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a b s t r a c t

We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external
fields. Starting with the infinitely large ensembles, we extend the Watanabe–Strogatz theory, valid for
identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield
the description of the ensemble dynamics in terms of collective variables and constants of motion. As a
particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite
number of subpopulations, whereas the number of elements in a subpopulation can be both finite or
infinite. Next, we link theWatanabe–Strogatz and Ott–Antonsen theories and demonstrate that the latter
one corresponds to a particular choice of constants of motion. The approach is applied to the standard
Kuramoto–Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description
of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that,
although the asymptotic dynamics can be found within the framework of the Ott–Antonsen theory, the
transients depend on the constants of motion. The most dramatic effect is the dependence of the basins
of attraction of different synchronous regimes on the initial configuration of phases.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

A model of (infinitely) many coupled limit cycle oscillators
explains a variety of natural phenomena in various branches of
science. The applications range from the description of the col-
lective dynamics of Josephson junctions [1], lasers [2], and elec-
trochemical oscillators [3] to that of pedestrians on footbridges
[4,5], applauding persons in a large audience [6], cells exhibit-
ing glycolytic oscillations [7–9], neuronal populations [10], etc.
Very often, when the oscillator network is not too sparse, it can
be approximately considered as fully connected (globally cou-
pled); it means that the oscillator population is treated in the
mean field approximation. Externally forced or feedback controlled
globally coupled ensemble or several interacting ensembles serve
as models of circadian rhythms, normal and pathological brain
activity, interaction of different brain regions, and many other
problems [11–17]. Many aspects of the ensemble dynamics, es-
pecially those related to inhomogeneity [18–20] or nonlinearity
of coupling [21,22], temporal dynamics of the collective mode
[23,24], different frequency distributions [25,26], and cluster-
ing [27–29] remain in the focus of the current research activity.

Ensembles of weakly interacting units are successfully treated
within the framework of phase approximation [30–34]. The most
popular is the Kuramoto model of sine-coupled phase oscillators,
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or its extension, the Kuramoto–Sakaguchi model [35]. This model
explains self-synchronization and appearance of a collective mode
(mean field) in an ensemble of generally nonidentical elements;
the transition to synchrony occurs at a certain critical value
of the coupling constant that is roughly proportional to the
width of the distribution of natural frequencies [30,31]. With
the further increase of coupling, more and more oscillators join
the synchronous cluster, so that the amplitude of the mean
field grows as a square root of supercriticality. It is instructive
to interpret this transition as follows: the non-zero mean field
forces individual units and entrains at least a part of them; these
entrained units become coherent, thus yielding a non-zero mean
field. A quantitative consideration, based on this self-consistency
argument and first performed by Kuramoto [30,31], provides the
amplitude and frequency of the stationary solution. References
to many further aspects of the Kuramoto model can be found in
[36–38].

An extension of the Kuramoto model for the case of nonlinear
coupling has been suggested in our recent publications [21,22];
see also [39,40]. Nonlinearity in this context means that the
effect of the collective mode on an individual unit depends on
the amplitude of this forcing, so that, e.g., the interaction of
the field and of a unit can be attractive for weak forcing and
repulsive for strong forcing. Mathematically this is represented
by the dependence of the parameters of the Kuramoto–Sakaguchi
model (the coupling strength and the phase shift) on themean field
amplitude. The model exhibits nontrivial effects like destruction
of a completely synchronous state and appearance of partial
synchrony in an ensemble of identical units. Moreover, in this
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setup the frequencies of the collective mode and of oscillators can
be different and incommensurate.

Analytical description of the dynamics of oscillator ensembles
remains an important and interesting problem. Although some-
times the stationary solution for the mean field can be found with
the help of the above mentioned self-consistency argument, a full
analysis of the ensemble dynamics remains a challenge. Two ap-
proaches to this problem have been developed by Watanabe and
Strogatz (WS) [41,42] and by Ott and Antonsen (OA) [23,24].

The WS theory is a power tool which provides a full dynamical
description of ensembles of identical oscillators, sine coupled to a
common external force. In particular, this force can be the mean
field of the population, so that for the case of identical units the
WS theory completely describes the Kuramoto–Sakaguchi and the
nonlinear model (see [22]). This description is given in terms of
three collective (macroscopic) variables, hereafter called the WS
variables, plus constants of motion. The collective variables obey
three WS equations (see also Appendix A); thus, the dynamics of
an ensemble of identical elements is effectively three dimensional.
The OA theory treats an infinitely large ensemble of oscillators
that are generally heterogeneous, i.e. with a distribution of natural
frequencies. In this theory one shows that a certain form of
distribution of phases is invariant under the evolution, constituting
the so-called OA reduced manifold. This ansatz includes only a
subset of all the possible solutions of the problem, however, it is
argued to be valid asymptotically for large times [24].

The main goal of this paper is to extend the WS theory
to cover ensembles of nonidentical oscillators and to establish
a link between WS and OA theories. In our recent brief
communication [43] we approached this problem by treating the
ensemble as a system of coupled subpopulations, each consisting
of identical oscillators. Each subpopulation can be then described
by three WS variables, whereas the full system is described by a
system of coupled WS equations. A description of an ensemble
with a continuous frequency distribution is then obtained by
performing a thermodynamic limit. Here we begin with the
continuity equation and, following the idea of WS for the case
of identical units, directly derive the WS equations for a general
inhomogeneous case. Next, we relate the WS and OA theories,
showing that the OA reduced manifold corresponds to a particular
choice of constants of motion in the WS theory. Our theory is
illustrated by the examples of the Kuramoto model, nonlinear
model, and the model of two coupled populations, exhibiting a
chimera state.

The paper is organized as follows. In Section 2 we discuss the
main model and provide an extension of theWS theory to the case
of nonidentical oscillators. Herewe also discuss a relation between
theWS and OA theories (cf. a recent paper by Marvel et al. [44]). In
Section 3 the general theory is applied to describe the dynamics
of ensembles with linear and nonlinear mean field coupling and is
illustrated by numerics. We summarize and discuss our results in
Section 4.

2. Dynamics of heterogeneous oscillator populations: descrip-
tion via collective variables

In this sectionwe first derive theWatanabe–Strogatz equations
for a general heterogeneous population of phase oscillators. Our
derivation is heavily based on the derivation given by WS in
Ref. [42], where they treated the case of identical oscillators. Next,
we discuss underwhich conditions theWS equations reduce to the
OA equations.
2.1. WS reduction for a system with general continuous distribution
of parameters

Our basicmodel is an infinitely large ensemble of generally non-
identical phase oscillators. Each oscillator has natural frequency
ω(x, t) which depends on a continuous parameter x; generally x
can be a vector. Oscillators are driven by a complex field H(x, t):
dφ(x, t)

dt
= v = ω(x, t)+ Im


H(x, t)e−iφ . (1)

The state of the ensemble can be described by the distribution
density W (x, φ, t); it is convenient to write it as
W (x, φ, t) = n(x)w(x, φ, t), (2)
where the distribution density of the parameter n(x) and
conditional distribution density of oscillators w(x, φ, t) are
normalized according to∫

n(x)dx = 1 and
∫ π

−π

w(x, φ, t)dφ = 1.

We start with the continuity equation which expresses the
conservation of the number of oscillators:
∂w

∂t
+

∂

∂φ
(wv) = 0, (3)

where the velocity v is defined according to Eq. (1). Following the
idea of Watanabe and Strogatz [42] we demonstrate that, with the
transformation to the WS variables ρ(x, t),Φ(x, t),Ψ (x, t) and
ψ(x) according to

eiφ = eiΦ
ρ + ei(ψ−Ψ )

ρei(ψ−Ψ ) + 1
, (4)

the time-dependent density w(x, φ, t) is transformed into a
stationary density σ(x, ψ).1 We perform the following variable
substitution in the continuity equation:
t, φ, x → τ = t, ψ = ψ(x, φ, t), y = x.
The relation between the densities in old and new variables takes
the form:

w(x, φ, t) = σ(y, ψ, τ)
∂(y, ψ, τ)
∂(x, φ, t)

= σ(x, ψ, τ)
∂ψ

∂φ
. (5)

Writing the continuity equation in new coordinates (see Ap-
pendix B), we obtain:

0 =
∂w

∂t
+

∂

∂φ
(wv) =

∂σ

∂τ

∂ψ

∂φ
+
∂σ

∂ψ


∂ψ

∂φ


∂ψ

∂t
+ v

∂ψ

∂φ


+ σ


∂

∂τ


∂ψ

∂φ


+

∂

∂ψ


∂ψ

∂φ


∂ψ

∂t
+ v

∂ψ

∂φ



+


∂ψ

∂φ

2
∂v

∂ψ


. (6)

In Appendix B we show that both expressions in curly brackets
vanish providedΦ(x, t),Ψ (x, t), ρ(x, t) obey

∂ρ(x, t)
∂t

=
1 − ρ2

2
Re(H(x, t)e−iΦ),

∂Φ(x, t)
∂t

= ω(x, t)+
1 + ρ2

2ρ
Im(H(x, t)e−iΦ),

∂Ψ (x, t)
∂t

=
1 − ρ2

2ρ
Im(H(x, t)e−iΦ).

(7)

This implies that ∂σ
∂τ

= 0 and, thus, σ(x, ψ) is a stationary
distribution, so that ψ(x) are constants of motion.

1 We notice here that our definition of the WS variables slightly differs from the
original one [42]. The relation to original variables is given in Appendix A. There we
also derive the transformation (4) from its original form [42].
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Fig. 1. Illustration of the meaning of the WS variables. Filled circles denote the
phases of the oscillators having a certain value of x. TheWSamplitudeρ(x) is related
to thewidth∆ of the distribution of phases; ρ(x) = 0, if this distribution is uniform
and ρ(x) = 1, if it collapses to a δ-distribution. Thus, ρ(x) is roughly proportional
to the local mean field amplitude r(x). Angle variable Φ(x) describes the position
of the hump in the distribution; therefore it roughly corresponds to the phase θ(x)
of the local mean field. Angle variable Ψ (x) characterizes the motion of individual
oscillators with respect to the hump.

As discussed in detail in [42], transformation (4) determines
ρ,Φ,Ψ in a unique way ifψ(x) obey three additional constraints;
they are∫ π

−π

σ(ψ, x)eiψdψ = 0 (8)

and

Re
∫ π

−π

σ(ψ, x)ei2ψdψ = 0. (9)

The choice of the constraint (8) fixes the relation between ρ
and mean field amplitude, as discussed in the next paragraph.
Condition (9) relates ψ and Ψ and is rather arbitrary.

Now we discuss the physical meaning of the WS variables. For
this goal we compare them with the complex local mean field, or
the local Kuramoto order parameter

Z(x, t) = r(x, t)eiθ(x,t) =

∫ π

−π

eiφw(x, φ, t)dφ, (10)

where r and θ are the amplitude and phase of the mean
field, respectively. The WS amplitude variable ρ(x, t) is roughly
proportional to the mean field amplitude r(x, t). Indeed, if
ρ(x, t) = 0, then from Eq. (4) taking into account Eq. (8), we obtain
r(x, t) = 0. Similarly, Eq. (4) shows that if ρ(x, t) = 1, then all
φ(x, t) are equal, which yields r(x, t) = 1. For intermediate values
0 < ρ < 1, the relation between ρ and r generally depends also
on Ψ and ψ .

The WS phase variable Φ characterizes the position of the
maximum in the distribution of phases and is close to the phase of
the mean field θ . They coincide for ρ = r = 1; for 0 < ρ < 1,Φ is
shiftedwith respect to θ by a value, dependent onρ,Ψ . The second
WS phase variable Ψ determines the shift of individual oscillators
with respect toΦ . See Fig. 1 for further illustration.

For the following it is convenient to introduce a combination
of two WS variables z = ρeiΦ . Introducing also the phase shift
α = Φ − Ψ , we write the WS equation (7) in an equivalent form:

∂z(x, t)
∂t

= iω(x, t)z +
1
2
H(x, t)−

z2

2
H∗(x, t), (11)

∂α(x, t)
∂t

= ω(x, t)+ Im

z∗H(x, t)


. (12)
In the new variables, transformation (4) reads

eiφ = z
1 + |z|−2z∗ei(ψ+α)

1 + z∗ei(ψ+α)
. (13)

2.2. WS equations for the case of discrete distribution of parameters

Consider now the case when parameter x takes only some
discrete values. It means that the ensemble consists of groups
(subpopulations), so that ω and H are constants for each group.
Thus, the group is a set of oscillators which are (i) identical and
(ii) driven by a common force. In this case the system of PDEs (7)
or Eqs. (11) and (12) simplifies to a system of ODEs.

If all oscillators are identical and subject to a common force,
i.e.ω andH do not depend on any parameter x, then Eq. (7) lose the
x-dependence andwe obtain the originalWS equations [42] (in the
new notation; see Appendix A). As shown in [42], these equations
are also valid if the number of oscillators is finite (there are two
limitations, discussed below). In this case the number of constants
ofmotionψ is also finite and the only change is that the constraints
Eqs. (8) and (9) are formulated in terms of sums, not integrals.

Consider now the case when an ensemble consists of a finite
number of groups. (We call such an ensemble a hierarchically
organized one.) Denoting the groups by index a we obtain instead
of Eqs. (11) and (12) a finite system for collective variables za and
αa:

dza
dt

= iωaza +
1
2
Ha −

z2a
2
H∗

a , (14)

dαa

dt
= ωa + Im(z∗

aHa). (15)

Again, the number of oscillators in each group can be either infinite
(then the group is characterized by the distribution function
σa(ψ)) or finite (then it is characterized by constants ψa,k).

Remarkably, with the help of the formulation via Eqs. (14) and
(15) we can overcome the limitation of the WS theory, namely
that the number of identical oscillators should be larger than three
and that an initial configuration of a subpopulation cannot have
too large clusters of identical oscillators in identical states [42]. To
this end we note that Eq. (1) for an individual oscillator satisfy Eqs.
(14) and (15) if we set z = exp(iφ) and α = φ + const. Thus, an
individual oscillator not belonging to a large group can be treated
as a separate group, also described by Eqs. (14) and (15). The same
idea helps us to treat large clusters inside groups, because each
cluster can be considered as one oscillator. Correspondingly, for
each cluster we introduce the collective variables and write the
equations in the form of Eqs. (14) and (15), in addition to similar
equations for the rest of the group.

Finally, we mention that generally an ensemble can be
characterized by a parameter distribution which is continuous in
some intervals and discrete in others. In this case the system is
described by coupled systems of PDEs in the form of Eqs. (11) and
(12) and of ODE in the form of Eqs. (14) and (15).

2.3. Linking the Watanabe–Strogatz and the Ott–Antonsen theories

In this section we relate WS variables to the complex mean
field, or the Kuramoto order parameter, see Eq. (10), and
to the generalized Daido order parameters. We demonstrate
that particular solutions of the WS equations for the uniform
distribution of constants of motion are equivalent to the solutions
on the so-called reduced OA manifold [23,24]; see also [45,46].
Next, we discuss the properties of the OA solution for discrete
and continuous distributions of oscillator frequencies. Note that a
relation between the WS and OA theories has also been recently
discussed by Marvel et al. [44].
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2.3.1. WS variables versus order parameters
We recall the definition of the local mean field, or order

parameter, given by Eq. (10). [For brevity of presentation we omit
below the parameter x (or index a, for the case of a hierarchical
population).] By substituting eiφ in Eq. (10) via Eq. (13), we obtain:

Z = reiθ = zγ (z, α), (16)

where

γ (z, α) =

∫ π

−π

1 + |z|−2z∗ei(ψ+α)

1 + z∗ei(ψ+α)
σ(ψ)dψ. (17)

We see that in general a relation between the WS variables and
the order parameter is rather complex and contains not only
the macroscopic variables z, α but also depends heavily on the
distribution σ(ψ).

Now we discuss an important particular case when the order
parameter Z can be expressed only through the complex WS
variable z. For this purpose we use an expansion

(1 + z∗ei(ψ+α))−1
=

∞−
l=0

(−z∗)leil(ψ+α),

and re-write the function γ as a series

γ (z, α) =

∞−
l=0

Cl

−z∗eiα

l
− |z|−2

∞−
l=0

Cl+1

−z∗eiα

l+1
,

where the coefficients

Cl =

∫ π

−π

σ(ψ)eilψ dψ (18)

are the amplitudes of the Fourier harmonics of the distribution of
constants of motion ψ . Using that C1 = 0 due to Eq. (8), we finally
obtain

γ = 1 + (1 − |z|−2)

∞−
l=2

Cl(−z∗eiα)l. (19)

The crucial observation is that Eq. (19) essentially simplifies
and we obtain simply γ = 1 if all the amplitudes of the Fourier
harmonics vanish, i.e. if Cl = 0 for l ≠ 0. This happens if
constants of motion are uniformly distributed, i.e. if σ(ψ) =

(2π)−1. Thus, for the uniform distribution of constants of motion the
order parameter of a subpopulation is directly expressed via the
WS variables:

Z(x, t) = z(x, t) or Za(t) = za(t). (20)

As a result, the WS equations (11) and (14) become equations
for the amplitude and phase of the local mean field. The system
simplifies further if the forcing H is independent of α, then theWS
equations (12) or (15) become irrelevant for the dynamics.

The Kuramoto order parameter Z is an important quantity;
however it does not provide a complete characterization of the
oscillator population. Such a characterization is given by a set of
generalizedDaido order parameters [32,33,47,34], defined according
to

Zm =

∫ 2π

0
w(φ)eimφdφ. (21)

Clearly, Z1 is just the Kuramoto order parameter Z . The physical
meaning of the parameters Zm is transparent: they are simply
the Fourier harmonics of the distribution of the phases and thus
completely characterize this distribution. To evaluate them, we
have to insert (4) in (21):

Zm = zmγm(z, α), (22)
where

γm(z, α) =

∫ π

−π


1 + |z|2z∗ei(ψ+α)

1 + z∗ei(ψ+α)

m

σ(ψ)dψ. (23)

It can be shown that for uniform distribution of constants of
motion, i.e. for σ = (2π)−1, γm = 1 for all m. To verify this, one
writes γm as a series as above and observes that all terms except
for one contain vanishing integrals of type

 π
−π

eiLψdψ . Thus, for
the special case of uniformly distributed constants of motion, we
obtain γm = 1 and

Zm = zm = Zm. (24)

2.4. The Ott–Antonsen theory

Ott and Antonsen [23] treated basic model (1) in the thermo-
dynamic limit of infinite number of oscillators with the help of the
continuity equation (3). Writing the density functionW (x, φ, t) as
a Fourier series2

W (x, φ, t) = n(x)w(x)

=
n(x)
2π


1 +


∞−

m=1

fm(x, t)e−imφ
+ c.c.


,

where c.c. denotes complex conjugate, Ott and Antonsen noticed
that the continuity equation is fulfilled if the Fourier coefficients
can be expressed as

fm(x, t) = [F(x, t)]m , (25)

where F(x, t) is the only unknown function. We denote this
particular class of solutions of Eq. (1) as the OA reduced manifold.
Recalling the definition of generalized order parameters, Eq. (21),
we see that the quantities fm are exactly these order parameters
and therefore the ansatz (25) is equivalent to (24). Thus, the OA
reducedmanifold exactly corresponds to the special case where the
generalized order parameters are expressed via the powers of the
WS variable z (24). This holds if the distribution σ(ψ) of the WS
constants ψ is uniform.

The idea of OA can be alternatively presented as follows. Let us
consider a generalized order parameter Zm(x, t) of a subpopulation
with the parameter x, see Eq. (21), and compute its time derivative

Żm =

∫ 2π

0

∂w(x, φ, t)
∂t

eimφdφ = im
∫ 2π

0
w(x, φ, t)φ̇eimφdφ;

herewe also used Eq. (3). Substituting φ̇ = ω+(He−iφ
−H∗eiφ)/2i

we obtain (cf. [26]):

Żm = iωmZm +
m
2
(HZm−1 − H∗Zm+1).

This (infinite-dimensional) system of ODEs reduces to a single
equation if Zm = Zm; this case exactly corresponds to the OA
manifold.

Important contribution has been made by Ott and Antonsen
in [24]. In this publication they argued that the reduced manifold
(25) is the only attractive one provided the parameter distribution
n(x) is continuous. This argumentation gave a justification for using
this theory in a number of applications [45,46,20,48].

To conclude this section, we have demonstrated that the
Ott–Antonsen manifold corresponds to a special case of uniformly
distributed constants of motion in the Watanabe–Strogatz theory.
As we demonstrate in the following section, the deviations of the
OA dynamics from the exact one (given by WS equations) can be
controlled by a proper choice of initial distribution of the oscillator
phases.

2 In fact, in [23] the natural frequency ω was used as a parameter x.
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3. Ensembles with mean field coupling

3.1. Models with linear and nonlinear mean field coupling

Up until nowwe considered populations with general frequen-
cies ω(x, t) and forcing terms H(x, t). Now we specify the fre-
quency distribution and the force, and consider several popular
models as particular examples of the general approach. One pop-
ular assumption is that the oscillators differ only by their natural
frequenciesω(x) but are subject to a common forceH that depends
on the global mean field (order parameter) Y , computed over the
whole population

Y = ReiΘ =

∫
dx n(x)Z(x) =

∫
dx n(x)γ (x)z(x). (26)

If the global coupling is linear, i.e. H is simply proportional to Y ,

H = εeiβY , (27)

then from Eq. (1) we obtain the famous Kuramoto–Sakaguchi
model

dφ(x)
dt

= ω(x)+ εR sin(Θ − φ(x)+ β). (28)

Recently, this model has been generalized to the case of nonlinear
coupling, when H generally depends on |Y |

2Y , |Y |
4Y , etc. [21,22],

so that

H = εA(R, ε)eiβ(R,ε)Y .

For the purposes of this paper we concentrate on a particular case,

H = εei(β0+ε
2R2)Y , (29)

that corresponds to the following microscopic equation:

dφ(x)
dt

= ω(x)+ εR sin

Θ − φ(x)+ β0 + ε2R2 , (30)

where β0 is some constant.

3.2. The Kuramoto–Sakaguchi model

Let us start with the standard Kuramoto–Sakaguchi model (28).
For this model it is natural to identify the continuous variable x
with the frequencyω. Substituting the force (27) into Eqs. (11) and
(12) we obtain a closed system of WS equations

∂z(ω, t)
∂t

= iωz +
εeiβ

2
Y −

εe−iβ

2
z2Y ∗, (31)

∂α(ω, t)
∂t

= ω + Im

z∗εeiβY


. (32)

Consider now the reduced set of solutions corresponding to the
OA manifold, i.e. to the case γ (ω) = 1, z(ω) = Z(ω). The mean
field

Y =

∫
dx n(x)z(x) (33)

becomes independent ofα, Eq. (32) decouples, andwe are left with
a closed system of Eqs. (31) and (33).

For the following we fix the distribution of natural frequencies,
choosing it to be a Lorentzian one: n(ω) = [π(ω2

+ 1)]−1. As
demonstrated by Ott and Antonsen [23], for this case, under an
additional assumption that z(ω) is analytic in the upper half-plane,
the integral in Eq. (33) can be calculated by the residue of the pole
at ω = i; this calculation yields Y = z(i). Substituting this along
with ω = i into Eq. (31) we obtain the OA equation for the time
evolution of the Kuramoto mean field:

dY
dt

=


−1 +

εeiβ

2


Y −

εe−iβ

2
Y 2Y ∗. (34)

This closed equation for the order parameter was first derived and
solved in [23]; the solution with the initial condition R(0) = R0 is

R(t) = R̄


1 +


R̄
R0

2

− 1


e(2−ε cosβ)t

−1/2

, (35)

where R̄ =
√
1 − 2/(ε cosβ) (notice amisprint in Eq. (11) of [23]).

Weemphasize that Eq. (35) represents only a particular solution
of the full equation system (31), (32) and (26). Generally, the
dynamics of system (28) can deviate from (35). We illustrate this
important issue by the following numerical examples.

3.2.0.1. Example 1: effect of analyticity of z(ω)
We show that themean field dynamics deviates from (35) if the

analyticity assumption above does not hold. We perform a direct
numerical simulation of the Kuramoto–Sakaguchimodel withN =

104 oscillators and β = 0. The frequencies of the oscillators are
all different and are chosen to approximate the Lorentzian
distribution. We perform two runs with the same macroscopic
initial conditions for the ensemble, choosing Y (0) = R(0)eiΘ(0) =

R0 = 0.5, but with different microscopic initial conditions, i.e. with
different initial distributions of phases. Practically, we introduce
an auxiliary angle variable ς which attains N values, labeled by
index k, uniformly distributed between −π and π (end points
are excluded; ςk grows monotonically with k). The frequencies of
oscillators are then obtained as ωk = tan ςk

2 and the initial phases
as

φk(0) = ±2 arctan
[
1 − R0

1 + R0
tan

ςk
2

]
= ±2 arctan

[
1 − R0

1 + R0
ωk

]
, (36)

cf. Eq. (A.3); here the plus and minus signs correspond to the first
and to the second run, respectively. Notice that since we have only
one oscillator at each frequency, ρ(ωk) = 1, and, hence, γ (ωk) =

0, so that the reduction of system (31), (32) and (26) to system (31)
and (33) is valid. Using Eq. (A.4) we obtain for the WS variable

z(ωk, 0) = eφ(ωk,0) =
R0(1 ∓ iωk)+ 1 ± iωk

R0(1 ± iωk)+ 1 ∓ iωk
. (37)

Considering the obtained expression as an approximation of a
continuous function z(ω), we find that the latter has a pole at
ω = ∓i 1+R0

1−R0
. Thus, the first run corresponds to the initial condition

that is analytic in the upper half-plane, while the second run
corresponds to the initial condition that is analytic in the lower
half-plane. The results are shown in Fig. 2, with the curves a and b
corresponding to the first and to the second run, respectively. One
can see that the transient dynamics of the globalmean field heavily
depends on the microscopic initial conditions. We emphasize that
the result for the first set of initial conditions agrees very well with
the solution (35), while for the second set of initial conditions the
transient dynamics is essentially different.

3.2.0.2. Example 2: finite-size effects
Now we verify how well the dynamics of the finite system can

be approximated by the solution on the OA manifold. To this end
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Fig. 2. (Color online)Mean field amplitude R as a function of time, for the Kuramoto
ensemble with the Lorentzian distribution of frequencies; the number of oscillators
is N = 104, ε = 3. Curves (a, black) and (b, red) correspond to two different sets
of initial phases, as described in the text. In the first case the evolution of the mean
field follows theoretical solution given by Eq. (35), while for the second case the
transient dynamics deviates significantly from this solution.

we approximate the continuous system with a Lorentzian distri-
bution by a hierarchically organized population, consisting ofM =

104 groups of identical elements. All groups have the same size
Ng , so that the total number of oscillators is N = M · Ng . Since
Ng is finite, each group is characterized by a discrete set of con-
stants ψa,k, k = 1, . . . ,Ng . We assume first a uniform distribution
of constants ψa,k = ψa,1 + 2π(k − 1)/Ng and compute γa. Finite
Ng computation of Ca,l according to Ca,l = N−1

g
∑Ng

k=1 e
ilψa,k yields

|Ca,l| = 1 and arg(Ca,l) = ψ1l, for l = Ng , 2Ng , . . . , and Ca,l = 0,
otherwise. Eq. (19) becomes

γa = 1 + (1 − |z|−2)


−z∗ei(ψ1+α)

Ng

1 −

−z∗ei(ψ1+α)

Ng
, (38)

and we see that the deviation of γa from unity decreases with the
size of the subpopulation and, therefore, can be neglected for large
Ng . To illustrate this we perform numerical simulation for differ-
ent Ng with the macroscopic initial condition Y (0) = 0.5; the
microscopic initial conditions are chosen in such a way that z(ω)
is analytic in the upper half-plane. The results, shown in Fig. 3,
confirm the theoretical prediction: with increase of Ng the tran-
sient dynamics tends to the OAmanifold and is nicely described by
Eq. (35), while for a small number of oscillators in a group, the de-
viations from the OA solution are essential. If there is only one os-
cillator in a group, as in the previous example, the OA solution (35)
is again valid, because for Ng = 1 we have ρa = 1 and γa = 1.

3.2.0.3. Example 3: nonuniform distribution of constants ψ
The effect of a non-homogeneous distribution of the micro-

scopic constantsψk,a on the dynamics of the mean field, for a large
group size is illustrated in Fig. 4. Again,we consider a hierarchically
organized ensemble with M groups of Ng oscillators each. The pa-
rameters of the simulation are ε = 3,M = 104,Ng = 200, and
Y (0) = 0.5. However, the microscopic initial conditions, given by
the distribution of the constants of motion ψa,k, differ from run to
run (z(w) is kept analytic in the upper half-plane). In particular, we
introduce a parameter 0 < q ≤ 1 that quantifies the deviation of
the distribution of ψa,k from a uniform one; the value q = 1 cor-
responds to the uniform distribution. (In Appendix C we describe
how one can choose different microscopic initial conditions while
keeping the same macroscopic initial conditions.) From Fig. 4 we
see that the deviations from the OAmanifold become larger as this
distribution becomes less and less uniform, i.e. as the parameter q
decreases.
Fig. 3. Mean field amplitude R as a function of time, for ε = 3,M = 104 . In all
simulations initial conditions have been chosen such that Y (0) = 0.5. ForNg = 100
the evolution of the mean field follows Eq. (35), while for smaller group sizes the
transient deviates significantly from the OAmanifold. In all runs the distribution of
the constants ψa,k inside each group was chosen to be uniform.

Fig. 4. The same as Fig. 3, but for different distributions of constants of motionψa,k
and fixed group size Ng = 200. Dotted line shows the theoretical asymptotic value
of R.

3.3. The model of a nonlinearly coupled ensemble

Now we consider the model Eq. (30) and, as in the case of the
Kuramoto–Sakaguchi model, we look for solutions on the reduced
OA manifold. Again, we consider the Lorentzian distribution of
natural frequencies n(ω) = [π(ω2

+ 1)]−1 and assume that z(ω)
is analytic in the upper half-plane. Proceeding in a way similar to
the treatment of the Kuramoto–Sakaguchi model, we obtain an
analog of Eq. (34), which we write here as two real equations for
the amplitude R and frequencyΩ of the mean field:

dR
dt

= −R +
ε

2
R(1 − R2) cos(β0 + ε2R2), (39)

dΘ
dt

= Ω =
ε

2
(1 + R2) sin(β0 + ε2R2). (40)

Here β0 = const and we take |β0| < π/2.
It is easy to see that the asynchronous solution R = 0 becomes

unstable if the coupling strength exceeds the critical value εcr =

2/ cosβ0. For ε > εcr we expect to find one or several synchronous
solutions with the mean field amplitude 0 < R < 1. Looking for
solutions with R = const, we set in Eq. (39) Ṙ = 0 and obtain:

ε(1 − R2) cos(β0 + ε2R2)− 2 = f (R2) = 0. (41)

Obviously, f (0) = (ε − εcr) cosβ0 > 0 and f (1) = −2, hence,
there always exists at least one solution of Eq. (41). Numerical
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a

b

Fig. 5. Multistability in the nonlinearly coupled ensemble with A = 1, β = β0 + ε2R2 . Left panel: different states on parameter plane. The red dashed line shows critical
coupling εcr = 2/ cosβ0; inside the domain, determined by this curve, the asynchronous state is unstable. Labels as, s, and ns mean asynchrony (the state with r = 0 is
stable), synchrony (r > 0), and coexistence of n synchronous states, respectively. Label as/nsmeans coexistence of asynchronous and n synchronous solutions. Right panel:
illustration of the multistability for β0 = 0. Three branches of the solution of Eq. (41) for the mean field amplitude are shown by different symbols in (a). Corresponding
solutions for the frequency of the mean field, obtained from Eq. (40), are shown by the same colors in (b). Numerical results (see the text for details) are shown by symbols.
analysis shows that the number of its roots increases with ε. Thus,
the system exhibits multistability. The corresponding bifurcation
diagram in the parameter plane β0, ε is shown in Fig. 5. Here
we also show the dependencies of the mean field amplitude and
frequency on the coupling strength for β0 = 0, compared with
a direct numerical simulation of an ensemble with M = 5000
subpopulations of Ng = 20 oscillators each.

Finally, we demonstrate that although the asymptotic dynam-
ics of the system can be described within the framework of the
simplified OA theory by Eqs. (39) and (40), the transient dynam-
ics depends on the initial distribution of constants ψ and thus is
not caught by Eqs. (39) and (40). In other words, the attractors
of the multistable system can be obtained by assuming the uni-
form distribution of the constants of motion ψ , but their basins of
attraction depend on the distributions of ψ . In numerical exper-
iments we again take M = 5000 subpopulations of 20 oscillator
each, for ε = 4.5, fix macroscopic initial conditions R(0) = 0.52
and Θ(0) = 0, and vary parameter q. The results shown in Fig. 6
demonstrate that starting from the same macroscopic initial con-
ditions, the system can evolve to different attractors, depending on
the microscopic constants.

We conclude that for the ensemble with nonlinear coupling
the Ott–Antonsen theory nicely describes asymptotic states
(attractors), while the transient dynamics does not lie on the OA
manifold. The most dramatic effect is the dependence of basins
of attraction of different synchronous regimes on the microscopic
initial conditions, as illustrated in Fig. 6.

3.4. Two coupled subpopulations

For the next example we concentrate on a model, recently
studied by Abrams et al. [18]. They considered two identical
subpopulations of the same size, i.e. ω1 = ω2 = ω (without loss of
generalitywe set it to zero) andN1 = N2, but the coupling strength
µwithin a subgroup differs from the coupling strength ν between
the subgroups. The equations are:

dφ(1,2)k

dt
= ω + Im


µZ1,2 + νZ2,1


ei(β−φ

(1,2)
k )


. (42)

The WS system (14) and (15) for this setup reads

dz1,2
dt

=
1
2
H1,2 −

z21,2
2

H∗

1,2,
dα1,2

dt
= Im(z∗

1,2H1,2), (43)

H1,2 = (µZ1,2 + νZ2,1)eiβ , (44)
Fig. 6. Evolution of the mean field for samemacroscopic initial conditions (R(0) =

0.52,Θ(0) = 0, shown by a cross), but for different distributions of the constants
of motions, parameterized by q (see the text). Curve labels 1 − 4 correspond to
q = 1, q = 0.95, q = 0.9, and q = 0.85, respectively. Note that both attractors
of the system (limit cycles with radii ≈ 0.23 and ≈ 0.6) correspond to the theory,
developed under the assumption of uniform distribution of the constants of motion
(cf. Fig. 5). However, transient dynamics and basins of attraction depend on the
distribution of the constants of motion.

and the relation between Z1,2 and z1,2 is given by Eq. (16). By ap-
plying the OA ansatz, i.e. by setting Z1,2 = z1,2 we obtain a set
of equations, originally derived in Ref. [18]. Analyzing these equa-
tions, Abrams et al. have obtained an interesting solution where
one subpopulation is completely synchronized, |z1| = 1, while
the other one is only partially synchronized, |z2| < 1. Moreover,
this partially synchronous state can be either steady, z2 = const,
or time periodic, i.e. z2 is a periodic function of time. These regimes
are called chimera states.

The model of Abrams et al. serves as a good illustration of the
usefulness of the above described approach based on the exact WS
theory. A complete description of the dynamics for arbitrary initial
conditions is given not by the OA equations, but by system (43),
(44) and (16). Correspondingly, the additional equations generally
lead to an additional time periodicity for chimera states [43]: a
steady-state solution becomes time periodic (Fig. 7), and a time-
periodic state becomes quasiperiodic (Fig. 8).We notice that in this
case the solutions do not evolve towards theOAmanifolds, because
the distribution of the oscillators’ parameters is not continuous.
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Fig. 7. (Color online) Simulation of ensemble (42) for N = 64, β = π/2 −

0.1, µ = 0.6, ν = 1 − µ = 0.4, and different distributions of the microscopic
constants ψ (2)

k , controlled by the parameter q (see Appendix C). Note that
the distribution of constants ψ1,k is irrelevant since the first subpopulation is
completely synchronized. The case q = 1 (marked by plus) corresponds to the OA
manifold, here the mean field is constant. For q = 0.9, q = 0.7, and q = 0.5 one
observes time-periodic states represented by limit cycles in the complex plane Z2
(red bold, green solid, and blue dotted curves, respectively).

a b

c d

Fig. 8. The same as in Fig. 7, but forµ = 0.65 and ν = 1−µ = 0.35. In this case on
the OA manifold, i.e. for q = 1, the dynamics is periodic (a), while for more general
initial conditions parameterized by q = 0.9 (b), q = 0.7 (c), and q = 0.5 (d) the
dynamics is quasiperiodic.

4. Conclusions and outlook

The main goal of this paper was to provide a generalization
of the powerful Watanabe–Strogatz theory for the case of
heterogeneous populations of phase oscillators. Beginning with
the continuity equation, we have formulated the WS equations
for a general inhomogeneous infinite population. As a particular
case we obtained the description of the hierarchically organized
ensembles, i.e. when the system can be treated as a collection of
subpopulations of identical units. The derived equations provide
an exact reduction of the dynamics; for hierarchical ensembles the
problemunder consideration becomes finite dimensional.Wehave
analyzed the derived equations for the important case of mean
field coupling. It is noteworthy that the reduced equations are valid
both for linear and nonlinear coupling. In the latter case we were
able to describe the dynamics of an inhomogeneous population
with the Lorentzian distribution of frequencies; the main result
here is appearance of the multistability of synchronous dynamics.
(See [49] for the analysis of the populationwith nonlinear coupling
and uniform distribution of natural frequencies.)

Next, we have thoroughly studied a relation between the
Watanabe–Strogatz and the Ott–Antonsen theories and have
demonstrated that the latter corresponds to a particular choice of
initial conditions for the ensemble. To be exact, the OA reduced
manifold corresponds to the case when the constants of motion in
the WS framework are uniformly distributed. This was illustrated
by the analysis of the chimera model by Abrams et al. [18],
consisting of two interacting populations of identical oscillators.
Here the solution of the four-dimensional OA equation system
yields only a subset of the solutions of the full six-dimensional WS
system. So, the latter one describes quasiperiodic chimera states,
not possible within a framework, based on the OA theory.

As argued by Ott and Antonsen in Ref. [24], solutions of the
full problem asymptotically tend to the OA reduced manifold (in
a weak sense, i.e. the averages converge to the values on the
OA manifold), if the elements of the ensemble have a continuous
frequency distribution, which satisfies an analyticity condition.
Our simulations of the linear and the nonlinear globally coupled
ensemble confirm this statement. Moreover, we have explicitly
demonstrated that the OA equations provide only asymptotic
solutions, whereas the transient dynamics and the basins of
attraction of these solutions depend on the choice of initial
conditions and cannot be treated within the OA theory. (See [50]
for another example of nontrivial transient dynamics of the
OA manifold.) An important issue is that, possibly, the weak
convergence to the OA manifold occurs not only for oscillators
having a distribution of frequencies, but also for populations of
oscillators with identical frequencies and a distribution of some
other parameter. For example, consider a popular setup of a linear
chain of oscillators with a long-range coupling; an interesting
phenomenon here is the appearance of a chimera state [51,52].
In this state the amplitude of the force, acting on the units, is
continuously distributed in a certain range. Preliminary theoretical
and numerical treatments [53] confirm the validity of the OA
approximation in this setup, at least for the case of the harmonic
forcing field.

Finally, we would like to mention that the presented approach
opens newperspectives in analysis of such long-standing problems
as finite-size effects and the effects of a common external noise
on oscillator ensembles. Some results in this direction have been
already presented in this paper—we have demonstrated how the
accuracy of the OA theory depends on the size of the oscillator
groups. Also, application of the approach to systems with delayed
coupling appears promising.
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Appendix A. Watanabe–Strogatz variables

According toWatanabe and Strogatz [41,42], the system ofN >
3 identical sine-coupled phase oscillators, subject to an arbitrary
common force (see Eq. (1)) admits a low-dimensional description.
For arbitrary functions of time ω(t) and H(t), this N-dimensional
system is completely described by the ‘‘global phases’’ Ψ̃ and Φ̃
and the global ‘‘amplitude’’ ρ̃, 0 ≤ ρ̃ ≤ 1, plus constants ofmotion
ψk, k = 1, . . . ,N , which obey three additional constraints, so that
N − 3 of them are independent. The global WS variables Ψ̃ , Φ̃ ,
and ρ̃ obey the WS equations; their original form can be found in
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[41,42]. The solution of the original system (1) can be recovered via
the following transformation:

tan


φk − Φ̃

2


=


1 + ρ̃

1 − ρ̃
tan


ψk − Ψ̃

2


. (A.1)

We perform the variable substitution ρ̃, Ψ̃ , Φ̃ → ρ,Ψ ,Φ
according to

ρ̃ =
2ρ

1 + ρ2
, Ψ̃ = Ψ + π, Φ̃ = Φ + π. (A.2)

The new variables admit a clear physical interpretation; see Fig. 1
and its discussion. The transformation (A.1) now takes the form

tan

φk − Φ

2


=

1 − ρ

1 + ρ
tan


ψk − Ψ

2


. (A.3)

It is convenient to re-write this transformation in the exponential
form [43,44], using the following identity:

eiα =
1 + i tan(α/2)
1 − i tan(α/2)

=
[1 + i tan(α/2)]2

1 + tan2(α/2)

= cos2
α

2
·


1 − tan2 α

2
+ 2i tan

α

2


= cosα + i sinα. (A.4)

With the help of this identity we write:

ei(φk−Φ) =
1 + i tan φk−Φ

2

1 − i tan φk−Φ
2

=
1 + i 1−ρ1+ρ tan ψk−Ψ

2

1 − i 1−ρ1+ρ tan ψk−Ψ
2

=
(1 + ρ) cos ψk−Ψ

2 + i(1 − ρ) sin ψk−Ψ
2

(1 + ρ) cos ψk−Ψ
2 + i(ρ − 1) sin ψk−Ψ

2

=
ρe−i(ψk−Ψ )/2 + ei(ψk−Ψ )/2

ρei(ψk−Ψ )/2 + e−i(ψk−Ψ )/2
,

which yields Eq. (4). Note that the obtained transformation is
known as the Möbius transformation (see [44]).

Appendix B. Variable transformation for continuity equation

We perform transformation of variables in Eq. (3), using Eq. (5):

0 =
∂w

∂t
+

∂

∂φ
(wv) =

∂w

∂τ

∂τ

∂t
+
∂w

∂ψ

∂ψ

∂t
+

∂

∂ψ
(wv)

∂ψ

∂φ

=
∂

∂τ


σ
∂ψ

∂φ


+

∂

∂ψ


σ
∂ψ

∂φ


·
∂ψ

∂t

+

[
∂

∂ψ


σ
∂ψ

∂φ


v +


σ
∂ψ

∂φ


∂v

∂ψ

]
∂ψ

∂φ

=
∂σ

∂τ

∂ψ

∂φ
+ σ

∂

∂τ


∂ψ

∂φ


+

[
∂σ

∂ψ

∂ψ

∂φ
+ σ

∂

∂ψ


∂ψ

∂φ

]
∂ψ

∂t

+

[
∂σ

∂ψ

∂ψ

∂φ
+ σ

∂

∂ψ


∂ψ

∂φ

]
v + σ

∂ψ

∂φ

∂v

∂ψ


∂ψ

∂φ

=
∂σ

∂τ

∂ψ

∂φ
+ σ


∂

∂τ


∂ψ

∂φ


+

∂

∂ψ


∂ψ

∂φ


∂ψ

∂t
+ v

∂ψ

∂φ



+


∂ψ

∂φ

2
∂v

∂ψ


+
∂σ

∂ψ


∂ψ

∂φ


∂ψ

∂t
+ v

∂ψ

∂φ


. (B.1)

Let us demonstrate that the coefficients at σ and ∂σ
∂ψ

vanish if
ρ,Φ , andΨ obey theWS equations. For this goal we first compute
∂ψ

∂t + v
∂ψ

∂φ
. It is convenient to use the notations f = ei(φ−Φ), c =

ei(ψ−Ψ ). Resolving Eq. (4) with respect to ψ , we obtain

ψ = Ψ − i ln(f − ρ)+ i ln(1 − ρf ). (B.2)
Taking the derivative and re-arranging the terms, we obtain

∂ψ

∂t
(φ) = Ψ̇ − f

1 − ρ2

(f − ρ)(1 − f ρ)
Φ̇ + i

1 − f 2

(f − ρ)(1 − f ρ)
ρ̇. (B.3)

Using e−iφ
= e−iΦ/f = e−iΦ f ∗, we obtain in new variables:

v = ω + Im

He−iΦ f ∗


. (B.4)

Next, from Eq. (B.2) we compute, using ∂ f
∂φ

= if :

∂ψ

∂φ
(φ) =

(1 − ρ2)f
(f − ρ)(1 − ρf )

. (B.5)

Substituting into Eq. (B.3) the derivatives via the r.h.s. of the WS
equations and using Eqs. (B.4) and (B.5), we obtain after tedious
but straightforward algebra

∂ψ

∂t
+ v

∂ψ

∂φ
= 0. (B.6)

Hence the coefficient at ∂σ
∂ψ

= 0 and the coefficient at σ reduces
to

∂

∂τ


∂ψ

∂φ


+


∂ψ

∂φ

2
∂v

∂ψ
= Q .

To compute Q , we first substitute in Eq. (B.5) f =
ρ+c
ρc+1 from Eq. (4)

and obtain, after straightforward manipulations,

∂ψ

∂φ
(ψ) =

(ρ + c)(ρ + c∗)

1 − ρ2
=
ρc + ρc∗

+ 2
1 − ρ2

− 1. (B.7)

Derivation with respect to time yields

∂

∂τ


∂ψ

∂φ


=

∂

∂t


∂ψ

∂φ


=

iρ(c∗
− c)

1 − ρ2
Ψ̇ +

(1 + ρ2)(c + c∗)+ 4ρ
(1 − ρ2)2

ρ̇. (B.8)

Here we used ∂c
∂t = −icΨ̇ , ∂c

∗

∂t = ic∗Ψ̇ . Next, we compute

∂v

∂ψ
= Im

[
He−iΦ ∂

∂ψ

ρc + 1
ρ + c

]
= (ρ2

− 1)Re
[

cHe−iΦ

(ρ + c)2

]
. (B.9)

Using the obtained expressions (B.7)–(B.9), we show, after tedious
but straightforwardmanipulations, thatQ = 0 if Ψ̇ and ρ̇ obey the
WS equations.

Thus, we demonstrate that the r.h.s. of the continuity equation
Eq. (B.1) simplifies to ∂σ

∂τ

∂ψ

∂φ
and is therefore valid if σ(ω,ψ) is a

stationary distribution.

Appendix C. Choice of initial conditions for simulation of
hierarchical populations

Our goal is to choose different microscopic initial conditions,
i.e. initial values for oscillator phases, but keep the same
macroscopic initial conditions, i.e. the amplitude of themean field.
For this goal we proceed as follows. For each subpopulation with
the frequency ωa we take ψa uniformly distributed along the arcs
(1 − q)π2 , (1 + q)π2


and


−(1 + q)π2 ,−(1 − q)π2


, as shown in

Fig. C.1. Here 0 < q ≤ 1 is a parameter quantifying deviation of the
distribution from a uniform one; q = 1 corresponds to a uniform
distribution, with q → 0 the distribution collapses to two points.
For this construction, the subpopulation size Na should be an even
number. Note that this choice of ψa,k satisfies constraints (8) and∑
ψa,k = 0. The initial values of the oscillator phases φa,k(0) are

obtained from ψa,k according to Eq. (A.3).
Now we show that with a special choice of the initial values

of the WS variables we can ensure the same initial value of the



A. Pikovsky, M. Rosenblum / Physica D 240 (2011) 872–881 881
Fig. C.1. Illustration of the special choice of the constants of motion ψk , here for
q = 0.8 and Na = 10. The points are distributed along two arcs of length qπ each;
angle α =

π
2 (1 − q), angle β =

qπ
Na

.

mean field, independently of the parameter q. These special values
are Φa = 0, ρa = ρ0, and Ψa =

2π
M a. In order to compute the

initial value of the Kuramoto mean field Y (0) = r0eiΘ0 we write
the discrete version of Eq. (26) for t = 0:

r0eiΘ0 = ρ0

M−
a=1

Naγa

= ρ0


M−

a=1

Na + (1 − ρ−2
0 )

M−
a=1

Na

∞−
l=2

Cl(−ρ0)
le−i 2πalM


= ρ0,

taking into account that all groups are of equal size, Na = Ng .
Thus, taking different values of the parameter q and fixing other
parameters we obtain the same macroscopic initial conditions
(i.e. for themean field),whereas the initial conditions for individual
oscillators are different.
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