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Effects of nonresonant interaction in ensembles of phase oscillators
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We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in
resonance. Such groups interact via nonoscillating collective variables like the amplitudes of the order parameters
defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it
to a system of coupled equations for the order parameters. We describe different regimes of cosynchrony in the
groups. For a large number of groups, heteroclinic cycles, corresponding to a sequential synchronous activity of
groups and chaotic states where the order parameters oscillate irregularly, are possible.
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I. INTRODUCTION

Models of coupled limit cycle oscillators are widely used
to describe synchronization phenomena in various branches
of science. The applications include physical systems like
Josephson junctions [1], lasers [2], and electrochemical os-
cillators [3], but similar models are also used for neuronal
ensembles [4], the dynamics of pedestrians on bridges [5,6],
applauding persons [7], and so forth.

In many situations, a model of a fully connected (globally
coupled) network is appropriate. In this case, each oscillator
is driven by a mean field produced by all oscillators in
the network. Ensembles of weakly interacting self-sustained
oscillators are successfully handled in the framework of
phase approximation [8–12]. Most popular are the Kuramoto
model of sine-coupled phase oscillators, and its extension,
the Kuramoto-Sakaguchi model [13]. This model describes
self-synchronization and appearance of a collective mode
(mean field) in an ensemble of generally nonidentical elements
as a nonequilibrium phase transition. The basic assumptions
behind the Kuramoto model are that of weak coupling (which
allows one to consider pairwise interactions only) and of
closeness of frequencies of oscillators; the latter results in
the presence of resonant terms (depending on the phase
differences) in the coupling function only (contrary to a general
case where the coupling is a general function of two phases).
References to detailed aspects of the Kuramoto model can be
found in [14–16].

In many cases, the ensembles of oscillators are not
homogeneous and can be considered as consisting of several
subensembles (e.g., in the brain different groups of neurons
can have different characteristic rhythms). If one still assumes
that the frequencies of these subgroups are close (compared to
the coupling), then a model of several resonantly interacting
subpopulations [17–24] or of an ensemble having a bimodal (or
a multimodal) distribution of frequencies [25–31] is adopted.
Similarly, one can also model two ensembles, one of which
consists of active and another of passive elements, which are
coupled resonantly due to the closeness of their frequencies
[32,33].

In this paper, we study the novel situation of nonresonantly
coupled oscillator ensembles. We assume that there are several

groups of oscillators and that the frequencies within each
group are close to each other but are strongly different
(compared to the coupling strength) between the groups. In
this situation, the coupling within the group is resonant, like
in usual Kuramoto-type models, but the coupling between the
groups can be only nonresonant.1 It means that the coupling
can be via nonoscillating, slow variables only, that is, via
the amplitudes of the mean fields. In the context of a single
Kuramoto model, such a dependence of the parameters of the
model on the amplitude of the mean field has been recently
studied in [34–37]. Generally, both the amplitude and the
phase of the coupling constant may depend on the mean
field amplitude; in [34,35], such a dependence was termed
nonlinearity of coupling. Nonlinearity in this context means
that the effect of the collective mode on an individual unit
depends on the amplitude of this mode, so that, for example,
the interaction of the field and a unit can be attractive for
a weak field and repulsive for a strong one. Mathematically,
this is represented by the dependence of the parameters of
the Kuramoto-Sakaguchi model (the coupling strength, the
effective frequency spreading, and the phase shift) on the mean
field amplitude. Here we generalize this approach to several
ensembles, so that the parameters of the Kuramoto-Sakaguchi
model describing each subgroup depend on the mean field
amplitudes of other subgroups (e.g., resonant interactions
within a group of oscillators can be attractive or repulsive
depending on the amplitude of the order parameter of another
group).

A general derivation of such a coupling appears in
Appendix A; we outline here a simple physical situation
where such an interaction appears. A well-known example
of a physical system that can be described by the Kuramoto-
Sakaguchi model is an array of Josephson junctions with a
common inductor-capacitor-resistor (LCR) load [1]. In this
setup, a linear LCR circuit is fed by the sum of voltages of the
junctions, and each junction is driven by the current of the LCR
circuit. It is quite natural to consider a nonlinear circuit as a

1Another novel type of interaction appears if the frequencies of two
groups are in a high-order resonance like 2:1; see [60].
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common load. Then the relation between the force that drives
each junction and the mean field (sum of voltages from the
junctions) will be nonlinear—there will be terms proportional
to the mean field, to the square of the mean field, to the third
power of the mean field, and so forth. In the language of
individual interactions between the junctions, this will produce
two-phase coupling terms, three-phase coupling terms, and so
on. Next, if there are two groups of Josephson junctions having
different natural frequencies, their interaction via a common
nonlinear load will belong to the class we consider in this paper.

In Sec. II, we introduce the basic model of nonresonantly
interacting ensembles. We also formulate the equations for
the mean fields of the ensembles following the Ott-Antonsen
theory [38,39]. The simplest situation of two interacting en-
sembles is studied in Sec. III. In Sec. IV, we describe three and
several interacting ensembles, focusing on nontrivial regimes
of sequential synchronous activity following a heteroclinic
cycle and on chaotic dynamics.

II. BASIC MODEL OF NONRESONANTLY INTERACTING
OSCILLATOR ENSEMBLES

A. Kuramoto-Sakaguchi model and Ott-Antonsen
equations for its dynamics

A popular model describing resonant interactions in an
ensemble of oscillators having close frequencies is due to
Kuramoto and Sakaguchi [13]:

φ̇k = ωk + Im(KZe−iφk ), Z = 1

N

N∑
l=1

eiφl ,

k = 1, . . . ,N. (1)

Here φk is the oscillator’s phase, Z is the complex order
parameter (mean field) that also serves as a measure for
synchrony in the ensemble, ωk are natural frequencies of
oscillators, and K = 2a + 2ib is a complex coupling constant.
The argument of this constant gives the phase shift in
the coupling; for b = 0 the model reduces to the standard
Kuramoto one.

Recently, Ott and Antonsen [38,39] have demonstrated that
in the thermodynamic limit N → ∞, and asymptotically for
large times the evolution of the order parameter Z in the
case of a Cauchy (Lorentzian) distribution of natural fre-
quencies g(ω) = �[π ((ω − ω0)2 + �2)]−1 around the central
frequency ω0, is governed by a simple ordinary differential
equation:

Ż = (iω0 − �)Z + 1
2 (K − K∗|Z|2)Z. (2)

Written for the amplitude and the phase of the order parameter
defined according to Z = ρei�, the Ott-Antonsen equations

ρ̇ = −�ρ + a(1 − ρ2)ρ, (3)

�̇ = ω0 + 2bρ2, (4)

are easy to study: Eq. (3) defines the stationary amplitude of
the mean field (which is nonzero above the synchronization
threshold ac = �), while Eq. (4) yields the frequency of the
mean field.

The Ott-Antonsen approach has been successfully applied
to a description of coupled populations of oscillators with

resonant couplings [19,24,35,40]; here we generalize these
results to the case of nonresonant coupling.

B. Nonresonantly interacting ensembles

We consider several ensembles of oscillators, each charac-
terized by its own parameters ω0,�,a,b. The main assumption
is that the central frequencies ω0 of different populations are
not close to each other, and also high-order resonances between
them are not present. Such a situation appears typical for
neural ensembles, where different areas of brain demonstrate
oscillations in a very broad range of frequencies, from α to
γ rhythms. Because there is no resonant interaction between
the oscillators in different ensembles, they can interact only
nonresonantly, via the absolute values of the mean fields. For
a more detailed derivation, we refer to Appendix A; here
we present only the qualitative arguments yielding the form
of the basic equations. Assuming that only Kuramoto order
parameters (1) (but not higher order Daido order parame-
ters Zm = 〈eimφ〉) enter the coupling, a general nonresonant
interaction between populations can be described by the
dependencies of the parameters ω0,�,a,b on the amplitudes
of the mean fields ρl , where index l counts the subpopulations.
Moreover, one can see from (3) and (4) that the equation
for the amplitude is independent on the phase; therefore, we
can restrict our attention to the amplitude dynamics (3). This
means that the frequencies of the mean field are only slightly
influenced by interactions, and thus a synchronization of mean
fields with each other (in the sense that frequencies of different
subpopulations become locked) is impossible. Furthermore,
we assume the coupling to be weak, so only the leading order
corrections ∼ρ2 are included. All this leads to the following
general model for interacting populations:

ρ̇l = (−�l − 
lmρ2
m

)
ρl + (

al + Almρ2
m

)(
1 − ρ2

l

)
ρl,

l,m = 1, . . . ,L, (5)

with coupling constants 
lm,Alm. Here index l denotes a
subpopulation of oscillators and 
lm,Alm describe the action
of subpopulation m on subpopulation l. As is demonstrated
in Appendix A [cf. Eq. (A7)], the microscopic equations
corresponding to this model read

φ̇
(l)
k = ω

(l)
k +ηk
lmρ2

m + Im
[
2
(
al+Almρ2

m

)
Z(l) exp

(−iφ
(l)
k

)]
,

(6)

where ω
(l)
k are Cauchy distributed with mean ω(l) and width �l ,

and ηk are Cauchy distributed with zero mean and unit width. In
general, different kinds of configurations can be treated on this
level; for example, coupling may be symmetric or directional
(l influences m but m does not influence l), subpopulations
may form a “ring” with coupling 1 → 2 → 3 → · · · → L →
1, and so forth. Below we give a rather general analysis for
two subpopulations describing different possible regimes in
dependence on the coupling configurations, but for L = 3,4 we
do not study all possible configurations—instead we exemplify
interesting regimes of heteroclinic synchrony cycles and chaos
with properly chosen examples. Note that because the widths
of the frequencies distribution cannot be negative, coefficients

lm must satisfy �l + 
lm � 0. Below we assume that there
is no nonlinearity inside ensembles 
ll = All = 0.
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In this paper, we do not investigate model (5) in its full
generality, as it would require a rather tedious analysis. Instead,
we consider two simpler models, which describe particular
types of interaction but nevertheless allow us to demonstrate
interesting dynamical patterns. In model A, we assume that
only frequencies are influenced by the coupling, that is, Alm =
0. This leads to a system

ρ̇l = (
al − �l − 
lmρ2

m − alρ
2
l

)
ρl. (7)

Model B takes into account the interaction via coupling
constants only (i.e., 
lm = 0); additionally we assume here that
the distributions of frequencies in all interacting ensembles are
narrow �l → 0. In the limit of identical oscillators, we obtain
from (5)

ρ̇l = (
al + Almρ2

m

)(
1 − ρ2

l

)
ρl. (8)

Here we note that the Ott-Antonsen equations for the ensemble
of identical oscillators describe not a general case but a
particular solution, while a general description is delivered
by the Watanabe-Strogatz theory [41,42]. Thus the dynamics
of model B should be considered as a special singular limit
� → 0.

In Secs. III and IV, we describe the dynamics of these two
models, for the cases of two (Sec. III) and three and more
interacting ensembles (Sec. IV).

III. TWO INTERACTING ENSEMBLES

Let us first rewrite models (7) and (8) for the simplest case
of only two interacting ensembles. Additionally, for model
A we assume al = 1 (equivalently, one could renormalize
the amplitudes of order parameters ρ1,2 to get rid of these
coefficients). Thus the model A reads

ρ̇1 = ρ1
(
δ1 − d12ρ

2
2 − ρ2

1

)
,

(9)
ρ̇2 = ρ2

(
δ2 − d21ρ

2
1 − ρ2

2

)
.

For model B, a normalization of amplitudes is not possible,
and it reads

ρ̇1 = ε1ρ1
(
1 − D12ρ

2
2

)(
1 − ρ2

1

)
,

(10)
ρ̇2 = ε2ρ1

(
1 − D21ρ

2
1

)(
1 − ρ2

2

)
.

Generally, parameters δ1,2 = 1 − �1,2, dik = 
ik, ε1,2 = a1,2,
and Dik = −Aik/ai can have different signs.

As the first property of both models, we mention that the
dynamics is restricted to the domain 0 � ρ1,2 � 1. Formally,
this follows directly from (5), and physically this corresponds
to the admissible range of values of the order parameter.
Furthermore, for model A (9) we can apply the Bendixon-
Dulac criterion

∂

∂ρ1

(
1

ρ1ρ2
ρ̇1

)
+ ∂

∂ρ2

(
1

ρ1ρ2
ρ̇2

)
= −2

ρ2
1 + ρ2

2

ρ1ρ2
< 0,

from which it follows that it cannot possess periodic orbits.
Remarkably, model B (10) can be written as a Hamiltonian

one. With an ansatz

exp y1,2 = ρ2
1,2

(
1 − ρ2

1,2

)−1
, (11)

it can be represented in a Hamiltonian form

ẏ1 = ∂H (y1,y2)

∂y2
, ẏ2 = −∂H (y1,y2)

∂y1
,

H =2ε1y2−2ε2y1−2ε1D12 ln(1 + ey2 )+2ε2D21 ln(1 + ey1 ).

(12)

Thus model B may demonstrate a family of periodic orbits
if the levels of the Hamiltonian are closed curves. We stress that
the Hamiltonian structure of the model does not exclude exis-
tence of stable equilibria at ρ = 0,1 because the transformation
(11) is singular at these states; in the Hamiltonian formulation
(12) these stable equilibria correspond to trajectories moving
toward ∓∞.

The dynamics of both models is mainly determined by the
existence and stability of equilibria. For model A (9), possible
equilibria are the trivial one, S1(0,0); two states where one of
the order parameters vanish, S2(δ1/2

1 ,0) and S3(0,δ
1/2
2 ); and a

state where both order parameters are nonzero,
S4[(δ1−d12δ1)(1−d12d21)−1,(δ2−d21δ1)(1−d12d21)−1]. Sim-

ilarly, model B (10) always has equilibria M1(0,0), M2(1,0),
M3(0,1), and M4(1,1), and additionally a nontrivial state
M5(D−1/2

21 ,D
−1/2
12 ) exists if D12,D21 > 1.

We illustrate possible types of dynamics (up to symmetry
1 ↔ 2) in models A and B in Figs. 1 and 2. Here it is worth
mentioning that model (9) is structurally of the same type
as typical models of interacting populations in mathematical
ecology [43]. Model B (10) resembles them as well but has a
distinctive property that fully synchronized cluster state ρ =
1 is invariant. Referring for the details to Appendix B, we
describe briefly possible regimes in these models.

(1) Stability of only of the trivial equilibrium point
S1(0,0), M1(0,0) [Figs. 1(a), 2(a), and 2(b)]. A fully asyn-
chronous state is stable in both ensembles.

(2) Stability of a nontrivial state off coordinate axes S4 and
M4 [Figs. 1(b), 1(c), 2(c), and 2(d)]. Here both ensembles
are synchronized (in model A not completely because of a
distribution of frequencies, in model B completely because
we assume identical oscillators in ensembles).

(3) Competition between ensembles [Figs. 1(d) and 2(e)].
Only one ensemble synchronizes while the other one desyn-
chronizes. Which ensemble is synchronous depends on initial
conditions.

(4) Suppression. One ensemble always “wins” and is
synchronous while the other one desynchronizes (steady states
S2,M2 are global attractors; of course, stability of “symmetric”
states S3,M3 is also possible) [Figs. 1(e), 1(f), and 2(f)–2(h)].

(5) Bistability of the trivial and the fully synchronous states
of both ensembles [Fig. 2(i)]. This is possible in model B only.

(6) Periodic behavior [Fig. 2(j)]. This is possible only in
ensemble B; it corresponds to an interaction of populations of
“predator-prey” type. Because the system is Hamiltonian, the
oscillations are conservative like in the Lotka-Volterra system.

While in our analysis we studied models (9) and (10) de-
scribing dynamics of the order parameters in the Ott-Antonsen
ansatz, all the regimes described above can be observed when
one simulates original equations of the ensembles of phase
oscillators (1) at sufficiently large number of units N . In Fig. 3,
we illustrate two nontrivial regimes of two subpopulations
of phase oscillators at N = 103. Figure 3(a) shows the
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FIG. 1. (Color online) Six different patterns of the dynamics of system (9). (a) Global stability of a trivial state (for δ1,2 < 0). (b), (c)
Stability of S4 when both populations are partially synchronous [conditions for this are (B2) for (b) or (B3) for (c)]. (d) Competition between
clusters if the coupling is strongly suppressive (B6); here we have bistablity of states S2,3 describing synchronous activity of one cluster and
asynchronous of another one. (e) Asymmetric interaction between clusters arises under condition (B9); here always a heteroclinic trajectory
from saddle point S3 to stable node S2 exists (red dashed line). (f) Stability of S2 under condition (B8).

dynamics of mean fields in the case of a competition between
two subpopulations that interact via frequency mismatch
modulation; see Fig. 1(d). Figure 3(b) illustrates a periodic
behavior of two subpopulations like in Fig. 2(j).

IV. THREE AND MORE INTERACTING ENSEMBLES

In this section, we generalize the results of Sec. III to
many interacting ensembles. We do not aim here at the
full generality but rather present interesting regimes based
on the elementary dynamics depicted in Figs. 1 and 2.
According to the consideration above, we restrict our attention
to two basic models: A (7) and B (8). Generally, model B
cannot be rewritten in a Hamiltonian form, but by applying
transformation (11) one can easily see that this system has a
Liouvillian property—the phase volume is conserved.

A. Symmetric case: Cosynchrony and competition

Here we describe mostly simple regimes that are observed
in a symmetric case of all-to-all coupling, where parameters of
all ensembles and their interaction are equal. This corresponds
to equal values al = a,�l = �, and 
lm = 
 in (7) and al = a

and Alm = A in (8). In model A, the only nontrivial regimes
are those where asynchronous states are unstable, � < a. Then
one observes either a coexistence of synchrony like in Fig. 1(b)
(for 
 < a) or a competition like in Fig. 1(d) (for 
 > a). In
the latter case, only one ensemble is synchronous, while others
desynchronize. Similar regimes can be observed in model B
for a > 0, A < −a. Additionally, in model B a coexistence of
full synchrony in all ensembles and a full asynchrony, like in
Fig. 2(i), can be observed for a < 0, A > − a

L−1 . We illustrate
the regimes of competition in Fig. 4 for the case of three
interacting populations.

B. Heteroclinic synchrony cycle

Here we discuss a multidimensional generalization of
the interactions where one group in a pair of ensembles
always synchronizes while another one is asynchronous [see
Figs. 1(e) and 2(f)]. In the examples presented in these
graphs, both ensembles would self-synchronize separately,
but due to interaction, synchrony in ensemble 2 disappears
while ensemble 1 remains synchronous. One can say that
in synchrony competition between the first and the second
ensembles, the first ensemble wins. Suppose now that a third
self-synchronizing ensemble is added, which wins in the
competition with the first one but loses in the competition
to the second one. Then a cycle 2 → 1 → 3 → 2 → 1 →
3 . . . will be observed. Moreover, because in the dynam-
ics [Figs. 1(e) and 2(f)] the transition 2 → 1 follows the
heteroclinic orbit connecting steady states S3 and S2, the
cycle in the system of three ensembles will be a heteroclinic
one, with asymptotically infinite period. Such a cycle has
been studied in different contexts [44–46]. For a review
of robust heteroclinic cycles, see [47,48] (sometimes one
uses the term winnerless competition to describe such a
dynamics [49,50]).

We demonstrate the heteroclinic synchrony cycle for
three interacting ensembles in Fig. 5. One can see that
synchronous states of ensembles appear for longer and
longer time intervals. It is interesting to note that heteroclinic
cycles have been observed in ensembles of identical coupled
oscillators [51–56]. There the nontrivial dynamics is in the
switchings of full synchrony between different clusters. In this
respect, the heteroclinic cycle in model B resembles such a
regime. On the other hand, the heteroclinic cycle in model
A is different: Here the natural frequencies of oscillators are
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FIG. 2. (Color online) Ten different dynamical regimes in system (10). (a), (b) Stability of the trivial state arises at conditions (B1).
Case (a): D12 < 1; case (b): D12 > 1. (c), (d) Stability of M4(1,1) when both clusters are in the synchronized state, under condition of a weak
suppressive coupling, (B4) for (c) or (B5) for (d). (e) Competition between clusters arises at strong suppressive coupling (B7). Here we have
bistability of steady states M2,3; each of these points corresponds to synchronous activity of one cluster and asynchronous activity of another
one. (f) Asymmetric interaction between clusters at asymmetric coupling (B11). Here, a sequence of heteroclinic trajectories M3 → M4 → M2

(red dashed lines) is always present. (g), (h) The situation of stability of fixed point M3 while conditions (B10) are satisfied [case (g): D21 > 1,
case (h): D21 < 1]. (i) Bistability of fully asynchronous and fully synchronous states arises if (B12) is valid. In this case, stable manifolds of
the saddle point M5 divide basins of attraction of stable points M1, M4. (j) The case of periodic behavior arises at conditions (B13).

different and the states of synchrony are not complete, so the
identical clusters never appear.

Finite size effects are nontrivial for the heteroclinic cycles
described. Indeed, it is known that while in the thermodynamic
limit deterministic equations for the order parameters can be
used, finite size effects can be modeled via noisy terms that
scale roughly as ∼N−1/2 [57–59]. On the other hand, noisy
terms destroy perfect heteroclinic orbit, making the transition
times between the states finite and irregular. Exactly this is

observed at modeling the interacting finite size ensembles
(Fig. 6). While for small N the heteroclinic cycle is completely
destroyed, for large N it looks like a noisy limit cycle.

C. Chaotic oscillations

Here we discuss possible “predator-prey”-type regimes
[cf. Fig. 2(j)] for many ensembles. An elementary “oscillator,”
depicted in Fig. 2(j), can be represented as a Hamiltonian
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FIG. 3. (Color online) Modeling of ensemble consisting of two subpopulations of N = 103 phase oscillators. (a) Subpopulations interact
via modulation of effective frequency mismatch (9). Case of competition between subpopulations for parameter values �1,2 = 1, a1,2 = 5,
and 
12 = 
21 = 12. (b) Subpopulations interact via coupling modulations (10). A periodic regime is presented at parameter values a1 = −1,
a2 = 1, and A12 = A21 = −2. To avoid a spurious clustering and to ensure validity of the Ott-Antonsen description, a small mismatch was
added: ωn were randomly distributed in the range [−0.025, + 0.025].

system with one degree of freedom. Several of such elementary
conservative “oscillators,” being coupled, can yield quasiperi-
odic and chaotic regimes. In the case of two interacting
conservative “oscillators” (i.e., of four interacting ensembles),
system (8) can be rewritten as follows:

ρ̇1,2 = ε1,2ρ1,2
(
1 − D0ρ

2
2,1 − D1υ

2
1,2

)(
1 − ρ2

1,2

)
,

(13)
υ̇1,2 = ε1,2υ1,2

(
1 − D0υ

2
2,1 − D1ρ

2
1,2

)(
1 − υ2

1,2

)
.

Here the parameters of the system were chosen in such a way
that each pair of subpopulations (ρ1,ρ2) and (υ1,υ2) exhibits
periodic oscillation when decoupled from another pair (at
D1 = 0), that is, ε1ε2 < 0 and D0 > 1. When the coupling
between the two pairs is introduced (i.e., D1 
= 0), then in de-
pendence on this coupling and initial conditions, the dynamics
can be qusiperiodic or chaotic. Like in general Hamiltonian
systems with two degrees of freedom, it is convenient to
represent the dynamics as a two-dimensional Poincaré map. As
a Poincaré section [Fig. 7(a)], we have taken the plane (υ1,υ2)
at moments of time at which the variable ρ1(t) has a maximum.
At small values of the coupling between the “oscillators”
D1, the dynamics is typically quasiperiodic. While increasing
D1, one can observe a transition to dominance of chaotic
regimes in the system (13) [see Figs. 7(a) and 7(b) and
calculation of Lyapunov exponents in Fig. 7(c)]. Furthermore,
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FIG. 4. (Color online) Multistability of steady states Cn corre-
sponding to synchronous state of only one cluster for (a) system (7)
(� < a, 
 > a) and (b) system (8) (a > 0, A < −a).

we have confirmed the existence of chaotic oscillations by
direct numerical simulation of four subpopulations satisfying
(13), consisting of N = 103 elements each [Fig. 7(d)].

V. CONCLUSION

In this paper, we have introduced and studied a model of
nonresonantly coupled ensembles of oscillators. It is assumed
that oscillators form several groups; in each group the natural
frequencies are close to each other, but the frequencies of
different groups are rather different. This means that only oscil-
lators within each group interact resonantly (i.e., the coupling
terms depend on their phases), while interactions between
the groups can be only nonresonant (i.e., depending on slow
nonoscillating variables only). As a particular realization of
such a setup, we considered phase oscillators, which resonantly
interact according to the Kuramoto-Sakaguchi model, and the
nonresonant terms appear as dependencies of the parameters
of the Kuramoto-Sakaguchi model on the amplitudes of
the mean fields (Kuramoto order parameters) of other
groups.

We employed the Ott-Antonsen theory, allowing us to
write a closed system of equations for the amplitudes of
the order parameters. Analysis of this system constitutes
the main part of the paper. The system resembles the
Lotka-Volterra-type equations used in mathematical ecology
for the dynamics of populations but has nevertheless some
peculiarities. For two coupled ensembles, we demonstrated
a variety of possible regimes: coexistence and bistability of
synchronous states as well as periodic oscillations. For a larger
number of interacting groups, more complex states appear: a
stable heteroclinic cycle and a chaotic regime. Heteroclinic
cycle means a sequence of synchronous epochs that become
longer and longer. In a chaotic regime, the order parameters
demonstrate low-dimensional chaos. While the main analysis
is performed for the Ott-Antonsen equations that are valid in
the thermodynamic limit of a infinite number of oscillators
in ensembles, we have checked finite size effects in several
regimes by modeling finite ensembles. Finiteness of ensembles

016210-6



EFFECTS OF NONRESONANT INTERACTION IN . . . PHYSICAL REVIEW E 84, 016210 (2011)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time

ρ 1,
2,

3

ρ
1

ρ
2

ρ
3

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

ρ 1,
2,

3

ρ
1

ρ
2

ρ
3

(b)

(d)

(a)

(c)

FIG. 5. (Color online) Stable heteroclinic cycles caused by asymmetric interactions between clusters in system (7) [(a) and (c)] and
in system (8) [(b) and (d)]. Parameters: (a) al − �l > 0, 
12 >

a2(a1−�1)
a2−�2

, 
31 >
a1(a3−�3)

a1−�1
, 
23 >

a3(a2−�2)
a3−�3

, 
21 <
a1(s2−�2)

a1−�1
, 
13 <

a3(a1−�1)
a3−�3

,

and 
32 <
a2(a3−�3)

a2−�2
; (b) al > 0, A12 < −a1, A31 < −a3, A23 < −a2, A21 > −a2, A13 > −a1, and A32 > −a3. Panels (a) and (b) show the

phase-space portraits while time series are presented in panels (c) and (d). Parameters: (c) a1,2,3 = 1, �1,2,3 = 0.2, 
21,32,13 = 2, 
12,23,31 = 0.6
(d) a1,2,3 = 1.0, A21,32,13 = −3.0, and A12,23,31 = −0.3.

only slightly influences the dynamics in most of the observed
states, except for the heteroclinic cycle. Here a small effective
noise due to finite size effects destroys the cycle, producing
nearly periodic noise-induced oscillations.

One of the models we studied was that of groups of
identical oscillators. Here in many cases only the states where
some groups completely synchronize (i.e., all oscillators form
an identical cluster) while others completely desynchronize

(order parameter vanish) are possible. A heteroclinic cycle
in this model also connects such states. There is, however, a
nontrivial set of parameters, at which the order parameters of
ensembles oscillate between zero and one, thus demonstrating
time-dependent partial synchronization. Moreover, for four
ensembles these oscillations are chaotic. This regime is quite
interesting for a general theory of collective chaos in oscillator
populations (cf. chaotic dynamics of the order parameter in
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FIG. 6. (Color online) Dynamics of the order parameters of three interacting populations of oscillators for three different sizes of
populations: (a) N = 100, (b) N = 400, and (c) N = 10 000. Parameters: a1,2,3 = 1, �1,2,3 = 0.2, 
21,32,13 = 3.0, and 
12,23,31 = 0.6 (such a
set of parameters produces a heteroclinic cycle in the phase of the system in the thermodynamic limit).
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FIG. 7. (Color online) (a) Poincaré sections on the plane (υ1,υ2) demonstrating regular and chaotic dynamics at different values of D1

in the system (13). (b) Time series of a chaotic regime of system (13), for parameter values D1 = 0.5, D0 = 2.0, ε1 = −1.0, and ε2 = 1.0.
(c) Lyapunov exponents calculated at different values of D1, for some particular values of the Hamiltonian. From four Lyapunov exponents,
two always vanish, while other two vanish for small D1 (quasiperiodicity) and are nonzero for larger coupling (chaos). (d) Chaotic time series
of order parameters of four subpopulations of oscillators consisting of N = 103 elements each [the coupling configuration and the parameters
are like in panel (b)].

an ensemble of Josephson junctions reported in [41]) and
certainly deserves further investigation.
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APPENDIX A: DERIVATION OF EQUATIONS
FOR NONRESONANT COUPLING

Consider two types of oscillators x and y that are governed
by equations

ẋ = X (x), ẏ = Y(y),

and have frequencies ω and � respectively. We consider
two coupled ensembles of such oscillators of sizes N and
M respectively, with a global coupling. For simplicity of
presentation, we write equations for the ensemble x only. We
assume that in general the coupling terms include coupling of
2, 3, 4, etc., oscillators:

ẋk =X (xk)+ 1

N

N∑
l=1

A(xl)+ 1

N2

N∑
l,m=1

B(xl,xm)+ 1

M

M∑
l=1

C(yl)

+ 1

M2

M∑
l,m=1

D(yl,ym) + 1

MN

M∑
l=1

N∑
m=1

F(yl,xm)

+ 1

M2N

M∑
l,m=1

N∑
j=1

G(yl,ym,xj )

+ 1

N2M

N∑
l,m=1

M∑
j=1

H(xl,xm,yj )

+ 1

N2M2

N∑
l,m=1

M∑
j,n=1

U(xl,xm,yj ,yn) + · · · . (A1)
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Such coupling terms appear, for example, if one considers two
groups of electronic oscillators (or Josephson junctions) with
a common nonlinear load. By applying the phase reduction as
described in [9], we characterize the oscillations by the phases
ϕk of oscillators xk and ψk of oscillators yk , and obtain for
their dynamics

ϕ̇k = ωk + 1

N

N∑
l=1

A(ϕl,ϕk) + 1

N2

N∑
l,m=1

B(ϕl,ϕm,ϕk)

+ 1

M

M∑
l=1

C(ψl,ϕk) + 1

M2

M∑
l,m=1

D(ψl,ψm,ϕk)

+ 1

MN

M∑
l=1

N∑
m=1

F (ψl,ϕm,ϕk)

+ 1

M2N

M∑
l,m=1

N∑
j=1

G(ψl,ψm,ϕj ,ϕk)

+ 1

N2M

N∑
l,m=1

M∑
j=1

H (ϕl,ϕm,ψj ,ϕk)

+ 1

N2M2

N∑
l,m=1

M∑
j,n=1

U (ϕl,ϕm,ψj ,ψn,ϕk) + · · · .

We stress here that even if some coupling terms (e.g., four-
oscillator couplings) are absent in the full model (A1), they
appear generally in the phase description in the second order,
third order, and so on of the perturbative reduction procedure.

All the functions A,B, . . . are 2π periodic in all arguments,
and thus they can be represented as multiple Fourier series:

A(ϕl,ϕk) =
∑
p,q

apqe
ipϕl+iqϕk , C(ψl,ϕk) =

∑
p,q

cpqe
ipψl+iqϕk ,

. . .

U (ϕl,ϕm,ψj ,ψn,ϕk) =
∑

p,q,r,s,t

upqrst e
ipϕl+iqϕm+irψj +isψn+itϕk .

Substituting these expressions in coupling terms allows one to
express them via the pth-degree Daido order parameters

Xp = 1

N

N∑
l=1

eipϕl , Yp = 1

M

M∑
l=1

eipψl ,

as follows:

1

N

N∑
l=1

A(ϕl,ϕk)= 1

N

N∑
l=1

∑
p,q

apqe
ipϕl+iqϕk =

∑
p,q

apqe
iqϕkXp,

1

N2

N∑
l,m=1

B(ϕl,ϕm,ϕk) =
∑
p,q,r

bpqrXpXqe
irϕk ,

. . .

1

N2M2

N∑
l,m=1

M∑
j,n=1

U (ϕl,ϕm,ψj ,ψn,ϕk)

=
∑

p,q,r,s,t

upqrstXpXqYrYse
itϕk .

With these order parameters, we write the phase equations as

ϕ̇k = ωk +
∑
p,q

apqXpeiqϕk +
∑
p,q,r

bpqrXpXqe
irϕk

+
∑
p,q

cpqYpeiqϕk +
∑
p,q,r

dpqrYpYqe
irϕk

+
∑
p,q,r

fpqrYpXqe
irϕk +

∑
p,q,r,s

gpqrsYpYqXre
isϕk

+
∑

p,q,r,s

hpqrsXpXqYre
isϕk

+
∑

p,q,r,s,t

upqrstXpXqYrYse
itϕk + · · · .

In order to obtain the averaged (over fast periods of oscil-
lations) equations, we introduce slowly varying phases ϕ̃,
ψ̃ as ϕ̃ = ϕ − ωt , ψ̃ = ψ − �t where ω = 〈ωk〉, � = 〈�k〉.
Correspondingly, the order parameters can be written as Xp =
X̃peiωt , Yp = Ỹpei�t via the slowly varying order parameter
amplitudes X̃p,Ỹp. Substituting this yields

˙̃ϕk = �ωk +
∑
p,q

apqX̃peiqϕ̃k ei(p+q)ωt

+
∑
p,q,r

bpqr X̃pX̃qe
irϕ̃k ei(p+q+r)ωt

+
∑
p,q

cpq Ỹpeiqϕ̃k eip�t+iqωt

+
∑
p,q,r

dpqr ỸpỸqe
irϕ̃k ei(p+q)�t+irωt

+
∑
p,q,r

fpqr ỸpX̃qe
irϕ̃k eip�t+i(q+r)ωt

+
∑

p,q,r,s

gpqrs ỸpỸqX̃re
isϕ̃k ei(p+q)�t+i(r+s)ωt

+
∑

p,q,r,s

hpqrsX̃pX̃q Ỹre
isϕ̃k eir�t+i(p+q+s)ωt

+
∑

p,q,r,s,t

upqrst X̃pX̃q Ỹr Ỹse
itϕ̃k eisϕk ei(p+q+t)ωt+i(r+s)�t

+ · · · .
Now we can average the right-hand side just by integration

over the explicit time dependence, neglecting at this stage
the time dependence of the slow variables. Because the fre-

quencies ω and � are incommensurate, eimωt+in�t
t = δn,0δm,0,

where δn,m is the Kronecker δ. This yields

˙̃ϕk = �ωk +
∑

p

ap,−pX̃pe−ipϕ̃k

+
∑
p,r

bp,−p+r,r X̃pX̃−p+re
−irϕ̃k + c00

+
∑

p

dp,−p,0ỸpỸ−p +
∑

q

f0,q,−qX̃qe
−iqϕ̃k

+
∑
p,r

gp,−p,r,−r ỸpỸ−pX̃re
−irϕ̃k
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+
∑
p,q

hp,q−p,0,−qX̃pX̃−p+qe
−iqϕ̃k

+
∑
p,r,t

up,−p+t,r,−r,t X̃pX̃−p+t Ỹr Ỹ−re
−it ϕ̃k .

We now make an assumption of sine coupling, namely that only
the first harmonics of the phase ϕ̃k enters the coupling terms.
This means, for example, that in the sum

∑
p ap,−pX̃pe−ipϕ̃k

only the terms with p = ±1 are present (these two terms
are complex conjugate), and similarly for other coupling
terms. Furthermore, we explore the Ott-Antonsen ansatz [38],
according to which the higher order parameters can be
represented through the main one: Xp = (X1)p and Yp =
(Y1)p. To simplify the notations, we drop the index of these
main order parameters X1,Y1 and obtain

˙̃ϕk = 1

2

[
�ωk + c00 +

∑
p

dp,−p,0|Ỹ |2p

]
+ a1,−1X̃e−iϕ̃k

+
∑

p

bp,−p+1,1|X̃|2pX̃e−iϕ̃k + f0,1,−1X̃e−iϕ̃k

+
∑

p

gp,−p,1,−1|Ỹ |2pX̃e−iϕ̃k

+
∑

p

hp,1−p,0,−1|X̃|2pX̃e−iϕ̃k

+
∑
p,r

up,−p+1,r,−r,1|X̃|2pX̃|Ỹ |2re−iϕ̃k + c.c.,

where c.c. means complex conjugate (because of adding
complex conjugate terms, we multiplied the real terms by 1

2 ).
One can see that the coupling involves only the amplitudes of
the mean fields but not their phases; such a situation is typical
for nonresonant couplings of oscillators. Combining the terms
as

˙̃ϕk = 1

2

(
�ωk + c00 +

∑
p

dp,−p,0|Ỹ |2p

)
(A2)

+ a1,−1X̃e−iϕ̃k + f0,1,−1X̃e−iϕ̃k (A3)

+
∑

p

(bp,−p+1,1 + hp,−p+1,0,−1)|X̃|2pX̃e−iϕ̃k (A4)

+
∑

p

gp,−p,1,−1|Ỹ |2pX̃e−iϕ̃k (A5)

∑
p,r

up,−p+1,r,−r,1|X̃|2p|Ỹ |2r X̃e−iϕ̃k + c.c., (A6)

we can interpret the physical effects of different coupling
terms. Here (A2) describes the shift of frequencies due to
coupling, (A3) are the usual terms describing the Kuramoto
interaction inside populations, terms (A4) describe nonlinear
effects in interaction within a population like in [42], terms
(A5) describe nonresonant interaction between populations,
and terms (A6) describe nonlinear cross-coupling.

Now one can transform back to the original phases
and order parameters to get a system to be modelled

numerically:

ϕ̇k = 1

2

[
ωk + c00+

∑
p

dp,−p,0|Y |2p

]
+ (a1,−1 + f0,1,−1)Xe−iϕk

+
∑

p

(bp,−p+1,1 + hp,−p+1,0,−1)|X|2pXe−iϕk

+
∑

p

gp,−p,1,−1|Y |2pXe−iϕk

×
∑
p,r

up,−p+1,r,−r,1|X|2p|Y |2rXe−iϕk + c.c. (A7)

In our simulations of ensembles, we used systems of type
(A7), where we restricted ourselves to the simplest nontrivial
case p,r = ±1. In this way, one formulates the ensemble
dynamics corresponding to Eqs. (5) for the order parameters.
Additionally, we ensured that the distribution of frequencies
of coupled oscillators remained Lorentzian by choosing the
coefficients dp,−p,0 according to such a distribution.

APPENDIX B: DETAILS OF ANALYSIS
OF TWO INTERACTING ENSEMBLES

Here we present details of the analysis of models (9),(10),
giving the conditions for different regimes presented in Figs. 1
and 2.

(1) The case when only the trivial equilibrium point
S1(0,0), M1(0,0) [Figs. 1(a), 2(a), and 2(b)] is stable. For
system (9), such a situation occurs in the case δ1,2 < 0. For
system (10), stability of only the trivial state M1 occurs if ε1,2

are negative and at least one of D12 or D21 less than 1:

ε1,2 < 0, min(D12,D21) < 1. (B1)

(2) The case of stability of nontrivial state off-coordinate
axes S4 and M4 [Figs. 1(b), 1(c), 2(c), and 1(d)]. For system (9),
this situation occurs in two cases. The first situation appears
if δ1,2 > 0 (when isolated subpopulations tends to synchrony)
and suppressive couplings are weak:

λ1 = δ2 − δ1d21 > 0, λ2 = δ1 − δ2d12 > 0. (B2)

The states S2,3 have eigenvalues −2δ1, λ1, and −2δ2, λ2,
respectively, and therefore are saddles. The origin is an
unstable node (δ1,2 > 0) and therefore the state S4 is an
attractor [note that S4 always exists while (B2) holds]. We call
this situation “case of weak suppressive couplings” because
(B2) can be written as d12 < δ1

δ2
, d21 < δ2

δ1
.

The second situation appears if one of the subpopulations
approaches the asynchronous state (negative δ) while another
group tends to synchrony and has positive influence on the first
subpopulation:

δ1 > 0, δ2 < 0, λ1 > 0 or δ1 < 0, δ2 > 0, λ2 > 0. (B3)

Condition λ1 > 0 is equivalent to d21 < δ2
δ1

, which means that
coupling d21 should be negative and absolute value of d21

should be large enough to maintain a partially synchronous
state inside the second cluster (positive influence). For the
system (10), the situation when only M4 is stable can be
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produced by two types of conditions. The first case is that
of positive ε1,2 and weak suppressive couplings:

ε1,2 > 0, D12 < 1, D21 < 1. (B4)

Another case of stability of M4 occurs if

ε1 < 0, ε2 > 0, D12 > 1, D21 < 1 or ε1 > 0,

ε2 < 0, D12 < 1, D21 > 1. (B5)

The latter case differs from the previous one only by the
direction of the flow on lines ρ1,2 = 0 and the type of unstable
points M1,M2,M3 [Fig. 2(d)].

(3) The case of competition between subpopulations
[Figs. 1(d) and 2(e)]. In model (9), this type of behavior arises
when

δ1,2 > 0, λ1 < 0, λ2 < 0. (B6)

According to (B6), the points S2,3 are stable, while S1 is
unstable node and S4 is a saddle. This case corresponds to
the situation of strong suppressive couplings

d12 >
δ1

δ2
, d21 >

δ2

δ1
.

Competitive behavior in the system (10) is produced by
positive ε1,2 and strong suppressive couplings between sub-
populations

ε0 > 0, D12 > 1, D21 > 1. (B7)

(4) The case of stability of synchronous state of only one
cluster (S2,M2) [Figs. 1(e), 1(f), and 2(f)–2(h). In model
(9), only one group is synchronous in two cases. The first
trivial situation is similar to conditions (B3) (when one group
approaches to asynchronous state while another one tends to
synchrony), but in this case the active group does not have
sufficient positive coupling to maintain synchronization in the
asynchronous subpopulation [Fig. 1(f)]:

δ1 > 0 δ2 < 0 λ1 < 0 or δ1 < 0 δ2 > 0 λ2 < 0. (B8)

Under conditions (B8), only one of the fixed points S2 or S3

exists and S1 is always unstable. The second case occurs at an
asymmetric interaction of intrinsically active clusters (isolated
clusters tend to synchronous regime):

δ1,2 > 0, and λ1 < 0 λ2 > 0 or λ1 > 0 λ2 < 0. (B9)

In other words, it appears when one coupling coefficient is
strong enough to fully suppress the synchrony in the opponent,
for example, d21 > δ2

δ1
, while another one is weak or even

nonsuppressing d12 < δ1
δ2

. In this case, one can prove that S4

does not exist, point S2 is a stable node, and S3 and S1 are
saddles. Thus all trajectories approach stable node S2, which
corresponds to the synchronous state of the first group and to
the asynchronous state of the second one. Because of this, on
the plane (ρ1,ρ2) a heteroclinic trajectory always exists that
connects saddle point S3 and stable equilibrium S2 [red line
in Fig. 1(e)]. The stability of point M2(M3) of system (10)
occurs in several different cases. The first case is similar to
the situation in the system (9) at conditions (B8) when one
group tends to synchrony (δn > 0), another one approaches
trivial state (δm < 0), and the synchronous group does not
have sufficient positive influence to maintain synchronization
in the asynchronous group:

ε1 < 0, ε2 > 0, D12 < 1 or ε1 > 0, ε2 < 0, D21 < 1.

(B10)

Corresponding phase planes are presented in Figs. 2(g) and
1(h). Another case is that of positive ε1,2 > 0 and asymmetric
couplings:

ε1,2 > 0, D12 > 1 D21 < 1 or D12 < 1 D21 > 1. (B11)

Under conditions in (B10) and (B11), it is easy to show that
only one stable fixed point M2(1,0) exists, so all trajectories
approach M2. In the case of (B11), a sequence of heteroclinic
orbits connecting M2 and M3 [red lines in Fig. 2(f)] appears.

(5) The case of bistability of trivial and fully synchronous
states [Fig. 2(i)]. In model (10), this happens for negative ε1,2

and strong synchronizing couplings:

ε1,2 < 0, D12 > 1, D21 > 1. (B12)

(6) Periodic behavior [Fig. 2(j)]. In model (10), periodic
solutions can be observed. Conditions

D12 > 1, D21 > 1, ε1ε2 < 0 (B13)

provide saddle type of points M1−4 and existence of equilib-

rium M5 with imaginary eigenvalues ±i

√
− ε1ε2(D12−1)(D21−1)

4D12D21
.

Because model (10) can be rewritten as a Hamiltonian, one
has a family of periodic orbits.
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