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We report on a self-emerging chimera state in a homogeneous chain of nonlocally and nonlinearly coupled
oscillators. This chimera, i.e., a state with coexisting regions of complete and partial synchrony, emerges via a
supercritical bifurcation from a homogeneous state. We develop a theory of chimera based on the Ott-Antonsen
equations for the local complex order parameter. Applying a numerical linear stability analysis, we also
describe the instability of the chimera and transition to phase turbulence with persistent patches of synchrony.
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Populations of coupled oscillators is a paradigmatic
model of nonlinear science, with numerous applications from
purely physical ones such as Josephson junction arrays and
coupled lasers to biologically and even socially important
�1�. One of the most spectacular recent findings are the so-
called chimera states �CSs� which are observed in otherwise
completely synchronizable oscillatory media if the system
starts from certain initial states. CSs are characterized by the
coexistence of complete and partial synchrony in homoge-
neous spatially extended systems. CSs were initially discov-
ered and explained theoretically in �2�, and then received
more analytical treatment in �3�. Following those pioneering
works on CSs, a large body of observations and analysis of
similar regimes has been recently published, see �4�.

In this paper, we add another species to the zoo of chime-
ras. The crucial difference is that our CS does not coexist
with a stable completely synchronous state. It emerges from
a general initial state and is thus denoted as self-emerging.
CS is stable close to the bifurcation, but with a further varia-
tion of the parameter it becomes turbulent, so that synchro-
nous and partially synchronous patches intermingle irregu-
larly. The key elements of our model are Stuart-Landau
oscillators, coupled through a decaying kernel as in the origi-
nal chimera setup, but with a difference that the coupling is
nonlinear in the sense of �5�. We numerically demonstrate
the existence of CS and explain it in the phase dynamics
framework with the help of reduced equations for the local
order parameter. Our main theoretical tools are the equations
for the complex order parameter in the so-called Ott-
Antonsen �OA� equations �6�. They exploit a parametrization
of the probability density for ensembles of sinusoidally
coupled phase oscillators and result in a closed equation for
the order parameter. The OA theory is closely related to the
Watanabe-Strogatz theory �7� which is exact but does not
yield closed equations in terms of the order parameter. A
connection between these two theories has been established
in �8�.

As a basic model we consider a one-dimensional, periodic
in space chain of the length L=2� of nonlocally coupled
identical Stuart-Landau oscillators

�tA = �1 + i�̃�A − �A�2A + �Z , �1�

where A=A�x , t� is the complex amplitude, �̃ is the natural
frequency of the oscillators, Z=Z�x , t� is the coupling force
acting on the oscillator at x, and � is a small coupling con-
stant. The coupling is organized via a convolution of A�x , t�
with the weight function G�x�=ce−�x�,

B�x,t� = �
−�

�

dx�G�x − x��A�x�,t� , �2�

where the constant c ensures that �−�
� G�x�dx=1. The forcing

is then defined as

Z = ei���B��B . �3�

The phase shift ���B��=�0+�1�B�2, chosen in spirit of �5�,
accounts for possible nonlinearity effects in the coupling,
i.e., the dependence of the forcing Z in Eq. �1� on the higher-
order powers of B. The weight function G�x� is kept fixed, so
that by variation of L we change the ratio between the cou-
pling width and the system size.

We integrated Eqs. �1�–�3� using 217 sites in x with �
=0.01, �̃=0, �0=0.4� and �1= �� /2−�0� /0.36 �this choice
of �1 will be apparent later on� using the Runge-Kutta fourth
order scheme. Initial conditions were chosen randomly close
to the completely desynchronized state. To measure the syn-
chronization between adjacent oscillators on a mesoscopic

scale, we calculated the coarse-grained Ā�x , t� by averaging
A�x , t� over 210 closest neighbors. For small L, we observed
a spatially homogeneous, uniformly rotating self-organized

quasiperiodic �SOQ� state with �Ā�= �B��0.6, like in globally
coupled ensembles �5�. This state becomes unstable if the
system size L exceeds the critical value Lc�5.1. For L�Lc,
a spatially modulated profile of �B� emerged, see Fig. 1�a�.
The profile of �Ā� was stationary up to finite-size fluctuations.
Close to the transition, synchronization was only partial,

with �Ā��1 for all x. For L�5.35, the profile of �Ā� reached
unity �see Fig. 1�b��: all oscillators in that region were com-

pletely synchronized. In the regions with �Ā��1 the local
synchronization was only partial. Such state is a stationary
chimera �2,3�. With further increase of L, this regime be-
comes unstable and evolves into a turbulent state where syn-

chronized patches with �Ā��1 appeared at random places
and disappeared after some time, see Figs. 1�c�–1�e�. We call*grigory.bordyugov@uni-potsdam.de
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this state a turbulent chimera. Below, we present a theoreti-
cal description of stationary CSs in terms of a reduced phase
model.

For small coupling �, we can assume that the amplitude of
each Stuart-Landau oscillator remains unperturbed and the
system can be described solely by its phase 	�x , t�. In the
thermodynamic limit, the population is described by a prob-
ability density distribution 
=
�x ,	 , t�. This density obeys
the continuity equation �t
+�	�
v�=0 with the velocity field

v�x ,	 , t�= 	̇=�+Im�Z�x , t�e−i	�, where we rescaled the cou-
pling parameter �→1 by rescaling time and frequency by t
→�t, �= �̃ /�. Next, we define the complex order parameter
by

z�x,t� = rei� = �
0

2�

d	ei	
�x,	,t� ,

so that B�x , t� is expressed as

B�x,t� = b�x,t�ei��x,t� = �
−�

�

dx�G��x − x���z�x�,t� . �4�

Now we apply the theories developed in �6–8� and use the
OA equation for the complex order parameter z�x , t�

�tz = i�z +
1

2
�Z − z2Z�� . �5�

�We justify the applicability of the OA theory towards the
end of the paper.� Equation �5� together with Eqs. �3� and �4�
constitute a closed system which we analyze to study pattern
formation in the domains of various length L. This system

differs from Eqs. �13� and �14� of Laing in Physica D �4� by
the nonlinear phase shift �. With a proper choice of �0 and
�1, Eq. �5� supports three types of homogeneous steady
states: �i� The completely desynchronized one z0=0, �ii� the
fully synchronized one z1=ei1t with 1=�+sin��0+�1�,
and �iii� the intermediate regime of SOQ �5� zsoq=rsoqe

isoqt

with rsoq=	�/2−�0

�1
and soq=�+ 1

2 �1+rsoq
2 �. Due to the nor-

malization of the kernel G, z0, z1, and zsoq persist for all �.
Knowing from �5� that both z0 and z1 are unstable, we focus
on zsoq. A linear stability analysis of zsoq with the perturbation
�ye�t+ikx results in the eigenvalue problem

�
 yeikx

y�e−ikx� =
1

2

L11 L12

L12
� L11

� �
 yeikx

y�e−ikx� ,

where L11= �i�rsoq
2 −1�+��k ,���i−�1rsoq

2 �1−rsoq
2 �� and L12

=��k ,���irsoq
2 −�1rsoq

2 �1−rsoq
2 �� with the �-dependent wave

number factor

��k,�� =
1 + e−��k sin�k�� − cos�k���

�1 − e−���1 + k2�
, �6�

which converges to �1+k2�−1 as �→�. The eigenvalues �1,2
of matrix L depend on both k and �. On the infinite domain,
we find that Re �1�k ,���0 and Im �1,2�k ,��=0 for 0�k

�kc with the critical wave number kc=	 �−2�0

�1+�0−�/2 . With a
finite �, the critical wave number differs from kc since �
enters ��k ,��. The critical system length Lc=2�c at which
the instability occurs, is determined by the condition
Re ��� /�c ,�c�=0. To exemplify the instability, we chose
�0=0.4� and �1 such that �0+�1�0.62=� /2, so that rsoq
=0.6 �cf. numerics of Fig. 1�. Solving the eigenvalue prob-
lem, we obtained the critical length Lc�5.09 �see Fig. 2� in
a nice correspondence with the results of the direct numerical
simulations.

The instability described above results in uniformly rotat-
ing spatially inhomogeneous regimes, thus we look for solu-
tion zch�x , t�=r�x�ei�t+��x�� with unknown , r�x� and ��x�.
For the forcing we assume B�x , t�=b�x�ei�t+��x��. When sub-
stituting this in Eq. �5�, we have to distinguish between two
cases: �i� for regions with r�1 the stationarity/stability con-
ditions yield
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FIG. 1. �Color� Results of simulation of Eq. �1�. �a� and �b�
show stationary patterns, �c�–�e� show a turbulent one. In �a�–�c� we

show profiles of �A� �dotted red line�, �Ā� �solid green line�, and �B�
�long-dashed blue line�. The system size L is specified in each
frame. In �b�, thin pink solid line �largely occluded by the green
one� shows a snapshot from simulation with specially prepared ini-
tial state, see text. In panels �d� and �e�, showing space-time plots of

�Ā� and �B�, respectively, red color �darker in b/w print� encodes
values close to 1, blueish color �brighter in b/w print� encodes val-
ues close to 0. In �d� and �e�, the time span of simulations is 5000
dimensionless time units and L=7.5.
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FIG. 2. The real part of the stability eigenvalues � of zsoq in
dependence on k �the wave number of perturbation�. kc�2� /5.10
denotes the critical wave number.
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r�x� = ��x� − 	�2�x� − 1,

��x� = ��x� + ��b�x�� − �/2, �7�

with the detuning �=−�; �ii� for regions with r=1 we
have

��x� = ��x� + ��b�x�� + arcsin ��x� , �8�

where in both Eqs. �7� and �8� ��x�=� /b�x�. Equations �7�
or �8� plus Eq. �4� constitute a closed system, which we
could not solve analytically. Instead, we found the stationary
CSs in the frame rotating with frequency , employing the
Newton’s method for Eq. �5� discretized in x. In the New-
ton’s calculations, an additional phase pinning condition was
imposed in order to pick up a unique solution from the fam-
ily of phase rotations. The number of unknowns and equa-
tions was then balanced by taking  as an additional un-
known. After the solution zch�x� had been found with a
desired accuracy, we looked at its linear stability by comput-
ing the eigenvalues � of the Jacobian matrix evaluated at
zch�x�. Eigenvalues with positive real parts signalize an in-
stability of zch�x�. For smaller L close to Lc, the profile of
zch�x� shows a moderate sinelike modulation, see Fig. 3�a�.
For larger L, the profile of zch�x� touches unity: a patch of
complete synchronization emerges; this is a genuine CS. This
occurs in the region with b��, see Fig. 3�c�. For our choice
of �0 and �1, the regimes with r�1 for all x are linearly
stable �see Fig. 3�a� and 3�b��, whereas the CS with a syn-
chronized patch with r=1 destabilizes as L increases, cf.
Figs. 3�c�–3�f�. We believe that this instability is inherited

from the instability of z1, due to the presence a plateau of
complete synchronization with �z�=1.

Numerical simulations of Eq. �5� show that beyond the
instability of the stationary CS, a turbulent state occurs,
where a synchronous patch is persistent but appears at dif-
ferent places. We call this state a turbulent chimera. Figures
4�a� and 4�b� show a result of numerical integration of Eq.
�5� for L=7.5. Since the order parameter z must be a coarse-
grained quantity, in numerical simulations we average the z
field over a small spatial interval �in our simulation over 16
neighboring sites� to get z̄. In Fig. 4�a�, the red patches with
coarse-grained �z̄� close to one show a larger degree of local
coherence of oscillators in comparison to the blueish rest.
These coherent regions persist, allowing us to characterize
the irregular state as a chimera turbulence. The forcing mag-
nitude b �cf. Fig. 4�b�� does not show any saturation, irregu-
larly oscillating between smaller �blue color� and larger �red
color� values. A typical final snapshot of the system is shown
in Fig. 4�c�. There is a fully synchronous patch near x /L
�0.5 where �z̄��1.

Now we comment on the applicability of the OA Eq. �5�,
since for identical oscillators under a common forcing the
ensemble dynamics can fall beyond the OA theory �8�. For
nonidentical oscillators, 
�x ,	 , t� asymptotically fulfills the
conditions for the OA theory �one says that a solution is
attracted to the invariant OA manifold� �6�. Here, even
though the oscillators are identical, the force that acts on
them is inhomogeneous in space �see profiles of �B� in Fig.
1�b��, which plays the same mixing role as the nonidentity of
oscillators in �6� and the phase distribution tends to the OA
manifold as well. Indeed, consider the unsynchronized dy-

namics of the phase 	�x , t� under forcing Z=b�x�ei�t+�̃�x��

which is uniformly rotating in time and inhomogeneous in x:

�t	�x� = � + b�x�sin�t − 	�x� + �̃�x�� .

We transform to a uniformly rotating phase ��	�x�� by
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FIG. 3. �Color online� Stationary profiles of r for different sys-
tem sizes L. On the left, r= �z� �solid red line� and b �dashed blue
line� in comparison to � �horizontal short-dashed line� are depicted,
the corresponding stability eigenvalues of the Jacobian matrix are
on the right.
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FIG. 4. �Color� Space-time plots of the coarse-grained order
parameter �z̄� �a� and of b �b� obtained by numerical integration of
Eq. �5� with L=7.5. Red color �darker in b/w print� represents larger
values close to one, bluish �brighter in b/w print� represents smaller
values close to zero. We show simulation results from 1500 to 3000
dimensionless time units. The discretization in space x was done on
1024 sites. �c� Final snapshot of integration from �a� and �b�: Solid
red line shows non-coarse-grained r= �z�, green short-dashed line
shows the magnitude of the coarse-grained z̄, and long-dashed blue
line represents profile of b.
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��	� = 2 arctan
�� − �tan��	 − �̃�/2� − b

��� − �2 − b2�1/2 ,

with �t�= ���−�2−b2�1/2, which immediately results in the
solution ��x , t�=��x ,0�+ t���−�2−b2�1/2. We characterize
the distribution of � with the help of its mth order parameter
given by �eim��x,t��= �eim��x,0���eimt��� − �2 − b2�x��1/2

� �the brack-
ets � · � denote averaging over small x neighborhood as de-
scribed above�. The second average in the product asymp-
totically vanishes for t→� ,m�0 �here, we explicitly used
the nonuniformity of the forcing Z� and hence for large t the
distribution of ��x , t� is uniform. This in turn results in

�	 ,x , t� being on the OA manifold, see �7,8�. Our derivation
is valid only for stationary forcing, in contrast to the more
general analysis of �6�. Additionally, we ran a simulation
with initial condition that strongly violated the OA theory.
This run also resulted in a stationary CS. The profile of �B�
was indistinguishable from the previous simulation with
nearly uniform initial distribution of phases. The profile of

�Ā� �thin solid pink line in Fig. 1�b�� is close to the previous
one up to the finite-size fluctuations in the region of small �B�
values. The differences in �Ā� are mostly pronounced in the
domain with nearly uniform forcing �B�, what agrees with the
aforementioned reasoning. We also followed the deviation
from the OA manifold looking at the quantity ��ei	�2− �ei2	��,
which vanishes on the OA manifold. We found that even for

initial conditions off the OA manifold, asymptotically it al-
ways decreased in time.

Our results can be extended to nonidentical oscillators
with a Lorentzian distribution of frequencies. In this case the
OA theory yields Eq. �5� with an additional damping term
�so that the eigenvalue spectra of CS move from the imagi-
nary axis into the left complex half-plane�, which results in
very similar states with the difference that synchronization is
never complete.

Summarizing, we have demonstrated the existence of chi-
meralike solutions in chains of nonlocally and nonlinearly
coupled oscillators. In our system, chimera appears as a re-
sult of a long-wavelength instability via a supercritical bifur-
cation. Unlike the previously reported CSs �except for CSs in
ensembles of Hodgkin-Huxley neurons in Sakaguchi �4��, we
do not need to prepare initial conditions to avoid complete
synchrony, because it is unstable. CSs can be asymptotically
described within the OA theory even if the initial condition is
not on the OA manifold. As the stationary chimera becomes
unstable, it evolves into a turbulent one. In this regime the
complex order parameter changes irregularly in space and
time, but nevertheless the patches of synchronization appear
persistently. This characterizes the chimera as an important
pattern in the dynamics of nonlinearly coupled oscillators.

We acknowledge financial support from DFG via SFB
555 and useful discussions with Yu. Maistrenko, E. Martens,
O. Omel’chenko, M. Wolfrum, and B. Fiedler.
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