton is

around 10.

The simplest multi-site compacton shown in Fig. 1(a) is

less stable to perturbations than the one-particle compacton,

but its stability is relatively symmetric to the sign of the

perturbation. We illustrate this in Fig. 3. There we perturb

the initial state of the compacton as qð�1Þ ¼ �qð1Þ
¼ �0:5; pð0Þ ¼ �1þ dp, and all other initial momenta and

positions are zero. While the case of positive dp is slightly

more unstable than that of negative perturbations, the maxi-

mal propagation length of the compacton Dr (defined as the

position of the maximal site having non-zero energy) in both

cases scales as � ðjdpjÞ�1=2
.

C. Chaotic states

As already discussed in the previous studies of the

Ding-Dong model,8,23 general dynamical regimes are typi-

cally chaotic. A minimal chaotic state must include three

particles (because of the additional conservation law, for a

more general non-symmetric situation chaos is possible for

two colliding oscillators33), thus two-particle regimes are

periodic or quasiperiodic. We illustrate chaotic and quasi-

periodic regimes in a 3-particle-lattice in Fig. 4. Here, we

show a Poincaré map, depicting the coordinate and momen-

tum of the left particle at the time instants when the central

one and the right one collide. Remarkably, for Ecm ¼ 0, we

have found that for all tested initial conditions the particles

neighboring to the excited three ones remain untouched if

the total energy of three initially excited particles is less than

0.75. This is the case of a perfectly chaotic breather that does

not spread.

IV. SPREADING OF INITIALLY LOCALIZED FIELD

In this section, we consider properties of spreading from

rather general initial conditions. We first consider simple ini-

tial states, where the initial perturbation is restricted to one

particle, initial energy E of which is varied in a wide range.

For this initial state, we calculated the maximal range of

propagation Dr up to time tend ¼ 104 and plotted this range

vs the initial energy in Fig. 5. One can see “resonances” due

to closeness to the compactons. The main resonance at E¼ 1

in panel (a) is due to the main compacton (n¼ 1) from the

Prosen-Robnik family. There are many other resonances, as

after several collisions the energy of the right-most particle

becomes close to the value for one of the compactons, and

such a perturbation propagates to a large distance. Formally,

the resonances can be infinitely high (if perfect compactons

are created) but we do not see this because of a finite resolu-

tion of initial energies.

In our next setup, we prepared a random initial state,

setting velocities of several neighboring particles to random

FIG. 3. (a) Evolutions of a perturbed

two-site compacton (middle pulse in

Fig. 1(a)) for dp ¼ �10�3 (upper case)

and dp ¼ 10�3 (bottom case). (b) Maxi-

mal propagation of a compacton in de-

pendence on dp (squares negative dp,

circles positive dp; the line has slope

�0.5).

FIG. 4. Coordinates and momenta of the left particle at moments of

collision of the central and right ones. Grey dots correspond to

chaotic orbits, black dots to quasiperiodic ones. Total energy is E¼ 0.8,

Ecm ¼ 0.
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numbers. A typical evolution is shown in Fig. 6. Panel (a)

shows the space-time pattern of collisions. One can see here

the characteristic structures we typically observed. A

compact-like wave first propagates to the right, close to site

30 due to losses of energy it transforms to another quasi-

compacton, which propagates until site 80 where it gets

destroyed and gives rise to an irregular collision pattern. At

sites 9 and 10 a regular breather is created, the pattern of col-

lisions of these two particles is quasiperiodic (see panel (c)).

At the left part of the space-time diagram, one can see a cha-

otic quasi-breather that includes particles �20,�19, �18,

and �17. Particle �21 is not excited during the whole time

interval presented, but particles in the quasi-breather

exchange energy in an erratic manner (see panel (b)). We

cannot exclude that in course of time this breather will

spread or, probably, shift irregularly along the lattice per-

forming a random walk. In fact, one can interpret the pattern

seen at sites 70 < q < 90 at times t > 500 as such a ran-

domly moving breather (“chaotic spot”). We stress here that

the “empty places” in Fig. 6(a) have in fact non-zero energy

(if they are between the left-most and the right-most sites),

but this energy is insufficient for collisions (cf. panel (c)).

We discuss now some general properties of the spread-

ing process, basing on the reversibility of the dynamics.

Energy cannot spread in such a way that the collisions disap-

pear, as this would contradict reversibility. If there has been

some initial spreading stage, the final state cannot consist of

quasiperiodic and periodic breathers only, as such a state

being reversed in time would propagate backward to infinity.

Thus, the final state is either a perfect combination of breath-

ers and exact compactons or has at least one chaotic compo-

nent. Typically, one observes several “active” spots where

collisions occur and which are chaotic or quasiperiodic,

while the rest of the energy is spread along the non-active

sites that do not collide with neighbors. There is no limit for

the maximal distance in space between the right-most and

the left-most sites, but energy cannot be uniformly distrib-

uted along the lattice because in this case collisions would

disappear.

To characterize the spreading, we calculated the spatial

entropy of the energy distribution, according to the standard

Boltzmann definition I ¼ �
P

k eklogek, where ek ¼ Ek=Ê is

the energy at site k normalized by the total energy E. Starting

from different random initial conditions, we calculated the

entropies of the configurations at different times, and than

averaged them over the ensemble. The results presented in

Fig. 7 show that the spreading stops at some maximal en-

tropy level, which grows with the total energy as shown in

panel (b).

V. DISORDERED DING-DONG MODEL

In this section, we study a disordered Ding-Dong model.

Disorder can be introduced in model (1) in three ways: disor-

der in the spacings between the oscillators, disorder in the

particle masses, and disorder in the oscillator frequencies.

The latter situation is very difficult for numerical modeling,

as there is no easy way to calculate the collision time of two

FIG. 5. Range of propagation from the

one-site excitation, in dependence on the

initial energy of the particle E. Right

panel is the enlarged section showing

the finer structure of resonances.

FIG. 6. Evolution from a particular realization of random initial momenta (5 sites are excited with total energy E¼ 5). Panel (a) shows the pattern of colli-

sions, in panels (b) and (c) we show collisions (with markers) and particle trajectories (with lines) at a chaotic spot and at a quasiperiodic breather, respectively

(see text for details).
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harmonic oscillators with incommensurate frequencies.

Thus, we restrict our attention to the first two cases. In the

case of disorder in distances between the oscillators, the

Hamiltonian is still (1), but the collision condition is now

qk ¼ rk;kþ1 þ qkþ1 with random spacings rk;kþ1. At a colli-

sion, the momenta are exchanged pk ! pkþ1; pkþ1 ! pk. In

the case of mass disorder, we write the Hamiltonian as

H ¼
X

k

p2
k

2mk
þ q2

k

2mk

� �
; (4)

so that all the frequencies are one. The collision condition is

qk ¼ 1þ qkþ1, but the momenta are exchanged according to

pk !
2mkpkþ1 þ ðmk � mkþ1Þpk

mk þ mkþ1

;

pkþ1 !
2mkþ1pk � ðmk � mkþ1Þpkþ1

mk þ mkþ1

: (5)

In both cases, we studied chains with the spacings or the

masses independent and uniformly distributed in

1� dr < rk;kþ1 < 1þ dr; 1� dm < mk < 1þ dm:

The main effect of disorder is that the compactons dis-

appear, because the translational invariance is broken. On

the other hand, chaotic and quasiperiodic breathers may

exist. We have determined spreading properties for different

realizations of disorder and for different initial conditions,

and in all cases have found that after some initial stage the

spreading eventually stops and the maximal spreading range

D ¼ kmax � kmin remains constant. Here, kmax and kmin are the

indices of the right-most and the left-most excited sites,

respectively. Of course, this conclusion is based on numeri-

cal calculations within a finite time interval. To be more pre-

cise, the conclusion on “non-spreading” was made after

there was no any spreading event (i.e., the left-most and

the right-most excited sites remained unchanged) during the

time interval 1010. In Fig. 8, we present the statistics of the

spreading ranges for different types of disorder, different

total energies E, and different disorder strengths. One can

see that the maximal spreading range grows as a power law

of the total energy with power �0:7. The spreading range

practically does not depend on the disorder level.

In some cases, the initial configuration was not chaotic,

in this case, no spreading was observed (thus the minimal

spreading interval is 10 for energy E¼ 2), in all other cases,

FIG. 7. (a): Evolution of the entropy of the energy distribution, starting from random initial conditions (momenta of particles with �10 � k � 10 are random

Gaussian variables), for different total energies. (b): Dependence of the maximal entropy on the total energy.

FIG. 8. Maximal and minimal spreading ranges D vs total energy, determined from ensembles of approximately 2000 realizations of disorder and initial condi-

tions (initially 10 sites were excited randomly). (a): disorder in distances, (b): disorder in masses. Values of dr and dm are shown on the panels. Dashed lines

correspond to D � E0:7.
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the final state consists of a few chaotic spots. We illustrate

this in Fig. 9. Here, for one configuration of disorder and for

randomly chosen initial conditions we show in panel (a) how

the energy spreads along the lattice. The maximal spreading

range D ¼ 106 is reached at t � 1:7 � 108. After this time, the

activity (i.e., collisions) is observed at two spots which very

slowly shift along the lattice.

VI. CONCLUSIONS

In this paper, we have studied properties of energy

spreading in a nonlinear Ding-Dong model. This nonlinear

lattice is not generic, as it has a strict nonlinearity threshold,

below which the oscillations are purely linear and do not

interact. We have described two elementary excitations in

the lattice—compactons and chaotic breathers. Compactons

are relatively stable objects, so quite often we observe

appearance of quasi-compactons with a long lifetime from

general initial conditions. Due to this, initially localized

energy is spread over a large domain, but the final stage is

highly nonuniform: while at many places energy is below

the collision threshold, there exist several spots—typically

regular or chaotic breathers. Correspondingly, the spatial en-

tropy of the energy distribution saturates at some level

depending on the total energy of the lattice. Furthermore, we

studied a disordered Ding-Dong model. Here, compactons

do not exist and the energy spreading is finite: the field

remains localized up to maximal times of our calculations.

Again, several chaotic spots are formed together with a sub-

threshold background.

It is instructive to compare the properties of the Ding-

Dong model with those of lattices with smooth potentials. In

the latter case, one also observes compactons (while with

superexponential tails32). Exact chaotic breathers appear to

be impossible, because the interaction with the neighbors has

no threshold and the neighbors would be excited by the noisy

oscillations of such a breather. Similar to the Ding-Dong

case, disorder destroys compactons, and the energy spread-

ing is a slow subdiffusive process. In a disordered smooth

nonlinear lattice so far no stop of energy spreading has been

observed, although there are indications that the spreading

slows down with the time.20,21 Also, the scaling properties of

the largest Lyapunov exponent in smooth lattices34 suggest

that chaos might extinct at the late stages of spreading. The

eventual stop of spreading in the Ding-Dong model is, to the

best of our knowledge, the first observation of the localized

but chaotic dynamics in nonlinear lattices. However, nonlin-

ear disordered lattices with analytic interaction potentials

possess a property that every lattice site is coupled (although

indirectly) with all other sites, so that chaotic spots influence

the whole lattice. This feature implicates that systems with

analytic and non-analytic interaction potentials might dem-

onstrate different asymptotic scenaria. It would be very inter-

esting to investigate smooth lattices close to the Ding-Dong

model and to compare their localization properties (similar

to the studies of smooth approximations of scattering

billiards35).
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