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We propose a novel method of reconstructing the topology and interaction functions for a general

oscillator network. An ensemble of initial phases and the corresponding instantaneous frequencies is

constructed by repeating random phase resets of the system dynamics. The desired details of network

structure are then revealed by appropriately averaging over the ensemble. The method is applicable for a

wide class of networks with arbitrary emergent dynamics, including full synchrony.
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Complex networks of many interacting units found at all
scales in nature are the subject of intense research in many
scientific areas [1]. Among the central issues in this field
are the exploration and development of methods for deter-
mining the architecture of a network based on the observ-
able data. Knowing the network structure helps in
understanding its collective behavior, and indicates ways
to engineer networks with the desired properties. For in-
stance, it has been realized that inferring the topology of
gene regulatory networks is crucial for completing our
knowledge about the inner workings of cells [2]. Many
real networks display modular and community structure
that is essential for their functioning [3] and can be ex-
tracted using a variety of methods [4], as done for yeast
metabolic network [5]. Reconstruction techniques often
rely on examining the time series of network dynamics
that can reveal its interaction functions [6]. The network
topology can be detected by studying the interchanges
among its collective behaviors or investigating its response
dynamics [7]. Structural properties can be determined from
various time scales in the emergence of synchronization [8]
or by employing specific control theory methods [9].
Recently proposed techniques involve noisy dynamical
correlations between the nodes [10], and even tackle
models with nonequilibrium dynamics [11].

However, existing reconstruction methods, that often
use network models with single-node dynamics repre-
sented by different types of oscillators [12], typically re-
quire long time series of dynamical data or a certain level
of complexity in the emergent dynamics [6,7]. Since
synchronization destroys the initial node-related informa-
tion, detecting network topology in such cases is extremely
difficult. Some methods are applicable only to sparse or
nondirected networks, often providing results with only a
limited precision [10].

In this Letter, we propose a novel method of reconstruct-
ing the topology and interaction functions of a general
oscillator network. Our idea relies on repeatedly reinitial-
izing the network dynamics (e.g., by performing random
phase resets), in order to produce an ensemble of the initial
dynamical data. We design the quantities obtained by

averaging this ensemble, whose values reveal the desired
details of the network structure. Our method is applicable
to any directed and weighted network, with general inter-
action functions and oscillator frequencies, and with arbi-
trary emergent dynamics, while avoiding the need for long
time series.
In the context of phase resets, one is typically interested

in the phase-resetting curves, which specify the system’s
response to weak external perturbations [13]. They are
investigated both experimentally [14] and theoretically
[15,16], and known to contain properties relevant for de-
termining network details such as clustering [17]. An
algorithm for the estimation of neuron interaction and its
stability based on phase resets has been proposed [14]. We
here employ phase resetting somewhat differently, since
our interest lies in the internal network interactions, rather
than its response to stimuli. Contrary to [14], we use phase
resets only as a natural way to reinitialize the dynamics of
an oscillator network, without measuring the phase shifts
occurring due to resetting.
Our model consists of N oscillators (nodes), character-

ized by their phases ’i 2 ½0; 2�Þ and natural frequencies
!i. They are coupled pairwise, via general 2�-periodic
interaction functions fij with zero mean:

_’ i ¼ !i þ
XN
j¼1

fjið’j � ’iÞ: (1)

Models of this type include the famous Kuramoto model
and its generalizations, widely used in theoretical studies,
as well as for describing specific experimental situations
[8,12,14]. The functions fijð�Þ are generally nonsymmet-

ric with respect to exchange of indices, and thus fully
define the dynamical network (order of indices determines
the direction of interaction). The network adjacency matrix
given as Aij ¼ sgnjfijj specifies its topology. Dynamics

starts from a set of initial phases (IP) which we denote as
’ ¼ ð’1; . . . ; ’NÞðt ¼ 0Þ, chosen from a distribution
�ð’Þ> 0 normalized to ð2�ÞN . The method is based on
two assumptions. (i) We are able to arbitrarily reinitialize
the network dynamics I times, by independently resetting
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the phases of all nodes to a new state’, and (ii) we are able
to measure all the values ’l, and all initial instantaneous
frequencies _’l, each time the dynamics is reinitialized
(for l ¼ 1; . . . ; I). As we show in what follows, the en-
semble of data for I � 1 created under these assumptions
yields the entire network structure.

Introducing a 2�-periodic test function g ¼ gð’i � ’jÞ
with zero mean, our aim is to compute the reconstruction
index Sij defined as

Sij½g� ¼ ð2�Þ�N
Z
½0;2��N

d’gð’i � ’jÞ _’jð’Þ: (2)

Taking the functions fij in Eq. (1) to be generally given by

the Fourier series fijð�Þ ¼ P
na

ðnÞ
ij sinn�þ bðnÞij cosn�,

we obtain the following expression for Sij:

Sij ¼ ð2�Þ�N
XN
k¼1

X1
n¼1

Z
½0;2��N

d’gð’i � ’jÞ

� ½aðnÞkj sinðn’k � n’jÞ þ bðnÞkj cosðn’k � n’jÞ�;

which is independent of the frequencies !i. The integral
over ’i vanishes unless i ¼ k. This implies that if Aij ¼ 0,

the corresponding Sij ¼ 0, independently of the choice of

g. The nonzero entries of Sij directly reveal the presence of

network links. In addition, matrix Sij detects the desired

properties of the interaction functions for appropriately
selected test function g. In particular, using gð�Þ ¼
2ein� we obtain the Fourier harmonics of fij, which are

the interaction parameters aðnÞij and bðnÞij :

Sij½2ein�� ¼ bðnÞij þ iaðnÞij ¼ 1

�

Z 2�

0
fijð�Þein�d�: (3)

Any dynamical network described by Eq. (1) can be re-
constructed by computing Sij for adequate g. Depending

on the properties of fij that are to be examined, other

choices of g are also possible. When dealing with the
empirical interaction functions involving an unknown
number of Fourier harmonics, a specifically designed g
based on the experimental assumptions about fij might be

useful. This result is largely independent of the frequencies
!i, network’s directedness, distribution �, and the net-
work’s final dynamical state. However, a constant compo-
nent in the case of fij with nonzero mean cannot be

detected, since its presence is indistinguishable from the
natural frequency !.

To practically implement our method, we need to con-
vert the integral from Eq. (2) into an average involving
discrete nonuniformly distributed empirical data f’lgIl¼1

and f _’lgIl¼1. To that end, we represent the function _’jð’Þ
using the kernel smoother Qð’�’lÞ [18] as

_’ jð’Þ ¼
P

I
l¼1 Qð’�’lÞ _’jð’lÞP

I
l¼1 Qð’� ’lÞ :

The denominator is just the empirical density �ð’Þ ¼P
lQð’� ’lÞ obtained via the kernel distribution estimate

[18]. Since the integration over ’ already provides
smoothing, we take Qð’� ’lÞ ! �ð’� ’lÞ and replace
Eq. (2) with a practical formula for Sij:

Sij½g� ¼
�
_’jgð’i � ’jÞ

�ð’Þ
�
¼ 1

I

XI
l¼1

_’jð’lÞgð’i � ’jÞ
�ð’lÞ ; (4)

which is the average of empirical _’jg weighted by 1
� .

The most trivial way to obtain the ensemble f’lgIl¼1

would be to pick the values from a fixed distribution
�ð’Þ. Instead, we seek to mimic an experimentally feasible
situation by performing I random phase resets of the
network dynamics, separated by the time interval �.
Mathematically, this amounts to adding the termP

I
l¼1 Ki;l sinð’i þ �i;lÞ�ðt� l�Þ to the right-hand side of

Eq. (1) [16]. For each reset l and each oscillator i, we
independently pick the kicking strength Ki;l from a zero

mean Gaussian distribution with standard deviation K ¼ 1
and the phase shift �i;l uniformly from ½0; 2�Þ. The

ensemble is constructed by storing the phase values imme-
diately after resets. The resulting artificially created en-
semble has little in common with the natural distribution of
phases, and can be considered as approximately indepen-
dent. This is expressed by separability of �ð’Þ into a
product of N one-dimensional distributions �ið’iÞ:

�ð’Þ ¼ YN
i¼1

�ið’iÞ; (5)

each of which we determine from generated data using the
kernel estimation method [19]. After each reset, the en-
semble of _’ is computed using a small time interval. The
phase value prior to reset is of no importance, since our
interest is solely in modeling a realistic way to create the
ensemble ’. This procedure resembles recent experiments
where the random stimulation was used to induce transient
desynchronization [20] in epileptic neuronal populations
[21]. In these experiments, however, it is still not verified
that the random independent phase resetting is achieved.
We now illustrate our theoretical findings through nu-

merical simulations on simple network examples, comput-
ing the reconstruction index Sij as described above.

Consider a simple network with N ¼ 4 oscillators shown
in Fig. 1. We pick the natural frequencies at random from
!i 2 ½�1; 1�. The interaction functions fij are defined for

linked node pairs by randomly choosing að1Þij ; b
ð1Þ
ij 2

½�1; 1�, while taking aðnÞij ¼ bðnÞij ¼ 0 for n � 2. Since

FIG. 1. Four-node network used for illustrating our method.
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such a network typically does not synchronize, our
approximation of independent IP after resetting is
appropriate. We take g ¼ 2ei� and compute Sij from an

ensemble of I ¼ 104 IP to obtain the numerical approx-

imations of að1Þij and bð1Þij via Eq. (4). In Fig. 2 we compare

the numerical að1Þij and bð1Þij (crosses) with the actual values

(circles). All values display a very good agreement for both
linked node pairs (different from zero) and nonlinked node
pairs (zero). We have not only revealed the adjacency

matrix Aij, but also found the interaction parameters að1Þij

and bð1Þij , thus reconstructing the entire dynamical network.

Below we discuss the limitations of our method. If the
available data ensemble I is too small, the statistics is poor
and the obtained network characteristics have large uncer-

tainties, which typically decrease as �I�ð1=2Þ. To illustrate
this, in Fig. 3(a) we present the numerical values of pa-

rameter að1Þij , computed for network in Fig. 1 using the

ensemble of IP ’ of size I. While the distinction between
links and nonlinks can already be seen for I � 103, for
good approximation one needs I * 104 (as done in Fig. 2).
For higher Fourier harmonics, the convergence is gradually
slower, but maintains the same properties.

Another limitation is related to the validity of our inde-
pendence assumption for the ensemble of IP which is
expressed by the separability of distribution �ð’Þ Eq. (5).
This heavily depends on the network’s dynamical regime
and the resetting strength. For a full synchrony and weak
kicking, the reset state is expected to be strongly corre-
lated, whereas for chaotic dynamics and strong resets, the
independence assumption is essentially correct. To study
this, we consider again the network from Fig. 1, but now
we fix all frequencies to!i ¼ 1, and take all interactions to

be attractive að1Þij ¼ 1, bð1Þij ¼ 0 (Kuramoto-type model with

identical oscillators). After allowing the network to syn-
chronize, we apply kicks as described above (� � tsynch).

This time, however, for each K 2 ½0; 10� we randomly
choose kicking strengths Ki;l from a Gaussian with

standard deviation K. We thus create an ensemble of

I ¼ 104 IP from which we compute að1Þij as done above.

In Fig. 3(b) we show the reconstructed values of að1Þij for

links and nonlinks in relation to K. Sufficiently strong

kicking (K * 5) succeeds in destroying the network’s
synchrony and generating the independent IP, from which

a good approximation of að1Þij is computed. ModerateK � 1

applied previously is now insufficient. This furthermore
depends on the relation between � and tsynch: if � & tsynch
(frequent resets), the separability of � is easier to achieve.
Too strong kicking can also induce correlations in ’,
regardless of dynamical regime and �. However, note
that � can be estimated using more elaborate techniques
than simple one-dimensional kernels [18], which can in
principle yield a good estimate even in the nonseparable
case. On the other hand, phase resetting is potentially not
the only mechanism of obtaining the ensemble ’; recall
that our theory with a known �ð’Þ works equally well for
any case, including full synchrony and inseparability.
Adding noise terms to the right-hand side of Eq. (1) does

not formally change the derivation of our main result,
rendering our theory valid in the presence of noise.
However, in light of the discussion above, noise will
have an effect on the performance of method: additional
uncertainty due to larger fluctuations of the estimated _’
require larger ensembles to achieve the desired precision.
On the other hand, noise may play a constructive role by
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FIG. 2. Reconstruction of network Fig. 1. Circles: Actual
parameter values; crosses: numerically obtained values for I ¼
104. (Left) að1Þij , (right) b
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FIG. 3 (color online). Numerical values of að1Þij for network in
Fig. 1, for links [gray (cyan)] and nonlinks (black). (a) Computed
from ensemble of I IP (cf. Fig. 2). (b) Computed from I ¼ 104

for network with attractive interactions, and with resetting done
at synchronous state. (c) Computed from I ¼ 105 for network
with attractive interactions where only spikes (’ ¼ 0) are ob-
servable (see text for more details).
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destroying the undesired correlations within ’, and thus
facilitating the separability of �.

While the experimental techniques for measuring ’ are
already in use [14], in a potential realistic application of our
method a problemmay arise in relation to the measurement
of _’. The entire cycle of a real oscillator is often not
accessible; instead, one can observe only a single event
per period (e.g., a spike produced by a neuron). In such
cases, one is forced to estimate the instantaneous frequen-
cies relying solely on the time intervals between the spikes.
To illustrate this, we consider again the system studied in

Fig. 3(b), but nowwe replace að1Þij with "að1Þij . The parameter

" (coupling strength) controls the ratio between the oscil-
lation time scale (period) and the interaction time scale
(synchronization). Rather than computing instantaneous _’
after each reset, we observe only the event of an oscillator
passing through the phase value ’ ¼ 0 (spike), and esti-
mate both ’ and _’ from the first two spikes observed after

resetting. We then reconstruct the values of að1Þij using the

ensemble of I ¼ 105 IP as done before (strong resetting is
applied immediately after the spikes are recorded). The
results shown in Fig. 3(c) have a clear physical interpreta-
tion: for too small coupling " & 0:03 the links cannot be
revealed since the interaction is tooweak. For too large " *
0:4 the two time scales are too close, and the detection is
again impossible since the distribution of phases changes
significantly over a period. However, between these ex-
tremes, there is a range of coupling around "� 0:1 where
the two time scales are well separated allowing a reliable
reconstruction. This shows that with an adequately big
ensemble our method works even if the entire oscillator
cycle is not accessible: errors in the estimation of ’ and _’
play a role similar to the noise. The method fails in the case
of too strong coupling, similarly to the case of too weak
resetting after synchronization [cf. Fig. 3(b)].

In conclusion, we proposed a method of reconstructing
oscillator networks by repeating random phase resets, ap-
plicable to a general network irrespectively of the dynami-
cal regimes. Our theory emphasizes the importance of the
transient dynamics in the context of network reconstruc-
tion, thus complementing the available techniques that rely
on time series recorded in final stationary state. Our theo-
retical model can be generalized to models beyond Eq. (1).
If the couplings depend on two phases in a more general
way, or depend on more than two phases, one should use
more elaborate test functions. For high-dimensional oscil-
lators only a single scalar might be observable: our method
can still be applied through the appropriate transformation
to phases [6]. Finally, a real experimental situation may
involve a network whose dynamics cannot be reset for all
nodes simultaneously, which renders the independence
assumption invalid. This is a much more challenging and
realistic case that requires additional study.
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(2010).

[3] R. Milo et al., Science 298, 824 (2002).
[4] S. Fortunato, Phys. Rep. 486, 75 (2010).
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