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Dynamics of multi-frequency oscillator ensembles with resonant coupling

S. Lück, A. Pikovsky ∗

Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 April 2011
Received in revised form 8 June 2011
Accepted 8 June 2011
Available online 12 June 2011
Communicated by C.R. Doering

Keywords:
Oscillator populations
Kuramoto model
Resonant interaction

We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting
from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation,
where the natural frequencies of two interacting subpopulations are in relation 2 : 1. Depending on the
parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only
one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the
dynamics based on the Watanabe–Strogatz approach is developed.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Models of coupled autonomous oscillators are used to describe
synchronization phenomena [1,2] appearing in many physical [3–
5] and biological [6–9] systems. In the case of a weak coupling,
a phase model description is appropriate, leading to the famous
Kuramoto model [10,11] and its modifications [12,13]. One of the
main assumptions behind the derivation of these models is that
the oscillators are in resonance, i.e. their frequencies are close to
each other (even when a bimodal distribution of frequencies is
considered (see [14,15] and references there), one assumes that
the distance between the peaks is small). Recently, we consid-
ered ensembles of oscillators consisting of non-resonantly coupled
groups [16], i.e. those with frequencies that are far from each other
and far from resonances.

In this Letter we study synchronization effects in ensembles
where different groups of oscillators are in a non-trivial reso-
nance relation 2 : 1. First, we derive general equations describing
these interacting subpopulations in the phase approximation. Then
we demonstrate numerically regimes of complete and partial syn-
chrony (in the latter case one subpopulation is synchronized while
the other not). Furthermore, we develop a theory based on the
Watanabe–Strogatz approach [17–21] that allows one a description
in terms of dynamical equations for the order parameters.

2. Basic model

While typically one considers ensembles of oscillators with
close frequencies that interact resonantly [11], here we focus on
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the two populations having natural frequencies ω and Ω = 2ω.
Therefore, we spend more space than usual describing the deriva-
tion of the phase model. We start with two coupled van der Pol
oscillators

ẍ − μ1
(
1 − x2)ẋ + ω2x = f1(x, ẋ, y, ẏ),

ÿ − μ2
(
1 − y2) ẏ + Ω2 y = f2(x, ẋ, y, ẏ), (1)

and following a standard procedure write the averaged equations
for the slow varying complex amplitudes A(t) = e−iωt(x − iẋ/ω),
B(t) = e−iΩt(x − iẋ/Ω):

Ȧ = μ1

2

(
1 − |A|2/4

)
A − i

ω

〈
f1(x, ẋ, y, ẏ)e−iωt 〉,

Ḃ = μ2

2

(
1 − |B|2/4

)
B − i

Ω

〈
f2(x, ẋ, y, ẏ)e−iΩt 〉.

The interacting terms that survive the averaging are those with
dependence f1 ∼ eiωt and f2 ∼ eiΩt . Thus, due to the resonance
condition 2ω = Ω , f1 should contain a product of x and y, while
f2 should contain the square of x. Therefore the simplest poly-
nomial terms that yield a coupling between two oscillators are
f1 = c1xy + c2 ẋy + c3xẏ + c4 ẋ ẏ and f2 = d1x2 + d2 ẋx + d3 ẋ2. Cor-
respondingly, the averaged equations can be written as

Ȧ = μ1

2

(
1 − |A|2/4

)
A + σ1eiα1 A∗B,

Ḃ = μ2

2

(
1 − |B|2/4

)
B + σ2eiα2 A2,

with some complex coupling constants σ1,2eiα1,2 that can be ex-
pressed in terms of constants c1−4,d1−3. As the next step, we use
smallness of σ1,2 compared to μ1,2, so that the deviations of the
amplitudes |A|, |B| from the limit cycle values |A| = |B| = 2 are
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Fig. 1. (a) Phases of coupled ensembles (2) as functions of time for γ = 2.8, N = 200, and μ = 0.5 and the corresponding evolution of the generalized order parameter (b).
In (a) red full lines are φk (only 10 phases from the population are shown for clarity) and blue dashed lines are ψk . In (b) red full lines, blue dashed lines and green dotted
lines correspond to j = 1,2,3. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this Letter.)
small. Then, substituting A = 2eiφ(t) and B = 2eiψ(t) , we obtain for
the phase dynamics

φ̇ = 2σ1 sin(ψ − 2φ + α1),

ψ̇ = 2σ2 sin(2φ − ψ + α2).

By shifting one of the phases ψ = ψ ′ − α1 and rescaling the time
variable 2(σ1 + σ2)t = t′ we can reduce the dynamics to a system
with two parameters μ = σ1/(σ1 + σ2) and γ = α1 + α2 only (we
use the same letters for new variables)

dφ

dt
= μ sin(ψ − 2φ),

dψ

dt
= (1 − μ) sin(2φ − ψ + γ ).

These equations describe two coupled phase oscillators φ and ψ

with a relative coupling strength μ ∈ [0,1]. Because of symme-
try φ,ψ,γ → −φ,−ψ,−γ we vary the phase shift in the range
γ ∈ [0,π ]. The parameters μ and γ are functions of the coupling
terms in Eqs. (1).

Now we generalize to ensembles of oscillators, assuming that
each unit in a population with single frequency ω interacts with
every unit in a population with double frequency Ω = 2ω:

dφk

dt
= μ

NΩ

NΩ∑
j=1

sin(ψ j − 2φk),

dψk

dt
= 1 − μ

Nω

Nω∑
j=1

sin(2φ j − ψk + γ ), (2)

here Nω , NΩ are the sizes of subpopulations. Eqs. (2) describe the
basic model that we will investigate in the following. It consists
of two groups of oscillators with a frequency ratio 2:1. Each group
is composed of identical oscillators. One oscillator of a group is
coupled to all oscillators of the other group, and vice verse. We
assume that there is no interaction within one group.

Before proceeding to the analysis of the basic model, we discuss
its possible realistic implementations. One possible experimen-
tal realization is with ensembles of micromechanical oscillators.
Collective effects in such ensembles have been recently studied
in [22]. The basic experiments performed in [23,24] have demon-
strated that with an optical feedback nanomechanical cantilever-
type oscillators become self-excited, and are described by equa-
tions of type (1). Frequency of the oscillations is governed by the
geometrical properties of the cantilever, and nanomechanical units
having resonant frequencies in ratio 2:1 can be produced. The cou-
pling between the oscillators may be provided through the optical
feedback, which is quite flexible and allows one to realize different
types of coupling both inside each population as well as between
the different populations of oscillators. Another possible realization
is with coupled electrochemical oscillators; experiments with large
arrays are performed in labs of J. Hudson and I. Kiss [25–27]. An
experimental setup described in these papers consists of many (up
to 64) oscillating cells parameters of which, in particular their fre-
quencies, can be well controlled. The coupling is implemented via
external electrical circuits which allow for a good controllability of
the coupling direction and strength.

We would like to stress that we consider the system of coupled
populations of oscillators (1) not in its full generality; our main
simplifying assumptions are (i) exact resonance between frequen-
cies and (ii) absence of coupling within each group. We expect
that if both effects are small, they would only slightly modify the
results below. On the other hand, a full study in the large range of
many parameters goes beyond the scope of this Letter (this study
is in progress and will be reported elsewhere). Noteworthy, in the
possible experimental situations described above the coupling and
the frequency detuning are well controlled, so that conditions (i)
and (ii) may be realized approximately. In other situations, where
the coupling is due to intrinsic mechanical forces like in recent ex-
periments with mechanical phase oscillators [28], the interaction
follows from the total Lagrangian and can be hardly controlled.

3. Dynamical regimes and their characterization

We first present numerical results of simulations of ensem-
ble (2), setting the relative coupling strength μ = 0.5 and the
number of oscillators to be equal in each group NΩ = Nω = N .
Our main attention here is to the dependence of the dynamics on
the phase shift γ and on different initial conditions.

We illustrate a non-trivial regime of the interaction of two
populations in Fig. 1. Here, for N = 200 and γ = 2.8, by integrat-
ing Eqs. (2) we observe that single-frequency oscillators (φk , blue
dashed curves) form two clusters that differ by π , while double-
frequency oscillators (ψk , red full curves) remain distributed in
some range of phases.

To characterize the synchronization properties and the cluster-
ing, we adopt the Daido generalized order parameters [12,29,30],
calculated separately for double- and single-frequency ensembles:

Z j(t) = 1

Nω

Nω∑
k=1

exp
[
i jφk(t)

]
,

Y j(t) = 1

NΩ

NΩ∑
k=1

exp
[
i jψk(t)

]
. (3)

The physical meaning of these quantities is clear from considering
the case of large ensembles, then it follows from (3) that Z j, Y j
are the j-th Fourier modes of the distributions of the phases.
While the usual Kuramoto order parameters Z1, Y1 are suitable for
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Fig. 2. Variations of the order parameter |Z j(γ )|, |Y j(γ )| for NΩ = Nω = 200, μ = 0.5 in dependence on γ . Here the initial distribution is a uniform one over half of the
phase circle: 0 < φk,ψk < π .

Fig. 3. The same as in Fig. 2, but with a different initial condition: The oscillators were initially transformed according to the WS theory (see Eq. (4)).
characterization of distributions having a single maximum (single
clusters), the second order parameters Z2, Y2 allow us to reveal
2-cluster states (distributions with two humps with the phase
difference π ) – at these states these parameters have absolute
value one, while the Kuramoto parameters Z1, Y1 vanish. Similarly,
Z3, Y3 are suitable for revealing an existence of three clusters with
phase shift 2π

3 (or, more generally, three-hump distributions).
In Fig. 1(b) the evolution of the order parameters for the dy-

namics depicted in Fig. 1(a) is shown. After a transient time in-
terval, one can see that |Z2| = 1 while |Z1| < 1 and |Z3| < 1, as
expected. We note here that in the case |Z2| = 1, the exact values
of order parameters |Z1,3| are irrelevant as they characterize the
partition between two clusters seen in Fig. 1(a). As these clusters
differ by π , this partition has no effect on the dynamics, where
only the values 2φk entry (cf. Eq. (2)). The variations of the order
parameters |Y j |, j = 1,2,3, characterize the oscillating distribution
of the phases of the double-frequency oscillators.

Next, we want to characterize the dynamics of the order pa-
rameters in dependence on the parameter γ . Therefore, after a
certain transient time we calculated the minimal and maximal val-
ues of the amplitudes of the order parameters in course of their
evolution. Hence, a finite interval between the maximum and the
minimum characterizes a range of variations of the order param-
eter: e.g., for the regime presented in Fig. 1, variations of |Y j | are
finite while there is no variations in |Z j |.

We have found that dynamical regimes strongly depend on
initial conditions. In Figs. 2, 3 we show the variations of the or-
der parameters for two sets of initial conditions: in Fig. 2 both
phases are uniformly distributed in the interval [0,π); in another
set Fig. 3 the initial conditions are chosen specially, according to
the theory we develop below in Section 4. As discussed above,
the most relevant are the data for Y1 and Z2, while values of Z1,
Z3 giving a partition between subclusters of single-phase oscilla-
tors are irrelevant for the dynamics. For 0 < γ < γc1 ≈ 2.094 both
these order parameters are one, what means that in both subpop-
ulations full synchrony establishes. For γc1 < γ < π the order pa-
rameter |Y1| < 1 what means asynchrony in the double-frequency
subpopulation. For initial conditions in Fig. 3 the single-frequency
subpopulation is synchronized in this range, while for the setup
of Fig. 2 the single-frequency population is synchronous up to
γc2 ≈ 2.98 and asynchronous for γ > γc2. Thus, the coupled en-
sembles demonstrate regimes of full synchrony for γ < γc1, partial
synchrony for γc1 < γ < γc2 and asynchrony (unless special initial
conditions are chosen) for γc2 < γ < π .

To reveal the type of dynamics in regimes of partial synchrony
and asynchrony, we show in Fig. 4 the two-dimensional projections
of trajectories on the planes of main order parameters. One can see
that in both cases the dynamics is two-frequency quasiperiodic;
this is also confirmed by calculations of Poincaré maps, on which
the attractor forms one-dimensional lines.

4. Watanabe–Strogatz ansatz

In this section we apply the WS ansatz allowing us to describe
the system of coupled phase oscillators with a few global variables.
In this way one is able to analyze such systems analytically. We
begin with a sketch of the WS theory according to [21], for an
original formulation see [17,18]. One starts with an ensemble of N
identical phase oscillators with frequencies ω(t) driven by a force
H(t) according to

ϕ̇k = ω(t) + Im
[

H(t)e−iϕk
]
, k = 1, . . . , N > 3,

and performs a transformation to new microscopic variables ϑk
and global variables z, ζ (z is complex, ζ is real) according to

eiϕk = z + ei(ϑk+ζ )

∗ i(ϑ +ζ )
(4)
z e k + 1
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Fig. 4. Projections of the dynamical regimes on the planes of order parameters, for N = 200 and μ = 0.5. (a) γ = 2.8, here |Z2| = 1 (blue circle) while Y1 varies in some
range (red curve). (b), (c) For γ = 3.08 both order parameters vary quasiperiodically. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this Letter.)
with additional conditions
∑

eiϑk = 0 and Re(
∑

ei2ϑk ) = 0. Then,
the new microscopic phases ϑk are constants of motions provided
the macroscopic variables z, ζ satisfy the WS equations

dz

dt
= iω(t) + 1

2

(
H(t) − z2 H∗(t)

)
,

dζ

dt
= ω(t) + Im

(
z∗H(t)

)
.

As discussed in [21], the complex variable z is roughly proportional
(but not exactly equal) to the Kuramoto order parameter of the
population, while ζ is a shift between individual phases and the
phase of z. Indeed, from the transformation (4) it follows that

〈
eiφ 〉 = 1

N

N∑
k=1

z + ei(ϑk+ζ )

1 + z∗ei(ϑk+ζ )
= 〈

eiφ 〉
(z, ζ,ϑk). (5)

Only in the case of a uniform distribution of constants ϑk on the
interval [0,2π) and in the thermodynamic limit N → ∞, the vari-
able z coincides with the Kuramoto order parameter, because the
dependence on ζ and ϑk in (5) disappears and z = 〈eiϕ〉.

To apply the WS theory to our system (2) we perform a trans-
formation 2φk = θk and rewrite the system as

θ̇k = 2μ
〈
sin(ψ j − θk)

〉 = 2μ Im
(
Y1e−iθk

)
,

ψ̇k = (1 − μ)
〈
sin(θ j − ψk + γ )

〉 = (1 − μ) Im
(

Z2e−iψk eiγ )
. (6)

Now we are able to apply the WS transform with two sets of WS
variables z1,2, ζ1,2, for subpopulations of oscillations having single
and double frequencies, correspondingly. As discussed above, the
consideration extremely simplifies in the case of a uniform dis-
tribution of the corresponding constants of motion ϑk and in the
thermodynamic limit, where a simple representation of the order
parameters via the WS variables holds:

z1 = Z2 and z2 = Y1. (7)

In this case, the closed WS system reads

dz1

dt
= μ

(
z2 − z2

1z∗
2

)
,

dz2

dt
= (1 − μ)

2

(
z1eiγ − z2

2z∗
1e−iγ )

. (8)

With introduction of amplitudes ρ1,2 = |z1,2| and the phase differ-
ence Ψ = arg(z2) − arg(z1) we obtain a three-dimensional system
ρ̇1 = μ
(
1 − ρ2

1

)
ρ2 cos(Ψ ),

ρ̇2 = 1

2
(1 − μ)ρ1

(
1 − ρ2

2

)
cos(Ψ − γ ),

Ψ̇ = μ − 1

2
ρ1

1 + ρ2
2

ρ2
sin(Ψ − γ ) − μ

1 + ρ2
1

ρ1
ρ2 sinΨ. (9)

We first discuss the steady states in system (9) and their stabil-
ity. The steady state corresponding to a full synchrony is

ρ
(0)
1 = ρ

(0)
2 = 1, tanΨ (0) = (μ − 1) sinγ

(μ − 1) cosγ − 2μ
. (10)

It is stable if cosγ > max(
μ−1
2μ ,

2μ
μ−1 ). (There is another state with

Ψ = Ψ (0) + π which is unstable.)
Two stable steady states with partial synchrony are possible.

For parameter values −1 < cosγ <
μ−1
2μ ;μ > 1/3 the state

ρ
(1)
1 = 1, ρ

(1)
2 =

√
μ − 1

4μ cosγ + 1 − μ
, Ψ (1) = −π/2 + γ

is stable while for −1 < cosγ <
2μ

μ−1 ;μ < 1/3 another state

ρ
(2)
2 = 1, ρ

(2)
1 =

√
μ

(μ − 1) cosγ − μ
, Ψ (2) = π/2

is stable. The fully asynchronous state ρ1 = ρ2 = 0 is unstable for
γ < π .

The special case γ = π deserves a separate analysis. In this case
the dynamics is described by equations

ρ̇1 = μ
(
1 − ρ2

1

)
ρ2 cosΨ, (11)

ρ̇2 = 1

2
(1 − μ)ρ1

(
1 − ρ2

2

)
cosΨ, (12)

Ψ̇ =
(

1 − μ

2
ρ1

1 + ρ2
2

ρ2
− μ

1 + ρ2
1

ρ1
ρ2

)
sinΨ. (13)

One can see that this system has two integrals. One is obtained
by dividing (11) and (12) and integration; another one is obtained
by first using the first integral to express ρ2(ρ1), and then divid-
ing (11) and (13) with subsequent integration. Thus, the resulting
dynamics is conservative and periodic.

The analytical results above explain Fig. 3, where the initial
conditions have been chosen according to Eq. (4) with a uni-
form distribution of the constants ϑk . In Fig. 3 one observes a
regime of full synchrony corresponding to steady state ρ

(0)
,Ψ (0)
1,2
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for γ < γc1 = 2π/3 and the steady state ρ
(1)
1,2,Ψ

(1) for γ > 2π/3,
in according with relations above and μ = 1/2. For γ = π one ob-
serves oscillations of the order parameters.

In order to explain Fig. 2 we have to go beyond the assump-
tion used at the derivation of (8), namely of the uniform distri-
bution of constants ϑk and of thermodynamic limit. In general
case, instead of (7) we have to use (5) for Z2 = Z2(z1, ζ1, ϑ

(1)

k )

and Y1 = Y1(z2, ζ2, ϑ
(2)

k ). Now the full system of equations is

ż1 = μ
(
Y1 − z2

1Y ∗
1

)
,

ζ̇1 = 2μ Im
(
z∗

1Y1(t)
)
,

ż2 = 1 − μ

2

(
Z2 − z2

2 Z∗
2

)
,

ζ̇2 = (1 − μ) Im
(
z∗

2 Z2
)
. (14)

The fully synchronous state where both populations are completely
synchronized is the same as in system (9), because as one can see
from (5), for |z| = 1 we again have 〈eiφ〉 = z, but all other states
are generally different. In particular, partially synchronous regimes
are not steady states but quasiperiodic ones as in Figs. 1, 2, 4. We
discuss their stability in the next section.

5. Stability of partially synchronous state

The WS theory above allows us to describe analytically the
transition full synchrony → partial synchrony as loss of stability of
the fully synchronous state (10), but the analysis of the transition
from partial synchrony (where one ensemble forms a synchronous
cluster while other one is asynchronous) is more involved as it
deals with quasiperiodic states. Therefore we apply here a direct
numerical method for determining stability of clusters – calcula-
tion of the so-called evaporation Lyapunov exponents [31,32]. We
assume, according to numerics, that the single-frequency oscilla-
tors are different, while the double-frequency oscillators form a
synchronous cluster, i.e. in Eq. (2) ψ1 = ψ2 = · · · = ψNΩ = ψ̃ . Then,
in the limit NΩ → ∞, the deviation of one element from the clus-
ter is governed by

d

dt
δψ = δψ

∂

∂ψ̃

1 − μ

Nω

Nω∑
j=1

sin(2φ j − ψ̃ + γ ).

Thus, the growth rate of δψ is determined by the evaporation ex-
ponent

λev =
〈

∂

∂ψ̃

1 − μ

Nω

Nω∑
j=1

sin(2φ j − ψ̃ + γ )

〉
.

The results of calculation of this exponent are presented in Fig. 5.
One can see that the synchronized cluster of double-frequency
oscillators is strongly stable for γ < 3.1 while for γ > 3.1 the
evaporation exponent vanishes. This means marginal stability of
the synchronized state, what is consistent with the observation of
non-synchronous dynamics for appropriate initial conditions.

6. Conclusion

In this Letter we have studied a novel model of resonantly inter-
acting multi-frequency oscillator populations. As the simplest setup
we have chosen a situation where oscillators are divided in two
subpopulations: some have natural frequency ω while other ones
have the double frequency Ω = 2ω. Such a setup can be easily
generalized to a general case of two subpopulations in a resonance
Ω : ω = m : n. Moreover, one could study many subpopulations
having resonantly related frequencies ω1 : ω2 : ω3 : · · · = m1 : m2 :
Fig. 5. Evaporation exponent calculated for Nω = 200, μ = 0.5, in dependence on γ .
Initial conditions: phases φk uniformly distributed in [0,π). The inset shows region
around γ = π . For γ < 3.05 the exponent is large and negative, while for γ > 3.1
the exponent vanishes.

m3 : · · ·, the generalization of Eqs. (2) to this case is straightfor-
ward.

Our main finding is that depending on the parameters of the
coupling of two ensembles, one observes regimes of full synchrony
(both subpopulations form fully synchronous clusters), partial
synchrony (one subpopulation synchronized while other is asyn-
chronous) and no synchrony (both subpopulations asynchronous).
The latter two regimes demonstrate quasiperiodic dynamics. To
analyse these regimes we applied the Watanabe–Strogatz theory
and derived the equations for macroscopic variables describing
distributions of oscillators in subpopulations. This allowed us to
identify the transition from full to partial synchrony as a transcrit-
ical bifurcation of this system. To characterize the transition from
partial synchrony to asynchrony we used the method of evapora-
tion Lyapunov exponents.

In this Letter we restricted our attention to the case of identical
oscillators in subpopulations. For the study of non-identical en-
sembles the powerful Ott–Antonsen theory [33,34] can be adopted,
these results will be reported elsewhere.
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