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Scaling properties of weak chaos in nonlinear disordered lattices
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We study the discrete nonlinear Schrodinger equation with a random potential in one dimension. It is
characterized by the length, the strength of the random potential, and the field density that determines the
effect of nonlinearity. Following the time evolution of the field and calculating the largest Lyapunov exponent,
the probability of the system to be regular is established numerically and found to be a scaling function of the
parameters. This property is used to calculate the asymptotic properties of the system in regimes beyond our

computational power.
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The nonlinear Schrédinger equation (NLSE), in absence of
a potential, in the continuum is an integrable problem [1]. It is
relevant for the description of Bose-Einstein condensates [2]
as well as for classical nonlinear optics and plasmas [3]. For
the linear Schrodinger equation with a random potential in one
dimension all the states are localized [4], as a manifestation
of Anderson localization [5]. It is natural to ask what is the
asymptotic behavior for the NLSE with a random potential,
namely, what is the outcome of the competition between
Anderson localization and nonlinearity. This question is
directly related to several experimental situations. For BEC the
nonlinear term in the NLSE models the interaction between the
atoms while the random potential may be generated by lasers
as in recent experiments [6]. In nonlinear optics the NLSE
adequately describes light propagation in a nonlinear medium,
where the randomness can be written with light that passes
trough a diffuser [7] or by manufacturing [8].

Here the exploration will be performed in the framework
of a discrete one-dimensional model [defined by (1)]. The
specific elementary question in this field is the following:
Will an initially localized wave packet spread to infinity
in the long time limit? Extensive numerical simulations [9]
(where although the full control of errors is impossible, one
argues that the average results are statistically meaningful)
exhibit subdiffusion, with the width of the wave packet
growing in time as #° with o ~ 1/6. On the other hand,
recently it was argued that eventually the spreading should
stop and the dynamics is eventually almost-periodic on a
kind of Kolmogorov-Arnol’d-Moser torus [10]. Rigorous
studies [11] lead to the conjecture that in the strong disorder
limit the spreading is at most logarithmic in time, excluding
subdiffusion as the asymptotic behavior. Nonrigorous results
based on perturbation theory extend this conjecture beyond
the regime of strong disorder with the help of a bound on the
remainder term of the perturbation series [12], but the times
available here at orders calculated so far turned out to be short
compared with numerical calculations where subdiffusion was
found. A major difficulty in the exploration of this problem
is that we do not know how far in space and time one
should go so that the result can be considered asymprotic. One
reason this problem is complicated is the fact that during the
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spreading the effective number of degrees of freedom increases
enhancing chaos, but their amplitude decreases suppressing
chaos. This motivated the present work, which is designed
to decide which of these competing effects wins. To address
this issue we develop here a scaling theory of weak chaos in
disordered nonlinear lattices, expecting it will be useful for
extending results beyond our computational ability. Scaling
approaches proved to be extremely powerful in equilibrium
and nonequilibrium statistical physics [13] and have been also
very successful in understanding Anderson localization [14].
In this letter a scaling theory for the probability distribution
that chaos or regularity occurs, based on the computation
of the largest Lyapunov exponent, is developed and tested
for relatively small systems which are within our numerical
power. Such a theory is expected to have predictive power
when extended to infinite size.

We study a nonlinear disordered medium described by the
discrete Anderson nonlinear Schrédinger equation (DANSE)
model for a complex field ¥, (¢):

dyn

T = e+ W+ Y)Y Y. (D)

i

This equation describes, in particular, an experimental setup
in [8] where effects of nonlinearity on light localization in a
disordered waveguide array have been studied. Without any
limitation of generality, by rescaling time we can set the hop-
pingtobe J = (1 + W)~! while ¢, are independent identically
uniformly distributed in (—JW,JW). With this rescaling the
eigenvalues E of the linear part satisfy |E| < 1 4 (1 + W)~
Hence, for strong disorder (large W, that is the focus of
our present work), the energies of the corresponding linear
equation are practically in the interval (—1,1). Measuring the
length scale of the eigenstates of the linear problem p by the
inverse participation number p~' = >, |[¥|*, we find that
w =1+ W! for large W. By scaling the amplitude of the
field we set the coefficient of the nonlinear term in (1) to one
and adopt periodic boundary conditions on a ring of length L.
While DANSE model has two integrals of motion, the norm
ofthefield N =), |¥, | and the total energy, only the norm
is important here; and in our treatment we do not control the
energy which is always chosen to be close to zero.
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FIG. 1. (Color online) Distributions of the largest Lyapunov
exponent for L = 16 and W = 10 and three values of the field density.
For p = 0.0003 all the realizations are regular, for p = 0.1 all are
chaotic, but for p = 0.01 part of realizations are chaotic. The vertical
dashed line indicates the border A = 5 x 107°.

Our goal in this letter is to study properties of the dynamics
as a function of all relevant parameters: disorder W, norm N,
and lattice length L. Equivalently, we introduce the density
p = N/L and consider the dependence on two intensive
parameters W and p and on the extensive parameter L.

We characterize the dynamics by means of the largest
Lyapunov exponent. For a particular realization of disorder
{e,}, we followed a dynamical solution of Eq. (1) starting with
a uniform initial field, and for this trajectory directly calculated
the largest Lyapunov exponent A by a standard method. This
calculation was repeated for a large number of realizations
of disorder and the parameters above. As a result, we can
construct a distribution of largest Lyapunov exponents over
the realizations of disorder for given macroscopic parameters
W, p, and L. Several examples of these distributions are
presented in Fig. 1. We can see here that for very small
densities p, where the nonlinearity in DANSE is very small,
all the Lyapunov exponents are small and close to ~10~°. For
a regular dynamics the largest Lyapunov exponent should be
exactly zero, but numerically, with a finite integrating time
(Timax = 10° in our numerical simulation; control runs with
Tmax = 107 showed no significant difference) such a small
value essentially indicates regular (quasiperiodic) dynamics
of the field. Contrary to this, for large densities we observe
Lyapunov exponents in the range 0.01-0.1, which indicates
chaotic dynamics. For intermediate densities we see that
for some realizations of disorder the dynamics is regular
(A &~ 107°), while for other realizations much larger exponents
are observed, indicating weak chaos. As we want to perform
a statistical analysis rather than going into details of particular
dynamics for particular realizations of disorder, we adopt
the following operational definition to distinguish between
regularity and chaos: All runs with A < 5 x 107% are regular
ones, and all runs with A > 5 x 10~° are chaotic ones. We
stress that the threshold value used is determined solely by the
finite integration time; increasing this time would allow us to
use a smaller threshold (cf. [10]). In this way we directly define
the quantities of our main interest in this letter, a probability
that chaos occurs P, and a probability that regular dynamics
occurs P =1 — Py,
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FIG. 2. (Color online) The values of P(p,W,L) for W = 10 and
different L, as functions of p. For the same density p the probability
of regularity decreases with L.

As explained above, we have determined the probability of
regular dynamics P(p, W, L) as a function of parameters of the
model. Typical profiles of P for fixed disorder W and different
values of p and L are depicted in Fig. 2. One can see a typical
sigmoidal function with limits P — 1 forp - O0and P — 0
for p — oo.

We first concentrate on the dependence on the extensive
parameter L. According to Fig. 2, for the fixed W and
p, the probability that regularity occurs decreases with the
length L. To understand this, let us consider a lattice of large
length L as composed of (still large) subsystems of lengths
Ly and relate the probability that regularity occurs on the
large lattice P(p,W,L) to the corresponding probabilities for
smaller lattices P(p,W,Ly). It is reasonable to assume that to
observe regularity in the whole lattice we need to have all the
subsystems regular, because any one chaotic subsystem will
destroy regularity. This immediately leads us to the relation

P(p,W,L) = [P(p,W,Lo)]"/". 2

Equation (2) implicitly assumes that chaos appears not due to
an interaction between the subsystems, but in each subsystem
separately. This appears reasonable if the interaction between
the subsystems is small, that is, if their lengths are large
compared to the length scale associated with localization in
the linear problem: Ly > u. On these scales the various
subsystems are statistically independent. This is the content
of (2). It motivates the definition of the L-independent
quantity:

R(p,W) = [P(p,W,L)]"*". 3)

We check the scaling relations (2) and (3) in Figs. 3 and see that
the data for lattices of sizes 16 < L < 128 collapse, so that R
is independent of L. Remarkably, a short lattice with L = 8
obeys the scaling for large disorders but deviates significantly
for small disorders W < 10; this corresponds to the expected
validity condition that L should be larger than p (the spatial
size of eigenfunctions).

The scaling relation (2) describes dependence on the
extensive parameter L (and will allow us to extrapolate
results to long lattices beyond our numerical resources), so
we can concentrate on considering dependencies on intensive
parameters W and p. Therefore, below we fix L = Ly = 16
and study the scaling properties of Py(p,W) = P(p,W,Ly).
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FIG. 3. (Color online) Rescaled according to (3) probabilities
of regularity for different lattice sizes. (a) Fixed disorder W = 10,
dependence on density (the same data as in Fig. 2); (b) fixed density
p = 0.01, dependence on the disorder.

As this quantity is roughly a sigmoidal function of p
[see Fig. 4(a)], it is convenient to perform a transformation to

anew quantity Q(p,W)as Q = ; L ‘;,0. In this representation,

_ 0w 1
1+ 000, W) ~ 1+0 (W)

so that the asymptotic behaviors Py — 1 as Q — oo
and Pp - 0 as Q — 0 can be easily visualized as in
Fig. 4(b).

The next crucial observation is that the function Q(p, W) is
not an arbitrary function of p and W, but it can be written in a
scaling form,

4)

0

= iy (i5) ®
= wel \we )
where ¢(x) is as usual a singular function at its limits
q(x) ~ c1x~¢ for small x, while g(x) ~ c,x™" for large x.
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FIG. 4. (Color online) Profiles of Py(p,W) vs p for different
values of W (a) and the same data in terms of Q(p, W) (b).
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FIG. 5. (Color online) The same data as in Fig. 4 but in
scaled coordinates. The black dashed and red dotted lines, showing
asymptotics for small and large arguments of ¢, have slopes ¢ = 9/4
and n =5.2.

These are found from the straight lines in Fig. 5. The data
of Fig. 4 collapses to one curve, as shown in Fig. 5. This is
the numerical justification for (5). It also provides the values
of the exponents @« = 8 =1.75, { ®9/4 =2.25, n =~ 5.2,
1 ~25%x 1077, and c; ~ 1.8 x 10718,

The existence of the scaling function enables us to analyze
the behavior at various limits. Most interesting is the limit of
small densities where Q is large (see Fig. 5) and probability
of regular behavior is close to one; correspondingly, the
probability Py, that chaos occurs is small. Using the general
relation following from (2), (4), and (5),

il P\
P(p.W.L =[1 we ‘(—)] v
(p ) Wi (e

we obtain for large g and P, small

P =~ —log(l — Pay) = —log P = LL7' Wog™! (%) .
Using the asymptotics g(x) ~ c1x~° we get [15]
Py~ LLy' W9 pt et (6)

Now let us assume that we consider the states with the same
fixed norm N on lattices of different length L. Then p = N/L
and from Eq. (6) it follows

LIS NEwed=5) L—5/4 N9/

Pen c1Lo T e LoW3s/16” @
This quantity, as expected, grows with the norm N and
decreases with the disorder W. We see that because ¢ > 1,
probability that chaos occurs in large lattices at fixed norm
tends to zero. This result may have implications for the
problem of spreading of an initially local wave packet in
large lattices. In this setup the norm of the field is conserved,
and the effective density decreases in the course of the
spreading. If one assumes that the dynamics follows the
scaling above (although we established it for a special setup of
lattices of finite lengths with periodic boundary conditions),
and if one assumes that chaos is essential for spreading,
then one concludes that the spreading should eventually stop
as the probability that chaos occurs eventually vanishes. To
estimate, according to arguments above, at which length we
can expect the spreading to stop, we have to start with large
densities (where the probability to observe regular dynamics
is negligible) and to estimate, at what lattice size Lp,x
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chaos becomes extinct. Assume that this happens when the
probability that chaos occurs reaches some small level D.
Substituting P, ~ D in Eq. (7), we obtain for the following
estimate for Lax:

Liax = NETW™*(DLocy) 7%
Substituting DLy &~ 1 and the constants found, we obtain
Lnax(N,W) 2 2 x 10° x N?Sw=7/4, (8)

This is our estimation for the maximal spreading of a wave
packet of norm N in a lattice with disorder W. Taking values
typical for the numerical experiments [9], namely, N = 1, 1 <
W < 10, we obtain from (8) L,y in the range from 3 x 10* to
2 x 10°. This explains why in the simulations, where typically
values L =~ 100 are achieved, no saturation of the power law
spreading is observed.

In conclusion, we established a full scaling theory for
the probability that chaos occurs in disordered nonlin-
ear Schrodinger lattice: The scaling with the extensive
parameter—lattice length—is given by (3), while the scaling
dependence on intensive parameters (disorder and density)
is given by Eq. (5). Existence of such a scaling function is
natural since the limits of vanishing disorder and of vanishing
nonlinearity are singular ones. The found scaling indices
indicate that for long lattices with the same norm chaos
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extincts and regularity prevails. Furthermore, we use the
system presented here as a model for the chaotic region of
high density typically observed at the initial stage of evolution
in all numerical experiments [9]. In this context the scaling
with the length allows us to estimate the maximal length that
could be reached by spreading from initially local chaotic
wave packet. We stress here that the scaling properties of the
intermediate time spreading itself (cf. [16]) do not follow from
the scaling properties of weak chaos established above; finding
the former for the DANSE model (1) remains a challenge for
future studies. Remarkably, the scaling relations established
include large and small constants, which explains previous
observations of energy spreading over extremely large time
scales. Nevertheless, by applying the scaling we were able to
estimate the final stages of evolution (hardly achievable with
current computational abilities) from the studies of relatively
small lattices.

A.P. thanks Lewiner Institute for Theoretical Physics
(Technion) for hospitality. This work was partly supported by
the Israel Science Foundation (ISF), the U.S.-Israel Binational
Science Foundation (BSF), the Minerva Center of Nonlinear
Physics of Complex Systems, and the Shlomo Kaplansky
academic chair. We thank S. Aubry, D. Shepelyansky,
B. Shapiro, A. Tomin, M. Mulansky, and Y. Krivolapov for
useful discussions.

[1] C. Sulem and P.-L. Sulem, The Nonlinear Schrodinger Equation
(Springer, New York, 1999).

[2] E. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999); L. Pitaevskii and S. Stringari, Bose-
Einstein Condensation (Oxford University Press, Oxford, 2003).

[3] L. Berge, Phys. Rep. 303, 260 (1998).

[4] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993);
P. Sheng, Introduction to Wave Scattering, Localization and
Mesoscopic Phenomena (Springer, Berlin, 2006).

[5] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[6] T. Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J. Arlt,
K. Sacha, J. Zakrzewski, and M. Lewenstein, Phys. Rev. Lett.
95, 170411 (2005); C. Fort, L. Fallani, V. Guarrera, J. E. Lye,
M. Modugno, D. S. Wiersma, and M. Inguscio, ibid. 95, 170410
(2005); J. Billy et al., Nature (London) 453, 891 (2008).

[7] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature
(London) 446, 52 (2007).

[8] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N.
Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906
(2008).

[9] A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100,
094101 (2008); S. Flach, D. O. Krimer, and C. Skokos, ibid. 102,
024101 (2009); T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer,
Ch. Skokos, and S. Flach, Europhys. Lett. 91, 30001 (2010);
M. Mulansky and A. Pikovsky, ibid. 90, 10015 (2010).

[10] M. Johansson, G. Kopidakis, and S. Aubry, Europhys. Lett. 91,
50001 (2010).

[11] W.-M. Wang and Z. Zhang, J. Stat. Phys. 134, 953 (2009).

[12] Y. Krivolapov, S. Fishman, and A. Soffer, New J. Phys. 12,
063035 (2010).

[13]J. L. Cardy (editor), Scaling and Renormalization in
Statistical Physics (Cambridge University Press, Cambridge,
1996).

[14] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979); F. Evers and
A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

[15] Related estimates have been discussed by D. Basko, e-print
arXiv:1005.5033v1.

[16] M. Mulansky, K. Ahnert, and A. Pikovsky, Phys. Rev. E 83,
026205 (2011).

025201-4


http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1088/0034-4885/56/12/001
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.95.170411
http://dx.doi.org/10.1103/PhysRevLett.95.170411
http://dx.doi.org/10.1103/PhysRevLett.95.170410
http://dx.doi.org/10.1103/PhysRevLett.95.170410
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.013906
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1209/0295-5075/91/30001
http://dx.doi.org/10.1209/0295-5075/91/30001
http://dx.doi.org/10.1209/0295-5075/90/10015
http://dx.doi.org/10.1209/0295-5075/91/50001
http://dx.doi.org/10.1209/0295-5075/91/50001
http://dx.doi.org/10.1007/s10955-008-9649-1
http://dx.doi.org/10.1088/1367-2630/12/6/063035
http://dx.doi.org/10.1088/1367-2630/12/6/063035
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://arXiv.org/abs/arXiv:1005.5033v1
http://dx.doi.org/10.1103/PhysRevE.83.026205
http://dx.doi.org/10.1103/PhysRevE.83.026205

