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Scaling of energy spreading in strongly nonlinear disordered lattices
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To characterize a destruction of Anderson localization by nonlinearity, we study the spreading behavior of
initially localized states in disordered, strongly nonlinear lattices. Due to chaotic nonlinear interaction of localized
linear or nonlinear modes, energy spreads nearly subdiffusively. Based on a phenomenological description by
virtue of a nonlinear diffusion equation, we establish a one-parameter scaling relation between the velocity of
spreading and the density, which is confirmed numerically. From this scaling it follows that for very low densities
the spreading slows down compared to the pure power law.
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I. INTRODUCTION

In linear, disordered, one-dimensional lattices, all eigen-
modes are exponentially localized due to Anderson localiza-
tion [1]. These models have been first suggested for disordered
electronic systems [2], but they are also applicable to a
wide range of wave phenomena (optical, acoustical, etc.) in
disordered media [3]. Localization effectively stops spreading
of energy in such situations.

By considering waves of large amplitudes, one faces
nonlinearity and meets the question whether the localization
is destroyed due to a nonlinear interaction of eigenmodes.
Although this question has been addressed numerically [4–7],
mathematically [8], and even experimentally in Bose-Einstein-
Condensates [9] and optical waveguides [10], a full un-
derstanding is still elusive. It is easier to understand how
nonlinearity destroys localization leading to thermalization
and self-transparency in short random lattices [11] than to
analyze asymptotic regimes at large times in long lattices.
The most striking effect observed in numerical studies is
a subdiffusive power-law spreading of energy, lasting until
maximally available integration times. Whether this spreading
is an asymptotic state, or transforms into a much weaker
logarithmic spreading suggested by some theoretical estimates
[8,12], or even stops, remains a challenging problem.

II. ENERGY SCALING

In this paper we attack the underlying spreading mecha-
nisms by utilizing scaling arguments. The concept of scal-
ing has been extremely successful in the understanding of
Anderson localization [13], as well as in descriptions of
nonequilibrium phenomena such as surface growth [14]. In this
paper we demonstrate that the spreading of energy in strongly
nonlinear disordered lattices satisfies scaling relations.

The starting point is a heuristic description of the spreading
by the nonlinear diffusion equation (NDE) [7]:

∂ρ

∂t
= D

∂

∂x

(
ρa ∂ρ

∂x

)
, with

∫
ρ dx = E. (1)

Here E is the total energy (which is conserved) and ρ

represents the energy density. Heuristically, the NDE describes
diffusion that appears solely due to nonlinearity; for the
nonlinear disordered lattices this can be attributed to a random
exchange of energy between modes due to their chaotization.

The NDE has a self-similar solution [15] describing asymptotic
subdiffusive spreading with the edge of excitation propagating
according to

X =
√

2
2 + a

a
Ea/(2+a)[D(t − t0)]1/(2+a) , (2)

where t0 accounts a time shift depending on the peculiarities
of the initial state. At the moment, it is not possible to derive
the NDE for a particular nonlinear disordered lattice, but one
can check if the scaling predicted by Eq. (2) holds. In other
words, one can check if a particular nonlinear lattice belongs
to a NDE-universality class. The main property of this class
is that dependencies on the total energy E and on time are
described by one-parameter a. This allows us to write the law
of edge propagation in a scaled form:

X

E
∼

(
t − t0

E2

)1/(2+a)

. (3)

Still, this expression contains an unknown, nonuniversal
constant t0. We get rid of it by considering the local inverse
velocity of the edge dt/dX, for which holds

1

X

dt

dX
∼

(
E

X

)−a

. (4)

We notice that on the right-hand side the mean density inside
the excitation edge w = E/X appears. This allows us to
rewrite and generalize (4) in the form of a one-parameter
scaling relation

a(w) = −d log 1
X

dt
dX

d log w
, (5)

where a dependence of the index a on the global density w

would indicate deviations from the pure power-law scaling
given in Eq. (3). Relations (2), (4), and (5) define the scaling
laws to be checked for particular systems; if they are satisfied,
then we say that the system belongs to an NDE-universality
class.

We apply the scaling relations (2), (4), and (5) to Hamilto-
nian lattices with strongly nonlinear coupling:

H =
∑

k

p2
k

2
+ Wω2

k

qκ
k

κ
+ β

λ
(qk+1 − qk)λ, (6)

with κ � 2, λ > 2 being the powers of the local and the
coupling potential, respectively. Random frequencies ωk of the
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kth oscillator are chosen to be independent random numbers
uniformly distributed on the interval (0,1). Such lattices with-
out local potential (W = 0) possess traveling compact waves
(compactons) [16]. With a regular local potential the com-
pactons are long-lived objects dominating the energy spreading
and making it nearly ballistic, while the presence of disorder
surpresses them and makes spreading subdiffusive, as will be
presented below. Parameter W describes the disorder strength,
whereas β governs the nonlinear coupling. However, in the
case κ �= λ, by applying a transformation qk → Wαβ−αqk ,
pk → Wλα/2β−κα/2pk , and H → Wλαβ−καH , with α =
1/(λ − κ), we can set parameters W and β to one. Thus, the
only relevant parameter is the total energy E. Hence, for κ �= λ,
varying the disorder strength W or the nonlinear strength β is
strictly equivalent to appropriate changes of the energy E in
this system.

For the special case κ = λ the system exhibits a scaling
invariance that eliminates the energy as free parameter. This is
seen from the invariance of the equations under the following
transformations:

q → q ′ = γ q, p → p′ = γ κ/2p,
(7)

t → t ′ = t/γ κ/2−1, E → E′ = γ κE.

Furthermore, we can replace qk → W−1/κqk and β → β/W

and finally end up at the Hamiltonian (6) with W = 1 and
λ = κ . Now the only parameter is β, which describes the
relative strength of the local and the coupling potentials.

The case κ = λ is special because here we can establish
an exact relation between the parameter of NDE a and the
nonlinearity index κ . Indeed, excluding γ from the scalings of
time and energy in (7), we obtain t ∼ E

2−κ
2κ . Comparing this

with the scaling t − t0 ∼ X2+aE−a that follows from Eq. (2),
we find a = κ−2

2κ
. (Note that we have not derived the NDE

from the Hamiltonian, but use solely scaling arguments to find
the exact correspondence between a and κ . Validity of the
approach has still to be checked numerically below.) From the
expression for a, we find the spreading law:

X ∼ (t − t0)
2κ

5κ−2 . (8)

For this lattice with homogeneous nonlinearity (in the sense
that local and coupling potentials have the same nonlinearity
index κ) the one-parameter scaling predictions (3), (4), and (5)
are trivially fulfilled with index a being independent on density
w, as the energy dependence follows from exact rescaling. For
lattices with nonhomogeneous nonlinearity λ �= κ the density
dependence (3), (4), and (5) is nontrivial.

III. NUMERICAL RESULTS

For the Hamiltonian (6), defining the local energy at
site k as

Ek = p2
k

2
+ Wω2

k

qκ
k

κ
+ β

2λ
[(qk+1 − qk)λ + (qk − qk−1)λ],

we can interpret it as the distribution ρ(k,t) = Ek . We compare
the time evolution of ρ with predictions of NDE. The
numerically obtained profiles of Ek(t) are depicted in Fig. 1.
The peculiar property of strongly nonlinear lattices of type (6)
is that the field has very sharp edges: one can estimate that
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FIG. 1. Energy profiles Ek for κ = 2 and λ = 4 of initially
localized states (at k = 512) for different times t = 104, 106, 108

(inner to outer, one specific disorder realization, E = 1).

the tail decays superexponentially (such as for compactons in
systems without disorder [16]). This corresponds well to the
property of the self-similar solution of the NDE of having a
sharp edge and allows us to compare predictions of the scaling
theory with the numerics for the lattices.

We start with testing the approach by applying extensive
numerical simulations [17] to the case κ = λ = 4, where
theory (8) predicts a = 1/4. Our main quantity of interest
is the time 
T (L) required to excite the next oscillator with
L already being excited. This quantity can then be interpreted
as the inverse velocity of the edge that enters Eqs. (4) and
(5), where the transition L → L + 1 implies dX = 1. We
defined an oscillator to be excited if Ek > 10−50. (Due to
the sharp edges of the states this is a reasonable, though
arbitrary, value; changing this threshold to, say, 10−20 or
10−100 produces similar results.) To obtain the mean value
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FIG. 2. (Color online) Excitation times 
T (L) (a) and partici-
pation number P (t − t0) (b) of spreading states in the Hamiltonian
lattice (6) with κ = λ = 4. Values t0 are adjusted to have a maximally
extended range of power-law behavior. The dotted lines correspond
to the scaling results a = (κ − 2)/(2κ) = 1/4 and have slopes 5/4
for 
T and 4/9 for P . The inset in (a) shows the instantaneous time
dependent exponent α from 
T ∼ Lα saturating at the expected
value α = 5/4. The inset in (b) shows the rescaled spreading due to
the scaling expectation P/(t − t0)4/9 versus t − t0.
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of 
T (L), we averaged, for each β, log(
T ) for each L

over disorder realizations. For a better visual display of the
excitation times on a logarithmic scale we also averaged
log 
T over neighboring sites L. The results are shown in
Fig. 2(a); at large L they are in perfect correspondence with
the theoretical prediction 
T ∼ L5/4.

We compare these results with a more traditional approach,
where the width of the field distribution is averaged over
realizations of disorder for fixed moments of time. We have
calculated two measures of the width: the squared mean
displacement (
k)2 and the participation number of the energy
distribution P , as already used in the literature [5,19,20].
However, both quantities behave identically in our numerical
simulations, hence we show only the participation number
exemplarily representing the spatial extent, defined as P −1 =∑

k(Ek/E)2. Because all of these quantities are measures for
the spatial extent, we have P ∼ 
k ∼ L ∼ X. Values of P

have been averaged over increasing time windows and disorder
realizations, the results are shown in Fig. 2(b). These time
evolutions fit Eq. (3) nicely. Hence, we have found the NDE
to reproduce the correct spreading behavior of this nonlinear
disordered lattice. Based on the assumption of the validity
of the NDE, we were able to calculate the correct spreading
exponent analytically. Note that no further assumptions or
parameter fits were required.

Although the two methods used—propagation times

T (L) and mean packet widths P (t) [or, equivalently, L(t)]—
appear to be nearly equivalent, the former has two clear
advantages. First, it does not possess an arbitrary parameter t0
as the time differences are calculated. The second, and more
important, advantage is that by fixing the system length L in
the averaging over disorder we in fact fix the characteristic
energy density w. On the contrary, by averaging the width at
a certain time we do not fix the energy density, as at a given
time the variations of the density in different realizations of
disorder may be enormous. For the model with κ = λ this is
not essential as the time scales with energy in a trivial manner.
For the nonhomogeneous Hamiltonians where κ �= λ, to be
considered below, this is crucial as one expects the properties
of the spreading to depend intrinsically on the density w, but
not explicitly on time.

Above we have checked the approach on the homogeneous
Hamiltonian model with κ = λ, where the scaling with the
energy is trivial. Now we apply our method to the mostly
nontrivial nonhomogeneous case κ �= λ, where the theory
based on the NDE predicts one-parameter scaling laws [(3),
(4), and (5)]. More precisely, we focus on the case κ = 2 and
λ = 4, which resembles the widely studied problem of the
discrete Anderson nonlinear Schrödinger equation (DANSE):
Its Hamiltonian in the eigenmode representation also possesses
a quadratic local disorder term and a nonlinear fourth-order
mode-to-mode coupling.

First, we investigated the excitation times 
T (L); the
results are shown in Fig. 3(a). After performing the scaling
according to (4), all the curves collapse to one, as seen in
Fig. 3(b). The same approach applied to the participation
number also leads to a collapse of data when the scaling
representation (3) is used (see Fig. 4). The collapse of data for
different energies proves numerically that the one-parameter
scaling suggested by Eqs. (4) and (5) works nicely for the
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FIG. 3. (Color online) (a) Excitation times 
T of spreading states
for several energies E = 0.05, . . . ,2. The results shown in this plot
are averaged over logarithm intervals on L (see text). (b) The rescaled
quantities log10(
T/L) versus − log10 w with w = E/L according
to Eq. (4); here the solid line is the slope a(w) of the fitting parabolic
curve according to Eq. (5).

strongly nonlinear lattice (6). The validity of this scaling means
that asymptotically the spreading in such systems is governed
solely by the average energy density w. This was assumed in
most of the previous works on this topic [5,20], but we present
here the first direct numerical evidence.

Figure 3(b) shows that within the studied range of two
decades of variations of the density, parameter a(w) (the slope
of the curve in Fig. 3) is not a constant, but a growing function
of inverse density. In particular, data in Fig. 3 can be well fitted
with a linear dependence as the simplest model

a(w) ≈ −0.3 − 1.5 log10 w, (9)

which corresponds to a parabolic fit for the dependence of
log10 
T/L on log10 w. This means that the spreading of
energy in the lattice is not a pure power law, but slows
down as the density decreases. In the intermediate range
of densities the parameter is close to a = 3, which means
that in this range the width of the wave packet spreads as
X ∼ t1/5, i.e., with approximately the same index as found
numerically for the nonlinear Schrödinger lattice with disorder
in Refs. [5,6]. However, for this model no numerical slowing
down of the spreading has been reported, although a recent
theoretical estimation in Ref. [12] gives a subpower-law
asymptotics log P ∼ log1/3 t . We stress that an application of
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FIG. 4. (Color online) (a): Participation number P of initially
localized states for several different energies E = 0.05, . . . ,4 (cf.
Fig. 3). (b) Rescaled quantities P/E versus (t − t0)/E2 according to
Eq. (3). The red (gray) line in (b) visualizes the analytic expectation
P/E ∼ X/E = 1/w obtained from Eqs. (4) and (9).
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the one-parameter scaling (5) with the empirical law (9) also
demonstrates a good agreement for the participation number,
as seen in Fig. 4 [compare the line in panel (b) with the
markers].

IV. CONCLUSION

In conclusion, we have studied subdiffusive spreading of
energy in Hamiltonian lattices with both linear and nonlinear
disorder and nonlinear nearest neighbor coupling. Our main
result is the one-parameter scaling relation, Eq. (5), which
relates the average velocity of spreading with the energy
density. This scaling relation is motivated by using the
nonlinear diffusion equation as a phenomenological model for
the macroscopic properties of spreading. We studied in details
two sets of exponents on the Hamiltonian lattice, κ = λ = 4
and κ = 2 , λ = 4. In the first case there is no nontrivial
dependence on the energy, which allowed us to find the
spreading index analytically and to confirm it numerically. This
agreement of analytical and numerical results is not surprising,
but still remarkable because it shows that indeed the NDE is
an appropriate framework in which to approach systems with
disorder and nonlinearity. The latter case of linear disorder

and nonlinear coupling is mostly nontrivial; here our approach
gave a density-dependent index a(w), that in a large range of
densities is close to a ≈ 3 but grows as density decreases in
the course of spreading. This dependence a(w) has not been
observed in previous works (e.g., in the DANSE model), and
we have found a first numerical indication of a deviation of
the spreading from the perfect subdiffusive power law here.

While we studied in detail the strongly nonlinear Hamil-
tonian lattices, it remains a challenge to extend the results
to lattices with linear coupling terms, e.g., on the nonlinear
disordered Schrödinger lattice. The main issue here is that
for the latter situations one cannot define a sharp edge of
the spreading wave packet; thus the calculation of the edge
velocity entering the scaling relation (5) is problematic. Further
studies on lattices of nonlinear oscillators coupled by a
nonlinearity of different order, e.g., κ = 4, λ = 6, are currently
pursued.
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