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Abstract. We study pattern-forming instabilities in reaction-advat-diffusion systems. We de-
velop an approach based on Lyapunov-Bloch exponents toefigur the impact of a spatially
periodic mixing flow on the stability of a spatially homogenes state. We deal with the flows
periodic in space that may have arbitrary time dependenespidpose a discrete in time model,
where reaction, advection, and diffusion act as succesgieeators, and show that a mixing ad-
vection can lead to a pattern-forming instability in a twarvgponent system where only one of the
species is advected. Physically, this can be explainedmssiag a threshold of Turing instability
due to effective increase of one of the diffusion constants.
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1. Introduction

Reaction-diffusion systems is a well-established classadels describing various aspects of pat-
tern formation far from equilibrium. Quite often patterrhing fields are transported by fluid
flows — examples range from a development of plankton pattieronceanic flow [3] to chemical
reactions in microchannels [5]. By incorporating the flowtlie model, one arrives at reaction-
advection-diffusion models, with a much richer variety ospible phenomena (see, e.g., a recent
review paper [13]). In Ref. [11] it was demonstrated that #fedential flow (where only some
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components are advected) may lead to new instabilitiesisystem, in particular to new convec-
tive instabilities [16]. This study was restricted to a @ageometry, but later in [4, 2] such an
instability was demonstrated for a circular geometry (Gtmuttow) as well. As has been recently
shown, a simpleshearflow is able to destabilize the spatially homogeneous sfidig [A reason-
able question to ask is whether a similar destabilizatiéeceétan be found fomixingflows. One
might intuitively expect that as mixing smears spatial nofarmities, it results in stabilization
of a spatially homogeneous state (like it happens if theti@ags chaotic [12]). In this paper
we particularly address this question by presenting ancgmbrto study pattern-forming instabili-
ties in periodic in space mixing flows. It is based on the daloon of Lyapunov-Bloch exponents
(cf. [7]), and provides an efficient tool for finding mostlysiable patterns. As a particular example
we consider the effect of a mixing advection on a generaldweensional reaction-diffusion sys-
tem capable of Turing instability and demonstrate thatipisity can be induced by an advection
of one component of the reaction.

2. Model formulation

2.1. Continuous-time model

A variety of situations in biological and chemical conteg# be described by the dynamics of
two interacting species — an activator and an inhibitor. Auyar model, e.g., is the Brussela-
tor [6] or its modifications. For spatially distributed fisldthe dynamics also includes diffusion
terms (molecular diffusion for chemical systems or irreguhobility in biological applications)
and advection due to an imposed macroscopic velocity ¥éld¢). We assume the latter to be
incompressible, furthermore we normalize time by the attaretic advection time. In this paper
we are interested in stability properties of a steady homeges distribution. Denoting the devi-
ations of the concentrations of the species from this stetate withP, ), we arrive at a linear
reaction-advection-diffusion system governed by a coaptimensionless equations

oP

e +V-VP = DpV?*P +aP +0Q, (2.1)
%—? +V-VQ = DoV?*Q +cP +dQ. (2.2)

Here P and() are deviations of chemical concentrations from the stetdg £ p» andD,, are their
corresponding diffusivitiesi, b, ¢, d are parameters of the kinetics. We assume that concemisatio
do not influence the flow, so that the velocity fi&ldr, t) does not depend oR and@.

In the absence of advection the problem reduces to the céssaction-diffusion model (see,
e.g., Ref. [9]), where two principal instabilities are a tigléy homogeneous Hopf bifurcation and
a Turing instability [14]. In this paper our main interesinsthe case where Turing instability is
dominant, what requires in particular that the diffusiomstantsD and D, are different. Our
goal is to describe unstable modes in the presence of adwdetim in (2.1), (2.2). This can be
done numerically, and for an effective calculation we folael a discrete in time model of the
reaction-advection-diffusion system above.
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2.2. Discrete in time model

A typical experimental realization of a two-dimensionalxing flow V(r,¢) is a flow periodic
in space and time, as realized e.g. in experiments [10]. i@tiaé behavior of the system can
be understood from a simple problem, where advection is feddgy a two-dimensional time-
dependent flow which i87-periodic in space an@-periodic in time and first introduced by An-
tonsen et al. [1]

V = U f(t)sinfy + 0,(6)] + €U, [1 — f(1)] sinfe + 0, (1)), (2.3)

The functionf(t) describes switching between two shear flows iandy directions within time
intervalsT; and7;, with the amplitude$/,, U,, respectively

1, 0>t>T,
f(t) = ' (2.4)
0, T\ <t<TTs.

The advantage of such a setup is that the trajectories atlearin the flow (2.3), (2.4) can be
obtained explicitly. The transformation of particle comates due to the advection during one
time intervall’ = Ty + T is governed by a map

T = z+U/Tysin(y+6,), (2.5)
y = y+UDysin(z+46,), (2.6)

wherex = z(t,), y = y(tn), © = z(t, + 1), y = y(t, + T), andn is the number of iteration.
The phase space dynamics of the area-preserving map 6),restricted to the basic domain of
periodicity0 < x,y < 27 is demonstrated in Fig. 1. It is typical of Hamiltonian flowghwegular
islands and domains of chaotic behavior. With growth of atlee rate (/,,, U,), domains of the
guasiperiodic dynamics are gradually superseded by theng®gf the chaotic dynamics.

Figure 1: Phase portraits of the map (2.5), (2.6) for pedaalliving,7; = 7, = 0.5, 0, = 6, = 0.
The parameter§, = U, = 1.5 (left) andU, = U, = 3.0 (right).
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While considering of the reaction-advection-diffusiorstgm (2.1), (2.2) with the flow (2.3),
(2.4) remains a complex computational problem, there isssipdity to simplify the analysis,
reducing the system to a discrete-in-time model. In the wéithe approach used in Ref. [8] we
consider a model situation where the action of advectidifygion, and reaction is separated in
time. We assume, that within each time intefdloth scalar field$’ and(@ evolve in three stages,
corresponding to advection, diffusion, and reaction.

During the first stage, both scalars evolve independentaf ether according to pure advec-
tion. For a scalar density, this process can be describesinmstof the Frobenius-Perron operator
L4 for the map (2.5), (2.6). Then, on the next step, the diffusiperatorl.p, = exp(TD;V?) is
applied. Finally, the fields are subject to reaction acewydo the system

oP
0Q

Evolution during timel” of this system leads to a linear transformation

p p (A_—a)e* ‘; —g\)ur a)er=T b(e)‘;T—;)“FT) p
_ | = _ _— PNV
(Q) Lr (Q) Oo—a)Os—a) (T T) (@A) T O )T (Q) (2.9)

b(A_—Xp) P

where the exponents
e — a+dj: (a — d)? + 4bc
2 2
are assumed to be real, in accordance with our choice of edséirlopf bifurcation. The reaction-
advection-diffusion propagator over one time interval iseg by the productLzLp, L4 of the
operators. The goal of the stability analysis is to find uplstaigenvalues and eigenmodes of this

operator.

3. Bloch ansatz

Although the basic flow/(r, ¢) is periodic in space, a perturbation of the field has not todre p
odic. A general perturbation should be taken in the Blocimfor

P(x,y,ty) = ™" 00(2,y, 1), Qz,y,t,) = T (2, y, 1), (3.1)

where the functions, ¥ are 27-periodic in space and additional parametegs «, stand for
guasimomenta. Since the exponential factor®™**+¥ has a period of unit with respect tq,,
k,, We consider a symmetric interval of independent vakigs:, € [—3 > 2] Then, because of
periodicity of functionsp, ¥, the solutions can be represented as Fourier series

l’ ya Z ¢l Z(lx-l—my)’ [E’ ?/7 Zwl z(lx-l—my)' (32)
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Of all operatorsL 4, Lp, and Ly the most nontrivial is the advection operatog. We derive
its Fourier representation in appendix A. The resultinggfarmation of the Fourier components
during the advection and diffusion stages reads

Lp,Lady, = e (bme) 4 (metwy "I Dp T Z Gimpq Ppgs (3.3)

p.q

— Ko 24 (m Ky 2
LpoLavtP = e [(14+52) 2+ (m+ry) }DQTZglmpq Vg (3.4)

p,q

Gimpg = e~ a0z g=ip =10y Jq—m[UmTl (p+ Km)]Jp—l[UyTﬂm + K“y)]a

whereJ,,(z) is the Bessel function of the first kind. These componenthéurinteract according
to the reaction stage (2.9) (where one should replace ¢, Q — ). The resulting model is a
composition of (3.3), (3.4), and (2.9).

4. Results of the stability analysis

In this section we apply the proposed model to study the inflaeof the advection on pattern
formation in a reaction-advection-diffusion system. Tongoextent, the influence of advection
in an advection-diffusion system can be understood fromidiea of effective diffusion: mix-
ing effectively increases the diffusion constant. Themefone can expect that the dynamics of a
reaction-advection-diffusion system is similar to thatofreaction-diffusion system with larger
diffusion constants. The mostly interesting point is timethie system under consideration there are
two coupled species, and the Turing instability is caused dijfference in diffusivities of species.
Although advection can effectively change the diffusionstants of the species, it is not clear how
this difference will be influenced by advection. Howeveg fituation becomes much more trans-
parent if only one specie is advected. Then an advectiortribating to its effective diffusion,
may increase or decrease the difference of diffusion catstéhus enhancing or suppressing the
instability.

Below we focus on a situation when only one species, namatyotfrhigher diffusion constant,
is advected. We set the parameters 8, d = —9, Dp = 0.0025, Dy = 0.0075. So, we assume
that the mobility of the “activatorP is relatively low, and it is not advected at all.

To perform a linear stability analysis of spatially homogeus states with respect to inhomo-
geneous perturbations, we apply the method of (transyengabunov exponents (LE). We use the
usual method for estimation of the largest LE of mappings,(seg., Ref. [8]). We start with an
arbitrary initial distributions forp, ¢, with vanishing spatial average, and iterate the mappieg, p
forming a renormalization of the linear fields. The averggihthe logarithm of the normalization
factors yields the LE. Note that this method can be equally agplied to both regular and irreg-
ular flows (2.3), (2.4). Here, however, we focus on the sisiptase of time-periodic advection,
when?} =7, =05,7=1,0, =0,0, = 0,and also put/, = U, = U.

We choose the parameters of the reaction in such a way thlabthegeneous solution is stable
in the absence of advection, and then switch on mixing of feeie(). The dependence of the
largest LE on the advection rate is presented in Fig. 2. Onesea that the impact of advection
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largest LE

-0.4

0 0.05 0.1 0.15 0.2 0.25
advection rate, U

Figure 2: Largest Lyapunov exponent as a function of adenatateU. The parameters are
a = 5.35,¢c= —6.35, kK, = 0.5, K, = 0.5.

results in the growth of the largest LE, which becomes pasiitlU,.,. ~ 0.18. So, this example
clearly demonstrates that mixing can play a destabilizabg.r

Remarkably, the quasimomenta in the Bloch ansatz (3.1)ssengal in the stability analysis.
Below we present three examples where mostly unstable numae=spond to different values of
guasimomenta.

We start with the parameters of Fig. 2. Near the thresholdevaf advection rate we present
the dependence of the largest LE on the quasimomenta,, see Fig. 3 (left panel). This LE
reaches its maximum value @t = +0.5, s, = £0.5, which indicates that the unstable patterns
have a “chess-board” structure with respect to the peritydi€ the original flow. A typical pattern
of the field® is presented in Fig. 3 (right panel).

0.0025
0.002
0.0015
0.001
0.0005
0

-0.0005

-0.001

Ky X

Figure 3: Largest Lyapunov exponent as a functiomgf, (left) and a corresponding pattern
at a point of its maximum (right) evaluated at= 5.35, c = —6.35, U = 0.18. Maxima of LE
correspond te:, = +0.5, k, = £0.5.

Another set of parameters is presented in Fig. 4. Here, thenmuan of LE corresponds to
r, = 0, k, = 0 and the periodicity of the pattern is the same as the peitgditthe imposed flow.
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Figure 4: Largest Lyapunov exponent as a functior,of, (left) and a corresponding pattern at a
point of its maximum (right) evaluated at= 3.7, c = —4.7, U = 0.77. Maxima of LE correspond
tox, =0,K, = 0.

Finally, in Fig. 5 we show the case where the maximum of thgelstr LE corresponds to the
pointsk, = 0, k, = £0.4 andx, = £0.4. This is an example of a nontrivial situation where the
periodicities of the patterns im- andy- directions are not the same and are not identical to the
periodicity of the flow. We stress that in all figures above vagehshown a linear mode with the
largest growth rate. On a nonlinear stage (which is beyoadtbpe of this paper) a pattern of the
flow may significantly deviate from the linear one.
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Figure 5: Largest Lyapunov exponent as a functior,of, (left) and a corresponding pattern at a
point of its maximum (right) evaluated at= 3.1, c = —4.1, U = 3.5. Maxima of LE correspond
tox, =0, k, = £0.4 andx, = £0.4, k, = 0.

5. Conclusion

The main goal of this paper is to develop an approach, baségapunov-Bloch exponents, for
an analysis of pattern-forming instabilities in reactemivection-diffusion systems. It is applicable
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to periodic in space flows that may have arbitrary time depeod. We demonstrated the method
using a discrete in time model, where reaction, advectiot ciffusion act as successive operators.
This enormously simplifies the calculations, while yielglia qualitatively correct picture of the
process. For an exact quantitative analysis of the fullesysine has to apply the Lyapunov-Bloch
ansatz to the full equations.

We have demonstrated that a mixing advection of one of theispenay lead to a pattern-
forming instability. Physically, this can be explained asssing a threshold of Turing instability
due to effective increase of one of the diffusion constar@®$.course, mixing can play also a
stabilizing role, suppressing spatially inhomogeneousupeations (see, e.g., Ref. [12] for such
an analysis of stabilizing role of advection for chaoticimé reaction). Nonlinear patterns beyond
the transition deserve further investigation, which go®gnd the scope of this paper.
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A Advection-diffusion map with the Bloch ansatz

Consider the transformation of a scalar fieldue to advection, according to the map (2.5), (2.6).
We assume that ‘ _
P(x7 y7 tn) - emw$+m'yy@(x’ y7 tn)

and

.T Yty Zglm . z(l:chmy

As the map is required to be area—preserving, we can writarigriterationP dzdy = P dxdy
(whereP = P(z,y), 2 =x(t, + 1),y = y(t, + 1)) or

et  dzdy = et TY O dady. (A1)

According to (2.5), during the first time interva] we haver = x + U, T sin(y + 0..), y = v,
and therefore (A1) gives us

e/ T t0:) § drdy =  dudy.
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Taking this result into account, f@rlm i (tn, + T71) We successively obtain

élm = 2 // (I) e*l (Iz+m7) dl’dy = 2 ﬁ o e*szzT1 sin(y+6z) i(15+mg) dxdy
7T ﬂ-
= ﬁ //(I)eszzﬂ sin(y+60z) e*z[lx+leT1 sin(y+0z)+m7) dxdy
21)2

1 —iK sin —i|lx sin m i(px
— o Z Drq // e~ ireUaTsin(y+0r) o —illeHUsTh sin(y+0z)+my] ilbrtay) oy,
p,q

2w

2w
1 ((p—l)x i(g—m —iUy Kg ) sin ;
— —(QW)QZ%‘]/ el (0= dx/e(q W o= iUaTh(4#z) sin(y+0) gy,
pvq 0

0

1 1 o
T (2 2 il = (2m)? D 2wy 2me T g LU (m + k)]
p,q P,q

= Y el g [ULT(m + k)]G, (A2)

q
in virtue of the integrals

2w

L = /ei(pl)md:c:%répl,

0
21

12 _ /6i(q—m)y e—iUle(l—i—mx)sin(y-‘rGw) dy _ e—i(q—m)ew It Jq—m[Ule(l + '%x)]a

0

where the Bessel function of the first kind appeérsz) = 5- | 2T gimG p—izsing e
During the second time interval, we haver = x,y =y + U,T5 sin(z + 6,), which according
to (Al) leads to an equality

ety UyTo sin(z+0y) & dxdy = O dxdy.

From an analogous consideration we obtainfgy = gzzﬁlm = lem(tn +T1) = oyt +Th + 1) =
¢lm(tn + T) B ) ~
G =y _ e P [U,To(m + Ky)|Gpm- (A3)
p

Thus, combining (A2), (A3) we obtain the map describing @ctof advection operatof. 4
within time intervall’

Lsoim = Z e~ amm)la =i Gy‘] m UTh(p + ’{m)]Jp—l [UyT2(m + “y)]gbpm (Ad)

p.q
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Now consider the action of the diffusion operatos = exp(7'DV?), describing diffusion
spreading of the passive scalar with the diffusivityvithin time intervall'. Because this operator
is diagonal, it acts on each Fourier component independentl

L, = e lHra)l*+mtn 2 IDT g, (A5)

The action of both advection (A4) and diffusion (A5) operatieads to the following transfor-
mation of the Fourier amplitudes

LpLagp = e 0t oem DTN g 6y, (A6)

Y2

Jimpg = g~ Hamm)be g=il=1)by Jo-m|UT1(p + “m)]prl[UyTQ (m + “y)]-
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