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Spreading in disordered lattices with different nonlinearities
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Abstract – We study the spreading of initially localized states in a nonlinear disordered lattice
described by the nonlinear Schrödinger equation with random on-site potentials —a nonlinear
generalization of the Anderson model of localization. We use a nonlinear diffusion equation
to describe the subdiffusive spreading. To confirm the self-similar nature of the evolution we
characterize the peak structure of the spreading states with help of Rényi entropies and in
particular with the structural entropy. The latter is shown to remain constant over a wide range
of time. Furthermore, we report on the dependence of the spreading exponents on the nonlinearity
index in the generalized nonlinear Schrödinger disordered lattice, and show that these quantities
are in accordance with previous theoretical estimates, based on assumptions of weak and very
weak chaoticity of the dynamics.
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In disordered 1D lattices, all eigenmodes are exponen-
tially localized due to Anderson localization [1]. These
models first appeared in the area of disordered electronic
systems [2,3], but they are also applicable to a wide vari-
ety of phenomena in a general context of waves (optical,
acoustical, etc.) in disordered media [4–6]. Localization
effectively prevents spreading of energy in such situations.
By considering waves of large amplitudes, one faces

nonlinearity and naturally encounters the question
whether the nonlinearity destroys the localization or
not. Although this question has already been addressed
numerically [7–12], experimentally in BECs [13–15] and
optical waveguides [16,17] as well as mathematically [18],
a full understanding is still elusive. It is easier to under-
stand how nonlinearity destroys localization leading to
thermalization [19] and self-transparency [20] in short
random lattices, than to analyze asymptotic regimes
at large times in long lattices. For the latter setups a
similarity between the quantum kicked rotor and a 1D
Anderson model [21–23] has provided an alternative
realization of the effects of nonlinearity.
In this paper, we study the structural properties of the

spreading field in nonlinear disordered lattices, focusing
on their dependence on the nonlinearity index. Indeed,
initial studies of the spreading of perturbations [7,9,10]
have been almost exclusively restricted to the behavior
of the second moment of the distribution and of the
participation number. These quantities, however, do not

allow one to distinguish between all possible scenarios.
In particular, the second moment of the distribution
can grow due to a uniform spreading of the field, but
also when localized packages move in opposite directions.
Additionally, both these processes may coexist with some
bursts that do not spread at all. In order to resolve these
structural features in a statistical way, we apply for the
first time a characterization of the spreading fields in
nonlinear lattices with generalized Rényi entropies. For
guidance, we compare the spreading properties with that
of the nonlinear diffusion equation and study the relation
between the effective diffusion index with the nonlinearity
index of the original model.
Our basic model is described by the following gener-

alization of the Discrete Anderson Nonlinear Schrödinger
Equation (gDANSE):

i
d

dt
ψn = Vnψn+ψn−1+ψn+1+β|ψn|

2αψn . (1)

Here n= 1, . . . , N is the lattice site index and Vn is the
uncorrelated random potential, chosen uniformly from the
intervall [−W/2,W/2]. The coefficient β is proportional
to the nonlinear strength (hereafter we assume a normal-
ization

∑

n |ψn|
2 = 1). In this work, we consider only the

case β = 1 and W = 4. The parameter α, which we call
nonlinearity index, is a novelity compared to the standard
DANSE model with α= 1 [9,10]. Without nonlinearity
β = 0, eq. (1) is a standard Anderson model describing a
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disordered lattice. The Hamilton operator can then be
diagonalized, leading to a system of eigenfunctions Φk,n
with energy eigenvalues ǫk. An arbitrary wave function
ψ can be decomposed into these eigenfunctions ψn =
∑

k CkΦk,n, with Ck(t) =Ck(0)e
−iǫkt. With nonvanishing

nonlinearity, this decomposition into eigenfunctions of the
linear part of the Hamilton operator is still possible, but
now the coefficients Ck are coupled through a nonlinearity:

i
d

dt
Ck = ǫkCk +βN (C). (2)

The expression for the nonlinear term N (C) is rather
cumbersome (see [11] for details). In the case of integer
indices α= 1, 2, 3, . . . the nonlinear coupling N (C) can be
simplyfied by introducing an overlap matrix V of 2α+2
eigenfunctions. Using this, eq. (2) reads as

iĊk = ǫkCk

+β
∑

n̂1...n̂α
ñ1...ñα

n̄

V n̂1...n̂α
ñ1...ñα
n̄,k

Cn̂1 · · ·Cn̂αC
∗

ñ1
· · ·C∗ñαCn̄.

For the gDANSE model (1) one is interested in the
spreading of initially bounded perturbations (i.e. at time
t= 0 only several sites of the lattice are excited ψn �= 0
while ψn = 0 outside). Because linear modes Φk,n are expo-
nentially localized, these initial states are equivalent to
an initial seeding of a finite number of modes. A qualita-
tive picture of the spreading, based on eq. (2), looks as
follows: the nonlinear coupling leads to chaotic dynamics
of excited modes, as result a chaotic force acts on nonex-
cited modes and leads to their growth, and so on. Although
several attempts to explain the detailed mechanisms of
spreading have been made based on nonlinear eigenmode
interactions (see, e.g., [10] and [22]) a convincing, detailed
description could not be found, yet. This relates to a still
missing general understanding of statistical properties of
weak chaos in high-dimensional Hamiltonian systems (cf.
concept of fast Arnold diffusion developed by Chirikov and
Vecheslavov [24]). Nevertheless, simplifying assumptions
allowed to develop a phenomenological picture of a slow,
subdiffusive spreading [9,10,22]. One of the aims of our
work is to test these pictures by numerics.
As the spreading is induced by the nonlinear term in

eq. (1), we suggest as a phenomelogical description the
nonlinear diffusion equation for the probability density
ρ= |ψ|2:

∂ρ

∂t
=D

∂

∂x

(

ρa
∂ρ

∂x

)

, (3)

where the effective diffusion coefficient obeys a power law
dependence ∼ρa. Note, that at the moment we do not see a
way to derive (3) from the DNLS (1) directly, as for this a
detailed theory of the microscopic chaos is needed. Neither
do we claim that a solution of (1) satisfies (3). Our hope,
however, is that the nonlinear diffusion equation provides
a reasonable framework for an average spreading behavior

Fig. 1: (Color online) Absolute square of wave functions |ψn|
2

for different nonlinearity indices and times. From top to
bottom: α= 0.5, t= 104 (green); α= 1, t= 105 (red); α= 2,
t= 108 (blue). W = 4.0, β = 1.0, N = 1024 in all three cases.
The curves are shifted vertically for a better visibility. The inset
shows the self-similar solution (4) of the nonlinear diffusion
equation for increasing times t (top to bottom).

of localized states in the DANSE model, to be compared
with numerical findings.
Asymptotically, for a> 0, the spreading in (3) is

described by the self-similar solution (see inset in fig. 1)

ρ=

⎧

⎨

⎩

(Dt)−1/(2+a)
(

A− ax2

2(a+2)t2/(2+a)

)1/a

, x < x0,

0, x > x0,
(4)

here A is a constant fixed by the normalization condition
∫

ρdx= 1. The position of the edge of the spreading field
x0 has the following time dependence:

x0 =

√

2A
2+ a

a
(Dt)2/(2+a) ∼ t1/(2+a). (5)

In order to characterize the spreading in gDANSE quan-
titatively and to compare it with the nonlinear diffusion
model, one interpretes ρn = |ψn|2 as probability at site n
and uses typically the mean squared deviation (∆n)2 =
〈(n−〈n〉)2〉 and the so-called participation number P−1 =
∑

n ρ
2
n. Here we suggest to also use Rényi-Entropies [25]

as a new characterization tool:

Iq =
1

1− q
ln
∑

n

ρqn =
1

1− q
ln
∑

n

|ψn|
2q. (6)

Obviously, Iq→1 = S =−
∑

n ρn ln ρn is the usuual Shan-
non entropy, while the participation number is P = eI2 .
For the self-similar evolution governed by the nonlinear

diffusion equation (4), the variance (∆x)2 =
∫

x2ρ(x)dx
as well as the Rényi entropies Iq =

1
1−q ln

∫

ρ(x)qdx can
be evaluated analytically:

(∆x)2 = (Dt)
2
2+a
2(2+ a)B

(

a+1
a ,

3
2

)

aB
(

a+1
a ,

1
2

) , (7)
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Fig. 2: (Color online) Evolution of the entropies Iq (calculated
using logarithm with base 10) in the gDANSE (1) with α=
β = 1. The solid line has slope 0.162, it is drawn as a linear fit
for the growth of the Shannon entropy I1 = S.

Iq =
1

2+ a

(

lnDt+ ln

(

2(a+2)

a

))

−
a+2q

(a+2)(1− q)
lnB

(

a+1

a
,
1

2

)

+ lnB

(

a+ q

a
,
1

2

)

, (8)

where B(x, y) is the Beta-function. In this self-similar
situation all the entropies grow with the same rate.
Correspondingly, the asymptotic growth indices of the
entropies and of the mean square displacement defined as

exp(Iq)∼ t
νq , (∆x)∼ tνvar (9)

have the same value νq = νvar =
1
2+a .

The main goal of introducing Rényi entropies as charac-
terization of the spreading is to control the peak structure
of the field, in a similar way as these entropies are used in
the multifractal formalism. Indeed, the parameter q deter-
mines the sensitivity of Iq on the peaks of the distribution
ρn. Larger values of q emphasize the high peaks while
for small values of q the background of the distribution
governs Iq (the entropy I0 characterizes the support of the
distribution). Therefore, if there are large peaks that do
not spread (but, e.g., just drift), then the Rényi entropies
with large q will not grow. Following the evolution of these
entropies, we can visualize changes in the peak structure
of the distribution.
Figure 1 shows exemplary averaged wave functions for

three different values of α= 1, 2, 3 at times t= 104, 105

and 108. One clearly still sees the peaked plateau even
though these wave functions were already averaged over
time windows and disorder realizations.
In fig. 2 we show the evolution of Rényi entropies

for the “standard” nonlinearity index α= 1. We stress
that for these calculations no averaging of the wave
function was performed, instead instantaneous entropies
have been averaged over time (over time intervals between
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Fig. 3: (Color online) Structural entropy Sstr vs. time for
different values of α (see label). Parameters values are W =
4, β = 1.0, N = 1024.

succesive markers in the plot) and realizations of disorder.
All entropies with q� 0.5 show almost the same growth
rate for large times. Entropies with very small indices
q= 0.1, 0.25 grow slightly slower, but this is not really
relevant: these entropies effectively measure the support of
the distribution and are dominated by highly fluctuating
exponentially decaying tails of localized eigenmodes Φk,n.
Another way to characterize the peak structure of

the distributions is to look at differences between Rényi
entropies. The mostly suitable choice appears to be the
structural entropy Sstr introduced together with the local-
ization entropy Sloc in [26]:

Sstr = I1− I2 = S− lnP, (10)

Sloc = I2 = lnP. (11)

From this definition, we can say that the entropy is
built from a localization part and a structural part
S = Sloc+Sstr. To see the meaning of the structural
entropy, we calculate it for a uniform distribution of length
L. In this case we find S = lnP = lnL and Sstr = 0. The
(always positive) values of the structural entropy measure
the relative nonuniformity of a distribution. For the self-
similar solution (4) of the nonlinear diffusion equation the
structural entropy, according to (8), is constant.
Figure 3 shows the time dependence of the structural

entropy for different values of the nonlinearity index α
obtained from numerical integration of (1) for an initially
localized wave function (details on the numerical integra-
tion scheme follow later in this text). One can see that
Sstr remained rather constant over time while the local-
ization entropy increased as lnP ∼ ν2ln t (fig. 4). However,
α= 1/2 and α= 1/4 showed a stronger increase of Sstr
than the other values of α. But compared to Sloc, which
exhibits a clear, straight growth over time, the increase
of the structural entropy is rather small. These findings
demonstrate that the peak structure of the spreading wave
function remains constant with time, while the entropies
grow as expected from the delocalization effect induced by
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Fig. 4: (Color online) Time evolution of the localization entropy
Sloc (top panel) and the the second moment (Δn)

2 (bottom
panel) in the gDANSE model for different values of the
nonlinearity index α (see labels in fig. 3). Other parameters
were W = 4, β = 1.0, N = 1024. The lines are numerical fits
(at the final stage of the time evolution) Sloc ∼ ν2 ln t and
(Δn)2 ∼ t2νvar , respectively. Fitting results are plotted in fig. 5.

the nonlinearity. The wave packet spreads uniformly and
is not dominated by a few peaks. This supports validity
of the nonlinear diffusion equation as a suitable model for
the spreading in gDANSE.
Given the nonlinear diffusion equation as a suitable

phenomenological description of the long-time behavior
of the gDANSE model, one still has to find the relation
between the nonlinear term in the gDANSE (1) and the
one in the diffusion equation (3). More precisely, the
relation of α and a is unknown. In the literature, three
approaches have been discussed:

A) a= 2α which will be called strong stochasticity here
and the resulting spreading exponent νA = 0.5/(1+
α) was derived by Flach et al. [10] under the assump-
tion of completely random phases of the eigenmode
amplitudes Ck.

B) a= 3α (weak stochasticity) gives the spreading expo-
nent as νB = 1/(2+ 3α), this law corresponds to early
results of Shepelyansky [22] for the standard DANSE
model and for the quantum kicked rotor model with
nonlinearity.

C) a= 4α (very weak stochasticity) leads to the spread-
ing exponent νC = 0.5/(1+ 2α), this result was
obtained by Flach et al. [10] by applying some
arguments on reduced chaoticity of the excited
modes compared to Shepelyansky’s model.

Note, that in the “standard” case α= 1 these models yield
νA = 1/4, νB = 1/5 and νC = 1/6, respectively.
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Fig. 5: Exponents of the spreading law in dependence of the
nonlinearity index α. Circles are the values obtained from the
numerical fits of (Δn)2 ∼ t2νvar and the triangles come from
the fits of Sloc ∼ ν2 ln t (compare fig. 4). The values are slightly
shifted horizontally for a better distinguishability. The solid
lines are the exponents given by (9) for the three stochasticity
assumptions: A) strong stochasticity, B) weak stochasticity,
C) very weak stochasticity.

To find the spreading exponents we have performed
extensive numerical simulations for different nonlinearity
indices α= 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 3. We took 10
disorder realizations with disorder strenght W = 4 and
lattice size N = 1024 and initialized them with a single
excitation at one lattice site ψn0 = 1. It was found recently
that the energy of the state, which is a conserved quantity,
is crucial for the spreading behavior [19]. Therefore, we
ensured the energy of the states to be |E|< 1 for all of the
initial conditions by artificially setting the potential value
to zero at the starting point Vn0 = 0. Hence, we are always
in the center of the energy band where no breather should
interfere with the spreading behavior. Then we ran the
numerical time evolution based on an operator splitting
and the Crank-Nicolson scheme for the linear part. For
the time discretization we used a step size of ∆t= 0.1. β
was set to 1.0 throughout all simulations. This integration
method is unitary and hence preserves the probability
within the computer accuracy 10−16 and the energy was
fluctuating less than 1% during the simulations. These
simulations were done for each disorder realization and we
computed P , (∆n)2 and Sstr for times between t= 10

4 to
t= 108 (107 for α< 1) and averaged over (exponentially
growing) time windows. Finally, we fitted (∆n)2 ∼ t2νvar

and P ∼ tν2 for each realization separately and then
averaged the results over disorder realizations. This was
repeated for each value of the nonlinearity index α.
In fig. 4, the results of these simulations are shown.

For all values of α subdiffusive spreading has been found,
allowing us to obtain νvar and ν2 for different values of α.
In fig. 5 the numerical results for the spreading exponent
are compared with the exponents derived from the nonlin-
ear diffusion equation for the different assumptions A), B)
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Fig. 6: Left panel: second moment (Δn)2 at time t= 104 vs.
nonlinearity index α. Note the nonlogarithmic scaling of the
α-axis for a better comparability with [12]. Right panel: initial
time evolution of the second moment (Δn)2 for α= 1/16 and
different values of time discretization Δt.

and C). The fits for νvar (points) and ν2 (triangles) gave
very similar results and are both close to the theoretical
estimates νB and νC . The values νA are clearly larger than
the numerical results for all values of α. Note, that the
spreading for α= 2, 3 is quite slow and so the numerical
fits cannot give very relieable results for these parameter
values.
As α approaches zero, all estimates A)–C) converge to

one νA,B,C(α→ 0)→ 1, as the nonlinear diffusion equation
becomes the usual linear one in this limit. For the original
model, in contrast, the nonlinear term changes to a
linear one when α→ 0 and no spreading at all should
be observed as the gDANSE becomes a linear equation
with the Anderson localization property. The riddle is
resolved by noting the role of the constant D(α) in
the nonlinear diffusion equation (3). According to the
Anderson localization picture, we have to set D(0) = 0,
which assures no spreading in the linear case. This picture
corresponds to the recent results by Veksler et al. [12].
They found decreasing spreading exponents for α→ 0
when investigating the short-time behavior up to t=
104 [12]. A closer look on fig. 4 also reveals that for
very small α= 1/16, 1/32 the spreading seems to speed
up between t= 104 and t= 105. The graph in the right
panel of fig. 6 clearifies this as one sees that for α= 1/16
the spreading is delayed roughly up to 104. Furthermore,
this plot examplarily shows the independence of our
results on the time discretization ∆t. Additionally, we
have plotted the values of the second moment at time
t= 104 (left panel in fig. 6) for the different nonlinearity
indices α (note nonlogarithmic scaling of α for a better
comparability with [12]) and the decreasing of (∆n)2

supports the conclusion that D→ 0 for small α. One
clearly sees the maximum at α= 0.25, which corresponds
to the maximum of the initial spreading exponent found
in [12]. Our hypothesis is that the behavior of D(α) could
be estimated via a calculation of Lyapunov exponents of
chaos, to be reported elsewhere.
The main conclusion of this paper is that the spreading

of initially localized states in nonlinear disordered lattices
can be phenomenologically well described by self-similar
solutions of the nonlinear diffusion equation. Its validity

is supported by the finding that different Rényi entropies
grow with the same exponent. In particular, the structural
entropy Sstr was used to measure the relation of the
peaks and the background field in the spreading states.
This quantity was found to remain rather constant during
the spreading in most of the cases, supporting thus
the self-similarity in average of the, however strongly
fluctuating and highly peaked, wave function. We have
shown the nonlinear diffusion equation to be applicable
also in the linear limit of the vanishing nonlinearity
index, if one assumes that the diffusion coefficient vanishes
in this limit as well. We have found numerically that
models of weak and very weak stochasticity give good
approximations for the spreading exponent ν, but based on
our numerics we cannot discriminate them (cf. [27]). Here,
additional studies of microscopic statistical properties
of the underlying chaos are needed. Quite recently, it
was suggested that a crossover between strong and very
weak chaos may occur in the DANSE model [27]. In our
simulations, we could not identify such a crossover. In a
future work a much larger range of system parameters
should be explored in a search for such an effect.
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