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We show that a hyperbolic chaos can be observed in resonantly coupled oscillators near a Hopf
bifurcation, described by normal-form-type equations for complex amplitudes. The simplest example
consists of four oscillators, comprising two alternatively activated, due to an external periodic modulation,
pairs. In terms of the stroboscopic Poincaré map, the phase differences change according to an expanding
Bernoulli map that depends on the coupling type. Several examples of hyperbolic chaos for different
types of coupling are illustrated numerically.
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1. Introduction

Investigation of coupled oscillators is one of the central prob-
lems of nonlinear dynamics, with applications to a great variety
of natural and technological applications. Quite often an interac-
tion leads to more order, in particular, oscillators can synchronize
[1]. There are also many examples of an opposite effect, when
coupling leads to a chaotization of the dynamics (see, e.g., [2]).
Quite recently it was demonstrated that coupled oscillators can
demonstrate a hyperbolic chaos. The notion of hyperbolicity is
a central one in the mathematical theory of dynamical systems
[3], and hyperbolic chaotic systems are the “cleanest” examples
of pure chaos. Nevertheless, until recently, only abstract models
of hyperbolic chaos have been known, mainly as topologically de-
fined maps; most prominent examples being the Smale–Williams
[4] and Plykin [5] attractors. While it was suggested that such at-
tractors play an important role at the transition to turbulence [6],
until recently no realistic model with such a dynamics has been
developed. In a seminal paper [7] S. Kuznetsov has presented a
first example of a realistic model with a Smale–Williams attractor.
This model has been thoroughly studied numerically (in partic-
ular, mathematical criteria for hyperbolicity have been checked
in Ref. [8]) and experimentally [9]. Other examples followed in
Refs. [10,11]. In all these works hyperbolic strange attractors have
been observed in coupled oscillator systems, described, e.g. by
non-autonomous Van der Pol equations.

The goal of this Letter is to present an analysis of hyperbolic-
ity in coupled oscillator systems based on the “normal form”-like
description of their dynamics. Indeed, in the theory of nonlinear
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oscillators it is known that a universal description of the dynam-
ics close to a Hopf bifurcation point can be formulated in terms
of equations for the slowly varying complex amplitudes (in dif-
ferent contexts one speaks about Van der Pol method, asymptotic
method, method of averaging, method of normal forms, etc.). In
this approach particular properties of an underlying dynamical sys-
tem become irrelevant, as the oscillators are described by a few
parameters like growth rate and complex coefficient at nonlinear
term. Most importantly, the frequency of the oscillations does not
play any role, so that the description is equally valid for very slow
(like biological ones) and very fast (like lasers) oscillators.

Before proceeding to a description of our basic model, we out-
line the main ingredients that are necessary for a hyperbolic chaos
to occur. A hyperbolic chaos is achieved by implementing a trans-
formation of the phase of the oscillations, which is close to the
Bernoulli doubling map φ → 2φ or to its generalization. To im-
plement such a doubling of the phase, in [7] it was suggested to
modulate an oscillator in such a way that it slowly passes through
a Hopf bifurcation, and to apply simultaneously a small force. In
such a process the oscillator acquires the phase of the forcing, and
if the forcing has the doubled phase of the oscillations, the desired
transformation can be realized. According to this general scheme,
an oscillator should pass repeatedly through a Hopf bifurcation –
this is achieved by modulating its parameter responsible for the
bifurcation (growth rate). Additionally, the coupling between the
oscillators should be organized in such a way, that the forcing
terms contain multiples of the phase. In the next section we follow
these ideas in constructing our basic model.

2. Basic model of coupled oscillators

In this section we construct a model of coupled oscillators that
demonstrates a hyperbolic chaos. Our aim is to arrive at the sim-
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plest possible situation, therefore in course of consideration we
will make simplifying assumptions. Consider a set of oscillators
marked by index k, and described by general dynamical equations

d�xk

dt
= �Fk(�xk, t) + ε�fk(�x j). (1)

Here terms �Fk describe individual oscillating systems and terms �f
their coupling. Let us first neglect the coupling by setting ε = 0.
We suppose that each oscillator is close to a supercritical Hopf
bifurcation from a stable steady state to periodic self-sustained
oscillations. In this regime the dynamics can be reduced to that
on a two-dimensional center manifold (see, e.g. [12,13]), where a
slowly varying complex amplitude ak can be introduced so that
�xk(t) ∼ Re[ak(t) �Xkeiωkt]. Furthermore, we assume that the parame-
ter Γ responsible for the growth rate of the oscillations is a slow
(compared to the frequency) function of time. Then the equation
for the amplitude ak reads

dak

dt
= ak

(
Γk(t) − |ak|2

)
. (2)

In this equation we have neglected a possible the nonlinear fre-
quency shift, which would correspond to a complex coefficient at
nonlinear term.

Next, we discuss the coupling terms. We assume that all the os-
cillators have the same natural frequency ω1 = ω2 = · · · = ω. Then
a general forcing term acting on oscillator k in terms of complex
amplitudes a is obtained via averaging 〈�fke−iωt〉 over the oscil-
lation period. Generally, such a term contains products of pow-
ers (because for a small nonlinearity a power-series expansion of
all terms is possible) of the complex amplitudes, i.e. terms like

a
s′k
k′ |ak′ |σ ′

k a
s′′k
k′′ |ak′′ |σ ′′

k . . . . From the resonance condition it follows that

s′
k + s′′

k + · · · = 1, (3)

all other terms vanish due to the averaging. Here the powers si
are integers and we use a convention that negative powers mean
complex conjugation a−1 = a∗ . In general, there can be several
terms with different combinations s′

k, σ
′
k, s′′

k , σ ′′
k , . . . , but in or-

der to have a well-defined phase of the forcing, we assume that
it consists of just one such term. Furthermore, the components
|ak′ |σ ′

k , |ak′′ |σ ′′
k , . . . do not have the phases, therefore we can set

σk = 0. Summarizing, the governing equations for the resonantly
coupled oscillators can be written as

dak

dt
= ak

(
Γk(t) − |ak|2

) + εa
s′k
k′ a

s′′k
k′′ . . . . (4)

As outlined above, due to a periodic modulation of the growth
rates Γk(t), the oscillators pass through a Hopf bifurcation. In
the simplest situation, there are two groups of oscillators that
are excited alternatively: for the first group Γ (t) = Γ+(t) =
γ0 + γ1 cos(Ωt) while for the second group Γ (t) = Γ−(t) = γ0 −
γ1 cos(Ωt). We denote the complex amplitudes of the oscillators
belonging to the first and the second group by bn and cm , corre-
spondingly. Furthermore, in the coupling terms it is essential to
have a large forcing acting on the non-excited oscillators as they
pass through a Hopf bifurcation. Thus, oscillators bn should be
forced by oscillators cm and vice versa. The model then reads

dbn

dt
= bn

(
Γ+(t) − |bn|2

) + εc
s′m
m′ c

s′′m
m′′ . . . , (5)

dcm

dt
= cm

(
Γ−(t) − |cm|2) + εb

s′n
n′ b

s′′n
n′′ . . . . (6)

We now discuss, what is the simplest system of type (5)–(6)
that demonstrates a nontrivial dynamics of the phases. One can
easily check that system (5)–(6) (and Eq. (4) as well) is invari-
ant under the transformation bn → bneiφ , cm → cmeiφ , i.e. invariant
with respect to a common phase shift of all complex amplitudes
(formally this follows from the resonance condition (3); physically
this is due to the fact that all oscillators have the same frequency
which becomes irrelevant in the complex amplitude formulation).
This means that the transformation of the phases over the period
of modulation T = 2π/Ω has a multiplier equal to one, corre-
sponding to this invariance. In order to have a nontrivial multiplier,
the transformation of each group of oscillators must be at least
two-dimensional. Thus, the simplest nontrivial case is that of two
oscillators in each group bn and cm . Therefore, the minimal model
reads

db1

dt
= b1

(
γ0 + γ1 cos(Ωt) − |b1|2

) + εcα
1 c1−α

2 , (7)

db2

dt
= b2

(
γ0 + γ1 cos(Ωt) − |b2|2

) + εcβ

1 c1−β

2 , (8)

dc1

dt
= c1

(
γ0 − γ1 cos(Ωt) − |c1|2

) + εbκ
1 b1−κ

2 , (9)

dc2

dt
= c2

(
γ0 − γ1 cos(Ωt) − |c2|2

) + εbδ
1b1−δ

2 . (10)

Here α, β , κ , δ are integers describing the coupling.

3. Analysis of the phase transformation

In this section we perform a qualitative analysis of our ba-
sic model of four coupled oscillators (7)–(10), a numerical study
will be reported in the next section. Within the period of modu-
lation T , the oscillations are alternatively excited and suppressed.
When passing through a Hopf bifurcation from suppression to ex-
citation, the oscillator assumes the phase of the forcing. Let us
denote the phases of oscillators b1, b2, c1, c2 as ϕ1, ϕ2, ψ1, ψ2
respectively. Then, the phase of the forcing term for the oscillator
b1 is αψ1 + (1−α)ψ2, and correspondingly for all other oscillators.

Following the methodology of the work [7], the functioning of
the system (7)–(10) can be described qualitatively as follows (we
stress that arguments below are very rough qualitative, to be con-
firmed by numerical analysis in the next section). Suppose that
the oscillators enter a period of modulation with phases ϕ1, ϕ2,
ψ1, ψ2. For definiteness, we define the period as starting from the
state where oscillators b1, b2 are excited and oscillators c1, c2 are
not excited. Then at the beginning of the period the phases ϕ1, ϕ2
are well defined. When c1, c2 become excited, they get the phases

ψ1 = κϕ1 + (1 − κ)ϕ2, (11)

ψ2 = δϕ1 + (1 − δ)ϕ2. (12)

On the next stage the oscillators c1, c2 are excited while the os-
cillators b1, b2 are not excited. As the latter ones pass through a
Hopf bifurcation, they get the phases

ϕ1 = αψ1 + (1 − α)ψ2, (13)

ϕ2 = βψ1 + (1 − β)ψ2. (14)

The overall transformation of the phases ϕ1, ϕ2 over the period is(
ϕ1

ϕ2

)
= M

(
ϕ1

ϕ2

)
, M =

(
α 1 − α

β 1 − β

)(
κ 1 − κ

δ 1 − δ

)
. (15)

One eigenvalue of matrix M is one, in accordance with the men-
tioned above invariance to an overall shift of the phases, and the
nontrivial eigenvalue is

μ = (α − β)(κ − δ). (16)

One can easily see that the eigenvector corresponding to this
eigenvalue is the difference of the phases, which during the pe-
riod of modulation is transformed as

ϕ1 − ϕ2 = μ(ϕ1 − ϕ2). (17)
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The transformation of the phases will be chaotic, if |μ| > 1. Ac-
cording to (16), one then easily finds the values of factors α,β,κ, δ

leading to a chaotic transformation of the phases. Below we con-
sider two examples: (A) the case α = −1, β = 1, κ = 0 and δ = 1
yielding μ = 2 and (B) the case α = 2, β = −1, κ = 2 and δ = −1
yielding μ = 9.

4. Examples of coupled oscillators with hyperbolic chaos

We start with model A, governed by equations

db1

dt
= b1

(
γ0 + γ1 cos(Ωt) − |b1|2

) + εc∗
1c2

2, (18)

db2

dt
= b2

(
γ0 + γ1 cos(Ωt) − |b2|2

) + εc1, (19)

dc1

dt
= c1

(
γ0 − γ1 cos(Ωt) − |c1|2

) + εb2, (20)

dc2

dt
= c2

(
γ0 − γ1 cos(Ωt) − |c2|2

) + εb1. (21)

A remarkable property of this system is that the coupling in the
last three of Eqs. (19)–(21) is linear, and only one coupling term
in Eq. (18) is nonlinear. Furthermore, we can significantly simplify
the system by observing that oscillators b2 and c1 simply exchange
their phases, as ψ1 = ϕ2 and ϕ2 = ψ1 = ϕ2. Thus, the phase of
oscillator c1 remains constant – this oscillator simply serves as a
periodic signal allowing a resonance excitation of the oscillator b1.
Therefore we can construct a simplified version of system (18)–
(21) by assuming c1 = C = const:

db1

dt
= b1

(
γ0 + γ1 cos(Ωt) − |b1|2

) + εC∗c2
2, (22)

dc2

dt
= c2

(
γ0 − γ1 cos(Ωt) − |c2|2

) + εb1. (23)

Note that this reduced model does not possess the invariance to
phase shifts, this is due a fixed phase of the “external force” C .
Existence of different systems of coupled oscillators that demon-
strate the same phase dynamics (17) follows from the fact that
this dynamics is determined only by the nontrivial eigenvalue of
matrix M , which depends on the particular parameters of coupling
via relation (16). While the particular choice of these parameters
in (18)–(21) allows to exclude some variables because the phase
dynamics in (18)–(21) is equivalent to that in (22)–(23), such a re-
duction is not possible for model (24)–(27) below.

In numerical examples below we have chosen γ0 = 0.2, γ1 = 2,
Ω = 1 and ε = 0.05. We illustrate the dynamics of four coupled
oscillators according to (18)–(21) in Fig. 1. One can clearly see that
whereas the amplitudes vary regularly and alternatively, following
the modulation of the growth rate, the phases demonstrate an ir-
regular dynamics. As the chaos is in the differences of the phases,
it can be transformed in an intensity observable by considering the
sums of the complex amplitudes. Indeed, defining b = b1 + b2 and
assuming |b1| ≈ |b2| (which is well confirmed by numerics), we
obtain |b|2 ≈ 2|b1|2(1 + cos(ϕ1 − ϕ2)). Thus, this intensity varies
chaotically in large range, as shown in Fig. 1. Notice also the con-
stance of the phases ϕ2,ψ1 according to the discussion above. In
Fig. 2 we show the stroboscopic map at times t = 0, T ,2T , . . . .
The transformation of the phases clearly demonstrates the dou-
bling and looks as Bernoulli map. The view of the strange attractor
projected on the plane (Re(b1), Im(b1)) corresponds to an image
of the Smale–Williams solenoid.

In Fig. 3 we illustrate the Lyapunov exponents λk as function of
the parameter γ1. The correspondence of the transformation of the
phases with Bernoulli map presumes that the largest Lyapunov ex-
ponent of the system (18)–(21) should be equal to ln 2 . To compute
T
Fig. 1. Numerical analysis of model A ((18)–(21)). Middle and bottom panels: evolu-
tions of the phases and the amplitudes of oscillators b1 (black), b2 (red), c1 (green),
and c2 (blue). Top panel: Intensities of the sums b1 + b2 (black) and c1 + c2 (red).
Note, that the phases ϕ2 and ψ1 of the oscillators b2 and c1 are constant. Thus the
red and green lines overlap in the middle panel. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

Fig. 2. Numerical analysis of model A ((18)–(21)). Left panel: the stroboscopic map-
ping for the phase difference. What looks like two lines is in fact a set of points.
This picture proofs validity of transformation of the phases (17) with μ = 2. Right
panel: the stroboscopic view of the attractor in projection on plane (Re(b1), Im(b1)).
In this projection the cantor transversal structure is seen better than in the left
panel, where only two main branches can be distinguished.

Fig. 3. Numerical analysis of model A ((18)–(21)). Dependence of the Lyapunov ex-
ponents λk on the parameter γ1.
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Fig. 4. Numerical analysis of model B ((24)–(27)). Middle and bottom panels: evolu-
tions of the phases and the amplitudes of oscillators b1 (black), b2 (red), c1 (green),
and c2 (blue). Top panel: intensities of the sums b1 + b2 (black) and c1 + c2 (red).
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this Letter.)

the Lyapunov exponents we employ the Benettin’s algorithm that
requires solving simultaneously Eqs. (18)–(21) and the linearized
equations for small perturbations. Advancing the solution, we per-
form the Gram–Schmidt orthogonalization and normalization of
the perturbation vectors after each time interval T . Lyapunov ex-
ponents appear as time averaged logarithms of the norms of the
perturbation vectors. In Fig. 3 one can see that the largest ex-
ponent (λ1) is positive and constant (λ1 
 0.1103 . . .) for a wide
range of parameter values; the second exponent is equal to zero,
and other exponents are negative and manifest rather regular pa-
rameter dependencies. This is another evidence of a hyperbolic
chaotic nature of the observed dynamics. Using the Lyapunov ex-
ponents we estimated for the attractor presented in Fig. 2 the di-
mension from the Kaplan–Yorke formula [14]. It is Dl = 1.168 and
demonstrates a rather good correspondence with the correlation
dimension Dk = 1.16 which was calculated using the Grassberger–
Procaccia algorithm [15].

Next we consider model B governed by equations

db1

dt
= b1

(
γ0 + γ1 cos(Ωt) − |b1|2

) + εc2
1c∗

2, (24)

db2

dt
= b2

(
γ0 + γ1 cos(Ωt) − |b2|2

) + εc2
2c∗

1, (25)

dc1

dt
= c1

(
γ0 − γ1 cos(Ωt) − |c1|2

) + εb2
1b∗

2, (26)

dc2

dt
= c2

(
γ0 − γ1 cos(Ωt) − |c2|2

) + εb2
2b∗

1. (27)

The same analysis as for model A is illustrated in Figs. 4–6.
Now the dynamics of all phases is chaotic, while the amplitudes
of the oscillators vary nearly periodically. The stroboscopic map
in Fig. 5 has now nine stripes. In the projection on the plane
(Re(b1), Im(b1)) a transverse structure is smeared to the projection
effect. The largest Lyapunov exponent (λ1) (see Fig. 6) is positive
and constant (λ1 
 0.34496 . . .) for a wide range of parameter val-
ues, similar to the case A. However, now its value is close to ln 9

T ,
because the stroboscopic map (Fig. 5) has nine stripes.
Fig. 5. Numerical analysis of model B ((24)–(27)). Left panel: the stroboscopic map-
ping for the phase difference. Now, in comparison to Fig. 2, the internal cantor
structure of nine basic stripes is better seen in the left panel, while it is hardly
distinguishable in the right one. This picture proofs validity of transformation of
the phases (17) with μ = 9. Right panel: the stroboscopic view of the attractor in
projection on plane (Re(b1), Im(b1)).

Fig. 6. Numerical analysis of model B ((24)–(27)). Dependence of the Lyapunov ex-
ponents λk on the parameter γ1.

At the end of this section we discuss, whether the basic mod-
els (18)–(21) and (24)–(27) can be further reduced. As already
discussed, model A can be exactly reduced to (22)–(23) which
is five-dimensional (two complex variables and time). The nine-
dimensional model (24)–(27) can be reduced to eight dimensions
because of invariance to a simultaneous phase shift of all complex
amplitudes. A further exact reduction appears not possible. On the
other hand, one could try to construct a similar model without pe-
riodic forcing where modulations of the growth rates appear due
to internal dynamics, like in [11], what however goes beyond the
scope of this Letter.

5. Hyperbolic chaos in the non-reduced system of coupled
oscillators

Above we have focused on general properties of hyperbolic
chaos in a system of coupled equations based on the normal form
(2). Here we will demonstrate that a similar regime can be found
in the non-reduced system of type (1). For this example we choose
a model of coupled nanoscale electromechanical oscillators studied
in details in [16]. The model suggested in [16] are coupled Van der
Pol equations of type

ẍ − (
γ − x2)ẋ + ω2x = f (28)

where x is the coordinate of a nanoelectromechanical oscillator
and f describes coupling terms; this model is based on compari-
son with experiments [17]. To obtain hyperbolic chaos as described
above, we consider four oscillators of type (28) that are excited al-
ternatively and are nonlinearly coupled:
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Fig. 7. Numerical analysis of non-reduced model (29) with γ1 = 3, ω = 25, Ω = 1,
ε = 0.2. The stroboscopic mapping for the phase difference, where ϕi is phase of
the i-th oscillator, should be compared with Fig. 5.

ẍ1 − (
γ1 cos(Ωt) − x2

1

)
ẋ1 + ω2x1 = εx4x3 ẋ3,

ẍ2 − (
γ1 cos(Ωt) − x2

2

)
ẋ2 + ω2x2 = εx3x4 ẋ4,

ẍ3 − (−γ1 cos(Ωt) − x2
3

)
ẋ3 + ω2x3 = εx2x1 ẋ1,

ẍ4 − (−γ1 cos(Ωt) − x2
4

)
ẋ4 + ω2x4 = εx1x2 ẋ2. (29)

We stress that the switching on and off of the activity of oscillators
has been experimentally demonstrated in [17]. We integrated the
system (29) numerically and have obtained the phase chaos very
similar to that found for the normal form (24)–(27), see Fig. 7. This
proves that the hyperbolic chaos is not the property that appears
in course of a reduction of the original equations, but is the intrin-
sic feature of the dynamics.

6. Conclusion

In this work we have demonstrated that a system of coupled
oscillators can possess a hyperbolic chaos of Smale–Williams type.
We have argued that a minimal model is that of four oscillators
consisting of two alternatively excited pairs. All oscillators have the
same frequency and only a resonant interaction is taken into ac-
count. The description is based on the normal-form-type equations
for the complex amplitudes, thus it is independent of a particular-
ities of the oscillating dynamics – only a closeness to a Hopf bifur-
cation is needed. We stress that the basic frequency does not enter
the problem, so that the theory is equally applicable to very slow
and very fast oscillators. In order to show that the conclusions
based on the consideration of normal form equations are valid also
for the original dynamical system, we considered a model previ-
ously suggested for a description of active nanoelectromechanical
oscillators and demonstrated that the hyperbolic chaos of the same
type as in normal form formulation is observed in the full system.
This opens a perspective for a possible experimental realization.
Another possible experimental setup is one where the active oscil-
lators are realized as electronic devices, like in [9].

We have argued that there are many ways to couple the oscil-
lators to achieve an expanding transformation of the phase differ-
ence. For demonstration we have chosen two examples. The first
one, yielding the weakest chaos described by the Bernoulli dou-
bling map for the phases, includes only one nonlinear coupling
term, all other couplings are linear. In another example, where all
the couplings are nonlinear (but of the lowest possible order of
nonlinearity) the resulting chaos is rather strong – the transforma-
tion for the phase differences is a Bernoulli map with multiplier 9.
A natural question arises whether the regimes observed are sta-
ble with respect to variations of the parameters. The answer just
comes from the stability of Bernoulli-type maps: small variations
of parameters does not lead to topological changes. In particular, a
small detuning from a perfect coincidence of the frequencies does
not lead to a qualitative change in the dynamics. This conclusion
is, however, restricted to the perturbations within the equations
for the complex amplitudes that preserve the invariance to phase
shifts. As this invariance is, strictly speaking, not valid for the orig-
inal equations prior to the normal mode reduction, the relation to
the hyperbolicity properties of the original system remains a sub-
ject for a further research.

As a interesting development of the research reported we men-
tion a possibility to observe hyperbolic chaos in ensembles of
coupled oscillators. Indeed, recently Ott and Antonsen [18] have
shown that ensembles of globally coupled phase oscillators (so-
called Kuramoto model) are described by equations of type (2)
for the complex order parameter. Therefore, one can expect that
a nonlinear coupling between such alternatively synchronized en-
sembles may lead to a hyperbolic chaos of the order parame-
ters.
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