
J Stat Phys (2011) 145:1256–1274
DOI 10.1007/s10955-011-0335-3

Strong and Weak Chaos in Weakly Nonintegrable
Many-Body Hamiltonian Systems

M. Mulansky · K. Ahnert · A. Pikovsky ·
D.L. Shepelyansky

Received: 15 March 2011 / Accepted: 24 August 2011 / Published online: 10 September 2011
© Springer Science+Business Media, LLC 2011

Abstract We study properties of chaos in generic one-dimensional nonlinear Hamiltonian
lattices comprised of weakly coupled nonlinear oscillators by numerical simulations of
continuous-time systems and symplectic maps. For small coupling, the measure of chaos is
found to be proportional to the coupling strength and lattice length, with the typical maximal
Lyapunov exponent being proportional to the square root of coupling. This strong chaos ap-
pears as a result of triplet resonances between nearby modes. In addition to strong chaos we
observe a weakly chaotic component having much smaller Lyapunov exponent, the measure
of which drops approximately as a square of the coupling strength down to smallest cou-
plings we were able to reach. We argue that this weak chaos is linked to the regime of fast
Arnold diffusion discussed by Chirikov and Vecheslavov. In disordered lattices of large size
we find a subdiffusive spreading of initially localized wave packets over larger and larger
number of modes. The relations between the exponent of this spreading and the exponent
in the dependence of the fast Arnold diffusion on coupling strength are analyzed. We also
trace parallels between the slow spreading of chaos and deterministic rheology.

Keywords Lyapunov exponent · Arnold diffusion · Chaos spreading

1 Introduction

Even 120 years after the fundamental work of Poincaré [1] and numerous efforts done after
it, an interplay between order and chaos in high-dimensional Hamiltonian systems remains
a challenging problem. For Hamiltonian dynamics with a few degrees of freedom, a clear
picture of a separation between chaotic and regular (quasiperiodic) regions in the phase
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space [2, 3] has been confirmed in numerous studies. Much less is known on this separa-
tion and the structural properties of chaos when the number of degrees of freedom becomes
large. Especially the generic case of a weak nonlinear coupling of initially nonlinear but
integrable degrees of freedom remains poorly understood. We will call such systems to be
weakly nonintegrable. Their properties are very nontrivial since a decrease in nonlinear-
ity/nonintegrability might be compensated by an increase of dimensionality of the phase
space.

The Kolmogorov-Arnold-Moser (KAM) theory guarantees the existence of invariant tori
at a sufficiently weak nonlinear perturbation (see e.g. [2, 3]). However, in conservative sys-
tems with more than two degrees of freedom (N > 2) such tori are not isolating and chaos
can spreads along tiny chaotic layers as it was pointed by Arnold [4]. The mechanism of such
a chaotic spreading is known under the name of Arnold diffusion as coined by Chirikov in
1969 [2, 5]. For N = 3 the rate of Arnold diffusion drops exponentially with the dimen-
sionless strength of nonlinear coupling β [2, 3, 5]. This is in a qualitative agreement with
a number of mathematical results which give rigorous bounds on the spreading rate in the
limit of asymptotically small β at fixed N > 2 [6, 7]. The mathematical studies of the Arnold
diffusion properties are actively continued at present (see e.g. [8] and Refs. therein). While
the mathematical results indicate the exponentially small rate of Arnold diffusion DA in the
limit of small nonlinearity β at fixed N , it remains not clear at what realistic values of non-
linearity such an exponential behavior effectively appears. The striking results of Chirikov
and Vecheslavov, established by extensive numerical simulations for 4 ≤ N ≤ 15 and sup-
ported by heuristic arguments [9–11], show only an algebraic decay of DA with β up to
extremely small values of Arnold diffusion coefficient DA ∼ 10−50 (even if this diffusion
rate is enormously small it can still be numerically measured in a reasonable computation
time with help of sophisticated numerical tricks as described in [2, 3, 9–12]). Chirikov and
Vecheslavov called this regime fast Arnold diffusion. These studies have been restricted by
N ≤ 15 and it remains unclear what can happen with such a behavior in the limit of larger
N with small but fixed β .

The question about the properties of Hamiltonian systems at large values of N is linked
to the fundamental problem of dynamical thermalization and ergodicity in the thermody-
namic limit. As typical models with a large number of degrees of freedom one considers
Hamiltonian lattices (or Hamiltonian partial differential equations, which, however, live in
an infinite-dimensional phase space). A striking example of nontrivial dynamics in weakly
nonlinear lattices gives the Fermi-Pasta-Ulam problem [13, 14], which is still far from being
completely resolved despite of numerous efforts in its 50-year history (see [15, 16] for a
stand around 2004 and [17] for recent advances). For the FPU model, the main goal is to
understand the transition to global ergodicity. Mostly related to the general problem of weak
chaos in Hamiltonian systems with many degrees of freedom are the results of papers [18–
21]. There, a transition between weak and strong chaos was found marking a stochasticity
threshold between slow and fast relaxation to equilibrium. To characterize this transition,
which manifests itself as a crossover between two power-law dependencies of the largest
Lyapunov exponent on the energy density (called also strong stochasticity threshold), Pet-
tini et al. have developed an approach based on the Riemannian geometry that allows one to
distinguish between the regimes of small and large fluctuations of a local curvature (see [21]
for a review and details). In terms of this approach, the regimes studied in this paper are be-
low the strong stochasticity threshold, so our focus is on the statistical properties of the weak
chaos in terms of [21]. We should also mention, that the FPU model is close to the integrable
Toda lattice that can make it a specific case. Here we study relaxation to a global ergodicity
in a strongly nonlinear lattice which represents a generic case being far from integrability.
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Quite recently, a lot of attention attracted disordered nonlinear lattices [22–33] studied in
the context of the problem of nonlinear destruction of Anderson localization. Here one tries
to relate the properties of chaos and regularity at small nonlinearities to the properties of the
spreading of a wave packet over the lattice [34–36]. Certain mathematical bounds on the rate
of spreading have been obtained [37, 38] by the methods similar to those of Nekhoroshev
[6] but they are available only in the limit of very small nonlinearity being very far from the
regimes studied in numerical simulations. In addition, these weakly nonlinear lattices are
not generic objects from the point of view of weak nonintegrability and the KAM theory,
since in the limit of small coupling they are reduced to a set of linear modes, i.e. to a linear
quasiperiodic state demonstrating quasiperiodicity and pure point spectrum typical of the
Anderson localization, and not to the generic case with a set of uncoupled nonlinear modes.
We note, that in context of the KAM theory, a small perturbation of the latter integrable
nonlinear system is studied.

In this paper we study properties of a lattice of weakly coupled nonlinear oscillators
at small coupling and large number of degrees of freedom. In the limit of small coupling
this model reduces to an integrable although strongly nonlinear one, demonstrating typi-
cally quasiperiodic dynamics. A nice model of such a setup has been suggested by Kaneko
and Konishi [39, 40], it gives a generalization of the Chirikov standard map [2] to a lat-
tice of coupled symplectic maps. This model is computationally efficient and allows one a
rather good numerical characterization of properties of regular and chaotic dynamics. Nev-
ertheless, even for this model the quantitative properties are not well-established despite of
various efforts [10, 11, 41–43]. Additionally, we study here two models of coupled nonlin-
ear continuous-time oscillator lattice where the spreading over the lattice can be analyzed at
fixed energy. Our main conclusions are valid for all these systems.

The plan of the paper is as follows. We start by formulating basic models we study
in Sect. 2. Then in Sect. 3 we discuss the properties of the largest Lyapunov exponent,
especially the scaling relations in dependence on coupling strength and system length. In
Sect. 4 we argue that chaos is mainly due to occasional resonances between triples of three
neighboring oscillators. In Sect. 5 we discuss statistical properties of chaos, focusing on the
scaling of the diffusion constant. In Sect. 6 we relate this properties to that of spreading of
a wave packet in an unbounded lattice. There we also compare a very slow evolution of a
wave packet to similar effects in the context of rheology.

2 Basic Models

Here we introduce three generic models of nonlinear oscillators locally coupled in space.
Model A, introduced by Kaneko and Konishi [39, 40], is a model of coupled symplectic
maps

p̄k = pk + K[sin(xk+1 − xk) + sin(xk−1 − xk)], k = 1, . . . ,N,

x̄k = xk + p̄k,

(1)

with periodic boundary conditions. Here p is a “momentum” and x is a “phase” variable.
In the absence of coupling (i.e. for K = 0) each oscillator has a constant frequency pk that
depends on initial conditions, so in the whole lattice generally a quasiperiodic regime with
N frequencies establishes. For finite K the oscillators are coupled and chaos is possible.
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Model B is a strongly nonlinear continuous-time lattice with Hamiltonian

H =
N∑

k=1

p2
k

2
+ q4

k

4
+ β

2
(qk+1 − qk)

2. (2)

Here we also consider a lattice of length N with periodic boundary conditions. The coupling
parameter β plays the same role as K . Note that due to the time-independence of the Hamil-
tonian, the total energy is a conserved quantity in model B, while there exist no conservation
laws for model A. We normalize the energy in such a way that E = N (i.e. density of energy
is one), so that β and L are the only parameters of this model.

Very similar to the model B is the model C, where the coupling between nonlinear modes
is also nonlinear, moreover, the power of nonlinearity in coupling is stronger than the local
one:

H =
N∑

k=1

p2
k

2
+ ηkq

4
k

4
+ γ

6
(qk+1 − qk)

6, (3)

where we consider two cases for coefficients with all ηk = 1 (C1) and random homoge-
neously distributed values 0.5 ≤ ηk ≤ 1.5 (C2). While we do not expect large difference
between models B and C in the described setup, where the density of the energy is fixed, the
situation changes when the total energy is fixed and the length of the lattice is increased. In
this limit model B will become asymptotically linear (effective β increases) while model C
will become asymptotically less and less coupled (effective γ decreases). This difference is
important for the implications of chaos for spreading of initially localized wave packets, to
be discussed in Sect. 6. The randomness of values of ηk (model C2) ensures that there are
no regular waves emanating from the main part of the wave packet in contrast to the case
ηk = 1 (model C1) where such wave radiation is possible [44, 45].

3 Lyapunov Exponents and Their Scaling

3.1 Lyapunov Exponents

The largest Lyapunov exponent (LE) is a standard measure of chaos and is easy to calcu-
late [3, 46]. We have performed a statistical analysis of Lyapunov exponents for models A,
B, C based on the following ensembles of random initial conditions: For model A we have
chosen 0 ≤ pk, xk < 2π as independent uniformly distributed. For model B we initialized
qk = 0 and pk normally distributed with zero mean, after this the values pk are rescaled such
that the total energy of the lattice equals N—the number of lattice sites. For the model C
the initialization is done in a similar way. We used up to several thousands of initial state
realizations to obtain a good statistics in the computation of measure of chaos Pch.

We present the “raw data” of these calculations for models A and B in Fig. 1. Here,
for model A in a lattice with N = 8 one observes predominantly chaos for K = 0.05,
predominantly regularity for K = 0.001, and both states depending on initial conditions
for K = 0.01. Noteworthy, LE in the case of regularity does not vanish but attains very
small values, with the cutoff appearing due to a finite integration time. In the middle part of
Fig. 1(a) one can see that increasing the integration time by factor 10 roughly decreases this
lower cutoff in the Lyapunov exponent by factor 10. For any fixed Tav , basing on inspec-
tion, one easily chooses a threshold in LE that separates chaos from regularity. Of course,
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Fig. 1 (Color online) (a) Calculations of LEs for model A with N = 8, for four setups shown in correspond-
ing columns (10000 points in each setup). First setup (red): K = 0.001, LE calculated by averaging over time
interval Tav = 5 × 106. Second setup (green): K = 0.01, Tav = 5 × 106. Third setup (also green): K = 0.01,
Tav = 5 × 107. Fourth setup (blue): K = 0.05, Tav = 5 × 106. (b) The same as (a) but for model B with
N = 16, Tav = 106 and different β , from left to right: β = 10−5,10−4,10−3,10−2,10−1, for each value of
β 3000 realizations are shown

there are realizations with values around these thresholds that cannot be resolved within the
integration time used, but their statistical relevance is not significant. Essentially the same
picture is observed for model B (Fig. 1b) and model C (data not shown). Our main aim in
presenting “raw data” instead of probability densities, is to give a good visualization of “rare
events”, i.e. of chaos at small nonlinearities (two chaotic events out of 3000 at left panel of
Fig. 1(b) for β = 10−5) and of regularity at large nonlinearities (two regular events out of
3000 for β = 10−2).

3.2 Scaling of Probability to Observe Chaos

According to calculations of LEs we can distinguish chaotic and regular regimes, and cal-
culate the probability of their appearance in models A, B, C. The results for coupled sym-
plectic maps of model A are presented in Fig. 2. A typical lower cutoff for the LE calculated
over time interval T = 108 was ≈ 2.5 × 10−8, so we attributed all the realizations with
λ > 5 × 10−7 to chaos. Defined in this way the total measure of initial conditions in the
phase space that yield chaos Pch decreases with K and N . The rescaled plot shows that for
small K and large N the scaling relation

Pch ∼ K · N (4)

holds. The same scaling Pch ∼ K · β is valid also for model B, as demonstrated in Fig. 3,
and for model C (Fig. 4).

The scaling with the system length Pch ∼ N has been already discussed for model A
in [41, 42] and for disordered nonlinear lattices in [36]. It is based on the locality of chaos:
the latter appears due to a local in space nonlinear interaction of localized modes, and not due
to propagation of waves. Thus, in order to observe regularity in the whole lattice, the dynam-
ics has to be regular in all subparts. Let us consider the lattice of length N as consisting of
subparts with lengths N0. If the measure of chaos in each subpart is Pch(N0), then the mea-
sure of regularity is Preg(N0) = 1 − Pch(N0), and the measure of regularity in the whole lat-
tice is the product of the corresponding measures of subparts: Preg(N) = (1−Pch(N0))

N/N0 .
For small measure of chaos logPreg(N) = (N/N0) log(1 − Pch(N0)) ≈ −Pch(N), what
yields the scaling Pch ∼ N . An additional check of this relation is in Fig. 5(b) below.
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Fig. 2 Calculations of Pch vs. K for model A, demonstrating the scaling Pch ∼ KN for small K . The
middle panel shows the same data as the left one but in a logarithmic scale, while the right panel shows Pch

as a function of the product KN . The dashed line on the right panel is Pch = KN

Fig. 3 The same as Fig. 2 but for model B

Fig. 4 The same as Fig. 3 but for model C1

3.3 Scaling of the Lyapunov Exponent

Next, we studied the scaling properties of the value of LE. As one can already see from
Fig. 1, the positive LEs concentrate around a maximal value that decreases with K and β .
We have found (see Fig. 5a) that this maximal value is roughly independent on the length of
the system N and scales with nonlinearity parameters K and β as

λ ∼ K1/2. (5)

To demonstrate the scaling of the Lyapunov exponents we calculated their probability
distribution densities w(λ). Because of the relation Pch = ∫ ∞

λth
w(λ)dλ (where λth is the

cutoff value) the appropriate scaling for this density is that of Pch, i.e. K · N . According
to (5), the appropriate scaling of the argument of the density is λK−1/2. We plot rescaled
in this way distribution densities of LEs for models A and B in Figs. 6 and 7. We present
here results for the distribution density w, for constructing of which some arbitrary bins
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Fig. 5 (Color online) Left panel: Dependence of the Lyapunov exponent λ on the perturbation parame-
ter K for model A at N = 4 (blue circles), 8 (red squares). Dashed straight line shows approximate de-
pendence λ = 0.16

√
K (for N = 4,8). The fit of data gives the exponent of the dependence λ ∝ Ka with

a = 0.476 ± 0.013 (for N = 4), 0.450 ± 0.012 (for N = 8) in agreement with the scaling (5). Right panel:
Dependence of the measure of chaos Pch on the perturbation parameter K for N = 4 (blue circles), 8 (red
squares). Dashed straight line shows approximate dependence Pch = 7.75K (for N = 4); for N = 8 we find
that Pch = 14.32K in agreement with the scaling (4). The fit of data gives the exponent of the dependence
Pch ∝ Kb with b = 1.022 ± 0.01 (for N = 4), 1.036 ± 0.01 (for N = 8). Up to 5 × 105 trajectories and
time t ≤ 106 have been used to compute the Lyapunov exponent λ and determine the number of chaotic
trajectories with λ > 0. Certain checks have been made with t = 5 × 109 and 100 trajectories

Fig. 6 (a) Distribution density of LEs in model A. (b) Distribution density of LEs in model B

Fig. 7 (a) Cumulative distribution of LEs in model A. (b) Cumulative distribution of LEs in model B

have been used, and for a cumulative distribution W(λ) = ∫ ∞
λ

w(λ)dλ where all data are
presented, respectively. We note that the scaling law (5) differs from the scaling λ ∼ K2/3

suggested in [41, 42]. For the model B we find the same scaling relation λ ∼ β1/2 as it is
shown in Fig. 7(b). For the model C we find the similar relation.
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Fig. 8 (Color online) Probability of “weak chaos” Pwch with the LE between the low λ > 10−7 and high
(λ < 0.03 · K1/2) cutoffs in Fig. 7 in model A. The pink dotted line is Pwch ∼ K1.6, the dashed curve
corresponds to the estimate Pwch ∼ K2.5(lnK)2, discussed at the end of Sect. 5 in relation to the regime of
fast Arnold diffusion analyzed in [11]

Fig. 9 Local LEs in model A as
a function of time. Each value of
LE is calculated over time
interval of length 106, here
2 × 103 such time intervals are
shown; K = 0.05, N = 8

3.4 Strong and Weak Chaos

There is also a substantial part of trajectories that have LEs between the lowest cutoff (deter-
mined by the averaging time) and the largest value ∼ √

K . We will distinguish these regimes
by referring to the dynamics with LEs in the peak of distribution in Fig. 6 as strong chaos
while the dynamics with lower LEs will be called weak chaos. As it will be discussed later,
it might be that the regime of weak chaos is that where the fast Arnold diffusion discussed
in [11] occurs. We show in Fig. 8 that the total probability Pwch to observe this weak chaos
scales as

Pwch ∝ KνwchN, νwch ≈ 1.6. (6)

In Fig. 9 we show an example of a local in time LEs for one long trajectory in model A. It
shows existence of transitions between regimes with strong chaos and weak chaos.

4 Resonances as a Source of Chaos

In order to characterize conditions under which chaos occurs at very small coupling, we have
looked on resonances and have found that chaos is highly correlated with the triple resonance
at which the frequencies of three neighboring oscillators nearly coincide. For models A and
B we illustrate this in Fig. 10, respectively. Here the probability of chaos Pch is shown vs.
renormalized distances of initial frequencies of oscillators. For model A we have defined
this distance as d = mink[(f (p

(0)
k −p

(0)

k+1))
2 + (f (p

(0)

k+1 −p
(0)

k+2))
2]. Here f (x) = 2| sin 0.5x|

measures the closeness of two initial momenta modulo 2π . A small value of d indicates that
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Fig. 10 The probability to observe chaos in dependence on the resonance in initial data for models A (a)
and B (b). The data for different N and K , β collapse if the distance in initial frequencies is scaled according
to

√
K or

√
β

somewhere in the lattice three initial nearby momenta p(0) are close to each other. Then, for
different realizations of initial conditions, different K in the range [0.001,0.2] and different
lattice lengths N = 8,16,32 we determined the probability for chaos to occur vs. d/

√
K .

One can see that for different lattice lengths the curves are close to each other, thus indicating
that indeed the occurrence of resonances is a necessary prerequisite for chaos. In a similar
analysis for model B we used d2 = mink[(√pk(0)−√

pk+1(0))2 + (
√

pk(0)−√
pk−1(0))2].

In Fig. 10 we demonstrate the correlation between the occurrence of resonance (small d)
and the probability to observe chaos Pch. Moreover, we see here the scaling that in fact d

should be compared with
√

K (or
√

β for model B).
The physical reason for the scaling results presented in previous sections is the following

(for simplicity of presentation, we refer here to model A only, the same arguments work for
models B and C). There is a finite probability that three nearby particles will have their fre-
quencies ωi = pi close to each other, within the frequency range Δω = √

K . The probability
of such an event is P ∼ K , since the first particle may have any frequency, the probability
to have the second in the range

√
K is

√
K and the probability to have the third in the

same range is also
√

K . This gives the probability of the resonance P ∼ K for a lattice
with three particles and P ∼ KN for a chain with N oscillators. Similar arguments work
for models B, C. It is important to note that in the case of such a 3-particle resonance, the
KAM arguments are not valid and the dynamics remains chaotic at arbitrary small perturba-
tion K . The situation is similar to the one considered in [47] where three linear oscillators
with the same frequency remain chaotic at arbitrary small nonlinear coupling between them.
Indeed, in our case the numerical analysis shows that almost all chaotic trajectories (those
with positive Lyapunov exponent) have three nearby particles with close frequencies.

To understand this phenomenon in a better way let us consider the case when ini-
tially at three neighboring sites the values of actions pi are close to their average value
P = (p1 + p2 + p3)/3. Then the evolution of these three particles, considered separately
from the rest (what can be justified by arguing that nonresonant terms effectively disappear
after averaging) is described by the mapping

p̄1 − p1 = K sin(x2 − x1), x̄1 − x1 = p̄1, (7)

p̄2 − p2 = K sin(x1 − x2) + K sin(x3 − x2), x̄2 − x2 = p̄2, (8)

p̄3 − p3 = K sin(x2 − x3), x̄3 − x3 = p̄3. (9)
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Fig. 11 Poincaré sections of variables φ2, J2 for the resonance Hamiltonian (12) at φ1 = 0. (a) HR = 0,
here chaos is dominant. (b) HR = 10, here the dynamics is typically quasiperiodic

Exploring the integral p1 + p2 + p3 = const and performing a canonical transformation to
new conjugate coordinates according to

φ1 = x1 − x2, φ2 = x3 − x2, φ3 = x1 + x2 + x3,

p1 = I1 + I2 + P, p2 = −I1 − I2 + I3 + P, p3 = I2 + I3 + P,

we obtain a two-dimensional mapping

Ī1 − I1 = −K sinφ1, φ̄1 − φ1 = 2Ī1 + Ī2, (10)

Ī2 − I2 = −K sinφ2, φ̄2 − φ2 = 2Ī2 + Ī1, (11)

which due to smallness of I1, I2 and of K can be approximated as a continuous-time system
with Hamiltonian H = I 2

1 + I 2
2 + I1I2 − K cosφ1 − K cosφ2. After rescaling of actions to

Ji = Ii/
√

K and time to τ = √
Kt we come to dimensionless resonance Hamiltonian

HR(J1, J2, φ1, φ2) = J 2
1 + J 2

2 + J1J2 − cos(φ1) − cos(φ2). (12)

Note that this rescaling proofs the dependencies ∼ K1/2 for the allowed deviations from the
resonance condition. Also the rescaling of time proofs the scaling of the Lyapunov exponent
with K according to (5).

According to the Chirikov resonance-overlap criterion [2] the dimensionless dynamics
of Hamiltonian (12) is chaotic for small values of energy (i.e. close to resonance) and chaos
disappears if the energy is large. The Poincaré sections for HR for HR = 0 and HR = 10 are
shown in Fig. 11 confirming this picture.

5 Properties of Diffusion and Weak Chaos

While LEs serve as an important indication for chaos, other quantities like correlations are
important to characterize irregularity of the dynamics. For the Chirikov standard map an
important statistical quantity is the diffusion constant of the momentum p: at large times T

the dynamics of p can be considered as a random walk with a diffusion constant D defined
according to 〈(p(T ) − p(0))2〉 = DT . For the Chirikov standard map the dependence of D

on the parameter K is known in detail [2, 3].
For the coupled symplectic maps (model A) numerical computations [39, 40], performed

in a range 0.1 < K < 1, indicated a weak diffusion at K = 0.1, the authors fitted the data
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Fig. 12 Left panel: Variance 〈(p(T ) − p(0))2〉 as a function of time T calculated in a lattice of length
N = 64. From top to bottom: K = 1.5,1.0,0.5,0.2,0.11,0.08,0.06,0.05,0.04,0.03,0.01,0.005,0.002.
Right panel: dependence of the diffusion constant on K in range 0.03 ≤ K ≤ 1.5. Dashed line shows re-
lation D = 20K6.5. Here we use not all the data sets from the left panel, but only those for which the variance
reaches values at least ≈ 10; for very small values of K < 0.03 the maximal value of T is still insufficient to
determine the diffusion constant reliably

with a stretched exponential dependence. Here we extend these calculations and show the
results in Fig. 12. One can see a strong decrease of the diffusion constant with K , which for
small K is close to a power-law dependence

D ∼ KνD , νD ≈ 6.5. (13)

A similar value of the exponent was obtained from the statistics of Poincaré recurrences in
the range 0.1 ≤ K ≤ 1 [48]. We note that for model C the above equation implies D ∝ γ νD .
The value of the exponent νD is close to the value given by Chirikov and Vecheslavov [10,
11]. However, they calculated the diffusion indirectly by expressing it via an effective width
ws of a separatrix layer of a nonlinear resonance with the additional relation D ∼ K3/2w2

s ,
which was verified with the direct computations of the Arnold diffusion in systems with a
few degrees of freedom. In fact, the value of ws is determined in [10, 11] via the computation
of the period of oscillations around a separatrix layer of a nonlinear resonance that is related
to the computation of LE. Due to this indirect method, Chirikov and Vecheslavov were able
to obtain the variation of the Arnold diffusion constant DA by 50 orders of magnitude!
On a scale of first 30 orders of magnitude the decay of the diffusion constant D is well
described by the power law with νD = 6.5 (see Fig. 1 in [11]). The main message of these
amazing calculations is a non-exponential decay of D, and hence of the chaos measure ws ,
with the decrease of nonlinearity parameter K . This result is in a drastic difference from
the asymptotic Nekhoroshev-like estimates based on the KAM theory [6, 7] which give
exponential decrease of D and ws as K → 0. Of course, there is no formal contradiction
since the results for fast Arnold diffusion [11] are always obtained at small but finite K

values. However, an algebraic decrease with K indicates on an existence of weak chaos
component with relatively large measure. The heuristic arguments for this phenomenon were
presented in [11]. According to the results of [11] one has for model A:

D ∼ K3/2w2
s , ws ∼ Kνs , νs ≈ 2.5, νD = 2νs + 3/2, (14)

for K > 1.6 × 10−5. Here, ws is a dimensionless measure of the chaotic separatrix layer of
the resonance between two nearby oscillators. For the range 2 × 10−6 < K ≤ 1.6 × 10−5 the



Strong and Weak Chaos in Weakly Nonintegrable 1267

decay of D is compatible with the power law D ∝ K15 but this range of K variation is not
very large. The global dependence D(K) is fitted by the dependence of (5.8) in [11] which
however has no complete theoretical explanation.

The reason why one can hardly compute the diffusion coefficient at smaller K is clear
from the inspection of the dependence of the variance on time in Fig. 12. For small K

one observes a normal diffusion only when the variance exceeds ≈ 1, below this value the
diffusion looks like anomalous one with the variance proportional to a power of time. This
means that a “random walk” inside the periodicity cell [0,2π) is highly correlated, while
only cell-to-cell walk demonstrates a normal diffusion. For small K the mean first passage
time to the next cell becomes extremely large—nearly 109 for K = 0.03, while for K < 0.03
this mean passage time is of order or larger than the total integration time and only the
anomalous diffusion is observed.

The obtained properties of diffusion should be contrasted to the properties of LEs, as
both quantities give some characteristic times of the system. We have demonstrated that
these times become extremely different for small non-integrabilities, as the Lyapunov expo-
nent λ ∼ K1/2 decreases rather weakly with K while the diffusion constant D ∼ K6.5 drops
much more rapidly. We interpret this as indication that chaos is mainly “local”, not leading
to large deviations of variables. This picture corresponds well to the discussed above effec-
tive resonances as the origin of chaos: in the triple resonance described above in Sect. 4, the
sum of all momenta is a conserved quantity, so that the chaotic dynamics like in Fig. 11 does
not lead to a large deviation of momenta involved in the resonance. Indeed, there is strong
chaotic dynamics inside the triplet resonance, but the sum of three resonant actions is a
constant in the resonance approximation that would give a zero diffusion coefficient D = 0.
However, the resonant approximation is not exact and it is destroyed by nonresonant terms
and higher order perturbations that leads to a finite value of the diffusion D ∼ K6.5. A mix-
ture of strong chaos, which is however bounded due to an additional integral of motion, and
a slow but unbounded diffusion produced by weak chaos makes the numerical computation
of the diffusion rate a rather difficult task. In fact, usual very powerful methods discussed
in [12], which allowed to compute as small diffusion rate as 10−22, are not working in such
a situation and only computations at very long times allow to determine directly the value
of D.

The physical origins of the power law decay of the diffusion rate with K (13) are still
to be understood. The theoretical heuristic arguments presented in [11] assume that in the
regime of weak chaos a trajectory follows mainly those chaotic resonant layers which have
locally most large size. An optimization over various resonances leads to a certain power
law decay for ws and D which gives νs = e = 2.718 . . . and νD = 1.5 + 2e = 6.936 . . . re-
spectively (we remind that for the Chirikov standard map ws ∝ exp(−π2/

√
2K) [2, 11]).

This theoretical value of the exponent νD is in a satisfactory agreement with the numerical
value found at not very small K values. However, at very small values of K < 10−5 such ar-
guments should be modified to fit an unknown dependence of resonance amplitudes in high
orders of perturbation theory [11]. According to the heuristic arguments [11] the main con-
tribution to diffusion is given by the resonances with an effective resonance harmonic num-
bers M̃0 = ln(1/

√
K) with a dimensionless measure of chaos inside one given resonance

separatrix layer ws . We may argue that the number of such layers grows with M̃0 at least as
M̃2

0 so that the total measure of weak chaos can be estimated as Pwch ∝ M̃2
0 ws ∝ (lnK)2K2.5.

This dependence is in a satisfactory agreement with the data of Fig. 8 (see the dashed curve
there) and the empirical exponent value νwch ≈ 1.6 in (6). Thus we can say that our data for
the measure of weak chaos are in a satisfactory agreement with the numerical results [11].

On the other hand, the origin of such a weak chaos component is still to be clarified. In-
deed, the studies and arguments presented in [11] did not take into account the strong chaos
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based on triplet resonances which exists at arbitrary small K . This strong chaos component
emerges as the result of triple primary resonances but it is clear that a similar mechanism can
work for higher order resonances which may be at the origin of the weak chaos component.
On the other hand, the triple-like resonances of higher order in K should lead to appearance
of a certain number of trajectories with the LEs λ ∝ Km/2 with m ≥ 2 that is, however, is
not visible in the distribution of LEs in Figs. 6, 7, 8. It is however, possible that other tiny
chaotic layers hide such contributions. Further studies are required to clarify these points
especially in the regime with large N � 15. An indication on the complex internal structure
of weak chaos provides Fig. 9 above, which demonstrates how a trajectory visits regions
with different LEs along a very long evolution.

6 Spreading of Chaos

Above we discussed the local properties of chaos computing the Lyapunov exponents and
the diffusion rate in the regime when all nonlinear oscillators are populated in the initial
state. Another type of question appears for the model C2 (3) when only one of few nearby
oscillators are initially excited with the total energy Etot = 1 and γ = 1 while all other os-
cillators have zero energy. Since the total energy is conserved we face the question on a
possibility of energy spreading over the whole lattice of size N . This is related to the ques-
tion of ergodicity of large finite lattices at small energies. In the case when both nonlinear
terms in the Hamiltonian (the local potential and the coupling) have the same power (e.g.
the coupling has power 4 instead of 6, such a model can be called model C44) then it is
known that a thermalization takes place at arbitrary small total energy according to the ar-
guments given in [45]. Of course, the time for such global ergodicity grows as a power of
system size N . For models with a nonlinear destruction of the Anderson localization, we
have the terms with powers 2 for local potential and 4 for coupling in (3), which we call
model C24. In this case it is found that a slow subdiffusive spreading over the lattice takes
place up to very long times t ∼ 109 (see details in recent papers [24–26, 30–33, 35, 45]).
The model C2 corresponds to a new situation for energy spreading when the unperturbed
integrable Hamiltonian is nonlinear and the coupling between nonlinear modes has higher
nonlinearity. In contrast to the FPU problem, here the coupling between modes is local and
the randomness in local nonlinear frequencies ηk excludes any proximity to a full hidden
integrability.

Let us assume that in model C2 with the above local initial conditions the energy spreads
over the whole lattice of N oscillators with an approximate energy equipartition over N

sites. After a rescaling of variables of this final state to a new time τ → N1/4t we come to the
model C2 with γ ∼ 1/

√
N and a homogeneous initial condition, discussed in the previous

sections. In general, the probability of strong chaos in such a case scales as Pch ∝ γN ∝ √
N

so that we expect local strong chaos to occur almost surely in a sufficiently long lattice.
The same it true for the probability of weak chaos even if in this case the sum value of
the exponents in N is close to zero. Although the probability to observe chaos is high, it
is important to note that this chaos is mainly local: some modes are chaotic, e.g. triplets
discussed above, but other modes generally oscillate nearly quasiperiodically. Indeed, in a
system with many degrees of freedom some modes can be chaotic while others can be close
to integrable ones, without any contribution to the maximal LE. Thus, it is not obvious if the
local strong chaos can allow spreading from initial local state over the whole lattice.

Let us present here simple estimates on the possible rate of such a spreading using results
for the diffusion in the weak chaos component. We assume that a chaotic spreading populates
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Fig. 13 Left panel: Spreading of the second moment (Δk)2 = ∑
k(k − k0)Ek/

∑
k Ek and participation

number P = (
∑

k Ek)2/
∑

k E2
k

(inset) vs. time for initial single site excitation k0 = 0 in model C2. Data

up to t = 107 (empty circles) has been averaged over 1000 realizations of disorder and logarithmic time
windows. Long-time values until t = 108 (full circles) were averaged over 24 realizations. Dashed lines
show subdiffusive growth (Δk)2 ∼ tα and P ∼ tα/2 where the fit of the asymptotic behavior (t > 105) gave
α = 0.55 ± 0.01. Right panel: energy distribution Ek in model C2 at certain moments of time t = 103, 105,
107 for one specific realization of disorder

the number of modes L at time t . Using rescaling given above we can argue that the new
mode L + 1 will be populated due to the weak chaos diffusion after a time scale ts/L

1/4 ∼
1/D(γ ) ∼ γ −νD ∼ LνD/2. This gives us an effective local diffusion rate in N with L2/t ∼
1/ts ∼ 1/L(2νD+1)/4 leading to the subdiffusive growth of the second moment L2:

L2 ∼ tα, α = 8/(9 + 2νD). (15)

For νD = 6.5 we obtain α = 0.3636. However, our results for spreading, shown in Fig. 13,
give approximately α = 0.55 that corresponds to νD ≈ 2.77. We explain this difference in
the following way. At the maximum time tmax = 108, reached in our numerical simulations,
the energy spreads over a number of modes L ∼ t

α/2
max so that we have an effective γ ∼

1/
√

L ∼ 0.02 which is only at the beginning of the decay with the exponent νD shown in
Fig. 12(right panel), if we assume a simple relation γ = K , which however still may have
an additional numerical factor. It is interesting to note that the case with νD = 0 corresponds
to independence of D on N after rescaling that is the case for nonlinear model C44 (with
both potentials having power 4 in (3)) where the spreading goes indeed with the exponent
α = 8/9 as it is shown in [45].

An indirect support to the view point according to which at tmax = 108 we still did not
reach the asymptotic spreading exponent α = 0.3636 is based on the numerical compu-
tation of the diffusion rate in an additional effective degree of freedom described by the
equation dzk/dt = qk sin(ωt), where qk are dynamical variables in model C1 (3). Solv-
ing these equations in parallel with the dynamical equations of motion for qk we deter-
mine the effective diffusion constant Dzk(ω) for each particle k at N = 8. To suppress
regular quasiperiodic oscillations we use the window averaging method described in [12]
computing first the average z̄k(j) = ∫ (j+1)T

jT
zk(t) sin6(2πt/T )dt/

∫ (j+1)T

jT
sin6(2πt/T )dt

over time interval T = 106 and determining the diffusion for each k via the relation
Dzk(ω) = ∑

j ′>j≥1(z̄k(j)− z̄k(j
′))2/((j ′ −j)T ). The computation is done for one trajectory

with total time t = 107. The initial particle energies are chosen to be Ek = p2
k/2 + q4

k /4 ≈ 1
at qk = 0. At γ = 0 we have the particle action Ik = Γ (1/4)E

3/4
k /(2

√
πΓ (7/8)) and non-
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Fig. 14 Diffusion Dzk(ω) in z-variable for particles k = 1, . . . ,8, shown by different color symbols, in
model C1 at N = 8 and γ = 1.0965 × 10−2 (left), 1.5849 × 10−3 (middle), 1.2023 × 10−4 (right). The
straight line shows the dependence Dzk ∝ exp(−ω/

√
γ )

linear frequency ωk = ∂H/∂Ik = 8
√

πΓ (1/4)E
1/4
k /(3Γ (7/8)) ≈ 1.2E

1/4
K ≈ 1.2. The de-

pendence of Dzk on frequency ω is shown in Fig. 14 for all k values. In fact, Dzk(ω) gives
us the spectral density of an effective noise produced by dynamical chaos. According to the
results obtained for the modulational diffusion [12], the spectrum of Dzk(ω) is expected to
have a plateau of width Δω centered at the resonance ωk ≈ 1.2, followed by an exponen-
tial drop Dzk(ω) ∝ (1/Δω) exp(−|ω − ωk|/Δω). In the picture of triplet resonance we have
Δω ∼ √

γ . The data of Fig. 14 are in a satisfactory agreement with such a picture showing a
decrease of the plateau size with the decrease of γ . The plateau is followed by an exponen-
tial drop. However, at γ ∼ 0.01 the spectral width Δω is still rather large being comparable
with ωk ∼ 1. At such spectral width even the oscillators that are not directly involved in the
triplet resonance still will be affected by it. This is probably the reason why up to γ ∼ 0.02
we have the spreading of chaos with the exponent α ≈ 0.6 corresponding to a usual diffusion
D ∝ γ 2 in model C2. At γ ∼ 10−4 the spectral width becomes notably smaller than unity
but one needs to go to enormously large times tmax ∼ 1026 to reach such effective values
of γ during spreading of chaos. The value K ∼ γ ∼ 10−5 where there is a change in the
dependence D(K) detected by Chirikov and Vecheslavov (see Fig. 1 in [11]) would require
times at least as large as tmax ∼ 1033. Definitely such times remain out of reach of modern
computations.

On the basis of presented results and discussions we can say that the spreading of chaos
over the nonlinear oscillator lattice of model C2 (3) goes in a subdiffusive way (15) with the
exponent α ≈ 0.55 up to times t ∼ 108. In view of the result of Chirikov and Vecheslavov for
the fast Arnold diffusion (13) [11] it is possible that the exponent will go down to α ≈ 0.36
at times t > 1026. The properties of chaos spreading behind times 1033 remain absolutely
unknown. During this anomalous slow growth of the wave packet size, the chaotic spreading
follows the Arnold web of tiny chaotic layers propagating mainly along mostly thick ones.
However, from time to time a trajectory can go inside thinner layers that leads to a strong
drop of local diffusion and propagation rates, as well as a significant drop of LE (see, e.g.,
Fig. 9). It is quite possible that in this regime the energy Ek distribution over the populated
modes L(t) is still more or less homogeneous, as it is seen in Fig. 13, however, we expect
this state to be not ergodic within these N modes since chaos is presumably confined inside
some “porous medium” of Arnold web with very complex structure and topology. In course
of spreading, the energy per excited oscillator goes down to zero, so that such a process can
be considered as an unusual non-ergodic cooling.

The spreading of chaos discussed above goes in a very slow way, so the question of
a separation of time scales arises. It is natural to introduce a relaxation time tr = 1/λ as
an inverse maximal Lyapunov exponent, and to compare it with the observation time tobs
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(because the spreading follows a power law, there is no other intrinsic macroscopic time
scale). The ratio of these times is very small:

DR = tr/tobs ∼ 1/(λtobs) � 1. (16)

We denoted this dimensionless parameter DR because of an interesting parallel with slow
rheology processes characterized by small values of the Deborah number [49], which is
defined also exactly as in (16) with the same meaning of the characteristic times: tr is a time
scale of local relaxation process and tobs is a time of observation. The values of DR � 1
correspond to a liquid-like phase while DR � 1 appears for a solid phase.

At our initial state with one or few excited oscillators the relaxation time is small tr ∼
1/λ ∼ 1, while the observation time of spreading is tobs ∼ 108 for our numerical simulations.
Thus we have extremely small values of DR ∼ 10−8 for our studies. The parallels with
rheology processes, which are actively studied in soft matter and porous materials (see e.g.
[50, 51]), appear to be rather deep, on the basis of the following arguments:

(i) in rheology the flow processes are characterized by small DR values that is exactly the
case for chaos spreading in model C2;

(ii) often a spreading in a porous media is described by a nonlinear diffusion for a density
ρ(x, t) [52]:

∂ρ/∂t = D0∂(ρa∂ρ/∂x)/∂x (17)

and it was shown recently that this equation gives a good phenomenological description
of chaos spreading in nonlinear lattices [32]; the reason for this validity appears to lie
exactly in the good separation of time scales for relaxation and spreading;

(iii) the Arnold web of chaotic resonance layers forms some kind of a “porous medium”
along which energy can spreads to larger and larger sizes.

Recent experiments on gel formed by attractive colloidal hard spheres, suspended in an
aqueous solvent, show that the spreading of gel is indeed well described by such type of a
nonlinear diffusion equation (17) with a nonlinear flux term [53]. The theoretical models of
rheology flow try to explain such a spreading by phenomenological statistical models with
disorder and metastability (see e.g. [54, 55]). In contrast to such statistical models, our “rhe-
ology” of chaos spreading has purely dynamical and deterministic origin. Nevertheless, we
expect that an analogy to rheology may help in constructing a phenomenological description
of chaos spreading.

The value of DR given above should be considered as a global simplified estimate. It
is also important to see how DR varies with the time tobs in course of spreading. For the
model C2 we have λ ∼ Ik ∼ E

3/4
k ∼ N−3/4 ∼ t

−3α/8
obs and hence from (16) we find DR(t) ∼

1/t
1−3α/8
obs ∝ 1/t0.78

obs . Thus in this model DR → 0 at tobs → ∞ thus suggesting a continuation
of spreading for infinitely large times. The same criterion applied to the DANSE model,
which describes the Anderson model with nonlinearity β|ψ |2 and was studied in [24], gives
λ ∼ I ∼ β/N ∼ β/t

α/2
obs and thus DR ∼ 1/(βt

(1−α/2)

obs ) still goes to zero in the limit of large
times (α ≈ 1/3 for DANSE). The above arguments show that for the nonlinearity β|ψ |2a

studied in [32] we have λ ∼ I a ∼ 1/t
αa/2
obs and DR ∼ 1/t

(1−αa/2)
ons → 0 even for a = 2,3 (see

corresponding values of α given in [32]). Indeed, the numerical results of [32] show an
infinite spreading for such values of a.
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The above discussion shows that weakly nonintegrable many-body Hamiltonian systems
give a new interesting example of “rheology” of chaotic dynamics. These systems are ruled
by purely deterministic and rather simple Hamiltonian equations of motion. Exploring fur-
ther statistical properties of such a deterministic rheology, generated by Hamiltonian many-
body dynamics, is an important task for future studies.

7 Conclusion

In this paper we studied properties of non-integrable Hamiltonian lattices focusing on the
regimes of very weak non-integrability. Our main results are scaling relations for the proba-
bility to observe strong chaos with the largest possible Lyapunov exponent. This probability
is proportional to the product of the coupling parameter and the lattice length, while the
Lyapunov exponent scales as a square root of the coupling constant. This behavior is ex-
plained by the observation that strong chaos is mainly due to resonances that appear when
three neighboring sites occasionally have close frequencies. Because both the frequency
mismatch and the characteristic time scale of the resonance are proportional to a square root
of the perturbation parameter, the relations above directly follow from this scaling.

Furthermore, we confirm previous calculations showing that the diffusion time scale at
weak non-integrability is much larger than the inverse Lyapunov exponent, and relate this
to a weak diffusion inside the weak chaos component. The measure of this component de-
creases only algebraically with the strength of nonlinear coupling between nonlinear oscilla-
tors. The obtained results are in a good agreement with the fundamental finding of Chirikov
and Vecheslavov [9–11] who first discovered this regime, with only algebraic decrease of
the measure of chaos and diffusion rate at rather small perturbations, and named it the fast
Arnold diffusion. This regime is below the strong stochasticity threshold in terms of Pettini
et al. [21] (see Fig. 5 where a crossover in the dependence of the Lyapunov exponent on
the parameter K lies at K ≈ 0.1). An extension of the theory of weak chaos based on the
considerations of curvature fluctuations along trajectories [21] appears to be an interesting
task for future work.

We also studied the spreading of chaos in such coupled nonlinear lattices showing that
the spreading goes in an anomalous subdiffusive way. The link between the exponent of this
spreading and the fast Arnold diffusion are also determined.

As already mentioned in the introduction, one has to distinguish weakly nonlinear and
weakly non-integrable systems. There is, however, some analogy between the dynamics of
weakly nonintegrable lattices studied in this paper and random lattices with weak nonlin-
earity [24, 25, 33, 34, 36]. We consider homogeneous lattices, where resonances appear
randomly due to random choice of initial conditions. In random weakly nonlinear lattices
resonances are determined by a lattice disorder. So in both cases one can expect that chaos is
mainly sitting on resonances. For nonlinear homogeneous lattices, resonances can “move”
as the energies on different lattice sites vary, while in weakly nonlinear disordered lattices
the resonances are due to disorder and thus are “pinned”. The properties of chaos spreading
in the latter case require separate investigations.

Acknowledgements We thank S. Fishman for useful discussions. A.P. thanks UPS, Toulouse for hospi-
tality and support, DLS thanks Univ. of Potsdam for hospitality during visits in 2009, 2010. The work was
supported by DFG via grant PI220/12. We thank ZEIK (Univ. Potsdam) and HLRS Stuttgart for providing
the computer facilities.



Strong and Weak Chaos in Weakly Nonintegrable 1273

References

1. Poincaré, H.: Acta Math. 13, 1 (1890)
2. Chirikov, B.V.: Phys. Rep. 52, 265 (1979)
3. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1992)
4. Arnold, V.I.: Dokl. Akad. Nauk SSSR 156, 9 (1964)
5. Chirikov, B.V.: Research concerning the theory of non-linear resonance and stochasticity. Report 267,

Inst. of Nuclear Phys., Novosibirsk (1969) [English CERN Trans. 71-40, Geneva (1971)]
6. Nekhoroshev, N.N.: Usp. Mat. Nauk 32(6), 5 (1977)
7. Lochak, P.: Usp. Mat. Nauk (Russ. Math. Surv.) 47(6), 57 (1992)
8. Kaloshin, V., Levi, M.: SIAM Rev. 50(4), 702 (2008)
9. Chirikov, B.V., Vecheslavov, V.V.: KAM integrability. In: Rabinowitz, P.H., Zehnder, E. (eds.) Analysis,

et cetera. Research Papers Published in honor of Jurgen Moser’s 60th Birthday, p. 219. Academic Press,
New York (1990)

10. Chirikov, B.V., Vecheslavov, V.V.: J. Stat. Phys. 71, 243 (1993)
11. Chirikov, B.V., Vecheslavov, V.V.: Sov. Phys. JETP 85(3), 616 (1997) [Zh. Eksp. Teor. Fiz. 112, 1132

(1997)]
12. Chirikov, B.V., Lieberman, M.A., Shepelyansky, D.L., Vivaldi, F.: Physica D 14, 289 (1985)
13. Fermi, E., Pasta, J., Ulam, S., Tsingou, M.: Los Alamos Report No. LA-1940, 1955 (unpublished)
14. Fermi, E.: Collected Papers, vol. 2. University of Chicago Press, Chicago (1965). 978 pages
15. Campbell, D.K., Rosenau, P., Zaslavsky, G. (eds.): A focus issue on “The “Fermi-Pasta-Ulam”

Problem—The First 50 Years”. Chaos 15(1) (2005)
16. Gallavotti, G. (ed.): The Fermi-Pasta-Ulam Problem. Springer Lecture Notes in Physics, vol. 728 (2008)
17. Benettin, G., Livi, R., Ponno, A.: J. Stat. Phys. 135(5–6), 873 (2009)
18. Pettini, M., Landolfi, M.: Phys. Rev. A 41(2), 768–783 (1990)
19. Pettini, M., Cerruti-Sola, M.: Phys. Rev. A 44(2), 975–987 (1991)
20. Casetti, L., Cerruti-Sola, M., Pettini, M., Cohen, E.G.D.: Phys. Rev. E 55(6), 6566–6574 (1997)
21. Pettini, M., Casetti, L., Cerruti-Sola, M., Franzosi, R., Cohen, E.G.D.: CHAOS 15, 015106 (2005)
22. Shepelyansky, D.L.: Phys. Rev. Lett. 70, 1787 (1993)
23. Molina, M.I.: Phys. Rev. B 58(19), 12547 (1998)
24. Pikovsky, A.S., Shepelyansky, D.L.: Phys. Rev. Lett. 100(9), 094101 (2008)
25. Garcia-Mata, I., Shepelyansky, D.L.: Eur. Phys. J. B 71(1), 121 (2009)
26. Flach, S., Krimer, D.O., Skokos, C.: Phys. Rev. Lett. 102(2), 024101 (2009)
27. Skokos, C., Krimer, D.O., Komineas, S., Flach, S.: Phys. Rev. E 79(5, Part 2), 056211 (2009)
28. Mulansky, M., Ahnert, K., Pikovsky, A., Shepelyansky, D.L.: Phys. Rev. E 80, 056212 (2009)
29. Skokos, Ch., Flach, S.: Phys. Rev. E 82(1), 016208 (2010)
30. Flach, S.: Chem. Phys. 375(2–3), 548 (2010)
31. Laptyeva, T.V., Bodyfelt, J.D., Krimer, D.O., Skokos, Ch., Flach, S.: Europhys. Lett. 91(3), 30001

(2010)
32. Mulansky, M., Pikovsky, A.: Europhys. Lett. 90, 10015 (2010)
33. Johansson, M., Kopidakis, G., Aubry, S.: Europhys. Lett. 91(5), 50001 (2010)
34. Basko, D.M.: Weak chaos in the disordered nonlinear Schroedinger chain: destruction of Anderson lo-

calization by Arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011). Spec. Iss.
35. Krimer, D.O., Flach, S.: Phys. Rev. E 82(4, Part 2), 046221 (2010)
36. Pikovsky, A., Fishman, S.: Phys. Rev. E 83, 025201 (2011)
37. Wang, W.-M., Zhang, Z.: e-print arXiv:0805.3520 (2008)
38. Bourgain, J., Wang, W.-M.: J. Eur. Math. Soc. 10, 1 (2008)
39. Kaneko, K., Konishi, T.: Phys. Rev. A 40(10), 40 (1989)
40. Konishi, T., Kaneko, K.: J. Phys. A 32, L715 (1990)
41. Falcioni, M., Paladin, G., Vulpiani, A.: Europhys. Lett. 10(3), 201 (1989)
42. Falcioni, M., Marconi, U.M.B., Vulpiani, A.: Phys. Rev. A 44, 2263 (1991)
43. Lichtenberg, A.J., Aswani, A.M.: Phys. Rev. E 57(5), 5325 (1998)
44. Ahnert, K., Pikovsky, A.: Phys. Rev. E 79, 026209 (2009)
45. Mulansky, M., Ahnert, K., Pikovsky, A.: Phys. Rev. E 83, 026205 (2011)
46. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1992)
47. Chirikov, B.V., Shepelyansky, D.L.: Sov. J. Nucl. Phys. 36, 908 (1982)
48. Shepelyansky, D.L.: Phys. Rev. E 82, 055202(R) (2010)
49. Reiner, M.: The Deborah number. Phys. Today 17(1), 62 (1964)
50. Malkin, A.Ya., Isayev, A.I.: Rheology: Concepts, Methods, & Applications. ChemTech Publ., Toronto

(2006)

http://arxiv.org/abs/0805.3520


1274 M. Mulansky et al.

51. Rao, M.A.: Rheology of Fluid and Semisolid Foods: Principles and Applications. Springer, Berlin
(2007)

52. Barenblatt, G.I.: Scaling. Cambridge Univ. Press, Cambridge (2003)
53. Brambilla, G., Buzzaccaro, S., Piazza, R., Berthier, L., Cilelleti, L.: Phys. Rev. Lett. 106, 118302 (2011)
54. Sollich, P., Lequeux, E., Hébraud, P., Cates, M.E.: Phys. Rev. Lett. 78, 2020 (1997)
55. Sollich, P.: Soft glassy rheology. In: Weiss, R.G., Terech, P. (eds.) Molecular Gels: Materials with Self-

assembled Fibrillar Networks, p. 161. Springer, Berlin (2006)


	Strong and Weak Chaos in Weakly Nonintegrable Many-Body Hamiltonian Systems
	Abstract
	Introduction
	Basic Models
	Lyapunov Exponents and Their Scaling
	Lyapunov Exponents
	Scaling of Probability to Observe Chaos
	Scaling of the Lyapunov Exponent
	Strong and Weak Chaos

	Resonances as a Source of Chaos
	Properties of Diffusion and Weak Chaos
	Spreading of Chaos
	Conclusion
	Acknowledgements
	References


