PHYSICAL REVIEW E 82, 016212 (2010)

Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies
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We consider large populations of phase oscillators with global nonlinear coupling. For identical oscillators
such populations are known to demonstrate a transition from completely synchronized state to the state of
self-organized quasiperiodicity. In this state phases of all units differ, yet the population is not completely
incoherent but produces a nonzero mean field; the frequency of the latter differs from the frequency of
individual units. Here we analyze the dynamics of such populations in case of uniformly distributed natural
frequencies. We demonstrate numerically and describe theoretically (i) states of complete synchrony, (ii)
regimes with coexistence of a synchronous cluster and a drifting subpopulation, and (iii) self-organized qua-
siperiodic states with nonzero mean field and all oscillators drifting with respect to it. We analyze transitions
between different states with the increase of the coupling strength; in particular we show that the mean field
arises via a discontinuous transition. For a further illustration we compare the results for the nonlinear model

with those for the Kuramoto-Sakaguchi model.
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I. INTRODUCTION

Collective dynamics of large ensembles of interacting os-
cillatory units received a lot of attention within last decades
[1,2]. However, this subject remains in the focus of attention
of many researchers, with an emphasis on such aspects as
clustering [3], effects of internal delays [4], effects of exter-
nal forcing [5] or feedback [6], interaction of several popu-
lations [7], inhomogeneity in coupling and appearance of
complex dynamical regimes like the so-called chimera states
[8,9], search of exact solutions [9—12], etc.

A topic of particular interest is the effect of different fre-
quency distributions [10,12-14]. So, D. Paz6 [13] demon-
strated that the standard Kuramoto model of phase oscillators
[1] with a uniform frequency distribution exhibits a discon-
tinuous synchronization transition with increase of the cou-
pling strength; this transition can be viewed at as a first-order
phase transition. Contrary to the typical case of a unimodal
distribution, e.g., the Lorentzian one, where the transition is
smooth and the synchronous cluster smoothly grows with the
increase of the supercritical coupling, in the case, studied by
Paz6, in the critical point all oscillators synchronize at once
and therefore the nonzero mean field appears by jump.

In this paper we address dynamics of ensembles with a
uniform frequency distribution and global coupling that is
nonlinear in the sense that parameters of the coupling func-
tion depend on the amplitude of the mean field [15,16].
Namely, we consider phase oscillators with the sinusoidal
coupling and a phase shift which depends on the mean field
amplitude [16].

In case of identical oscillators this model exhibits the
transition from a fully synchronous state to a self-organized
quasiperiodic (SOQ) solution. In the latter state [16], the fre-
quencies of oscillators differ from the frequency of the mean
field; the oscillators are not entrained by the field and there-
fore demonstrate a quasiperiodic dynamics. Although the os-
cillators are identical, their phases are not locked, but also
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not completely incoherent. This regime emerges when the
system settles at the border of stability of the completely
synchronous solution. In case of Lorentzian frequency distri-
bution, the nonlinearity in the coupling results in a nonmono-
tonic dependence of the mean field amplitude on the cou-
pling strength and in the appearance of multistability [17].
Here we analyze an interesting complex dynamics of the
nonlinearly coupled ensemble with a uniform frequency dis-
tribution. We demonstrate numerically and describe analyti-
cally transitions between states of complete synchrony, states
with coexisting synchronous and drifting oscillators, and
self-organized quasiperiodic states. As a particular case of
our theory we discuss the dynamics of the linear Kuramoto-
Sakaguchi model [18].

Our theoretical analysis is based on the Watanabe-
Strogatz theory [19] and the Ott-Antonsen ansatz [10,11].
With the help of these analytical tools we derive closed equa-
tions for the amplitude and frequency of the mean field and
find their stationary solutions.

The paper is organized as follows. Section II introduces
the model and presents a numerical demonstration of the
main effects. In Sec. III we derive the equations for the com-
plex order parameter and determine the critical parameter
values, corresponding to transitions between different states.
In Sec. IV we present more numerical results for the nonlin-
ear and the Kuramoto-Sakaguchi model, compare theory
with numerics, and discuss our results. The technical details
of the derivation of the main equations are given in Appen-
dices.

II. MODEL AND THE MAIN EFFECTS

We consider a system of N globally coupled phase oscil-
lators. Here N is a large number; in fact, we are interested in
the dynamics of large oscillator populations and therefore
exploit the thermodynamic limit N—< in the forthcoming
theoretical analysis. The equations of the model are
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b=+ ersin[O — ¢+ B(e,r)], (1)

where k=1,...,N, ¢, and w, are phase and natural fre-
quency of the kth oscillator, respectively, € is the coupling
strength, r and O are the amplitude and phase of the complex
Kuramoto mean field

N
Y=re®=N"1> ¢,
Jj=1

and B is an additional phase shift.

The case B=const yields the well-known Kuramoto-
Sakaguchi model [18]. For |8|<m/2 and sufficiently large
coupling factor &, this model exhibits a stable solution with
the nonzero mean field Y. The appearance of the nonzero
mean field is due to the fact that, in dependence on the dis-
tribution of frequencies w;, some part of the ensemble, or
even all oscillators, adjust their frequencies and form a syn-
chronous cluster.

The case B=p(e,r) corresponds to the recently intro-
duced model of nonlinear global coupling [16]. If 8 mono-
tonically depends on r, € and approaches /2, i.e., the bor-
der of stability of the synchronous solution, with variation of
g, the system exhibits complicated collective dynamics. In
the examples treated below we follow [16] and choose for
definiteness the phase shift function in the form

B=Bo+ Bre’r. (2)

Moreover, we take 0<By<m/2 and B;>0; the case of
negative 3, and B, can be treated in a similar way.

In the following the frequencies of oscillators w, are taken
to be uniformly distributed in an interval [-8, §]. Notice that
without loss of generality we can take the central frequency
of the distribution to be zero; it corresponds to the transfor-
mation to a rotating coordinate frame. Next, we note that
generally it is not possible to reduce the number of param-
eters of Eq. (1) by an appropriate rescaling of time because
of the function B(e,r). Although it is possible to perform this
reduction for the particular choice of B [see Eq. (2)] by si-
multaneous rescaling of 3;, in our simulations we fixed B,
=1 and changed 6. The latter become then a crucial quantity.
As we see below, for the linear Kuramoto-Sakaguchi model
with B=const the dynamics is independent of &.

We start by a numerical illustration of the dynamics of the
nonlinear model (1) and (2). We simulated the system for
N=1000, By=0.157, and B,=1, for different values of the
coupling strength &, and computed the amplitude r and fre-
quency () of the mean field. Next, we computed the frequen-
cies of the slowest (with the natural frequency w=-5) and
the fastest (with the natural frequency w= ) oscillators in the
ensemble. Due to coupling, their frequencies change; we de-
note these observed frequencies by v,,, and v,,,, respec-
tively. The dependencies of r, , v,,;,, and v,,,, on & for &
=0.1 are shown in Fig. 1.

We see that the system undergoes transitions between
five different states. For small coupling € <0.109 the system
is asynchronous: the mean field is zero (up to finite size
fluctuations) and the frequencies of oscillators remain
unchanged. When the coupling achieves a critical value
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FIG. 1. (Color online) Dynamics of the ensemble with the non-
linear coupling, see Egs. (1) and (2), for varying coupling strength
e. (a) Mean field amplitude r vs e. (b) Mean field frequency
(black solid line), frequencies of the slowest and fastest oscillators
in the population, v,,;, (red bold line) and v,,,, (blue dashed line),
as functions of e. Notice that in a large range of & two or three
curves coincide exactly (so that only one is seen); this equality of
frequencies (Q=v,,,, or Q=v,,,,=V,,;,) Means existence of partial
and full synchrony, respectively. The vertical dotted lines separate
different dynamical states: asynchrony (AS), partial synchrony
(PS), full synchrony (FS), and self-organized quasiperiodicity
(SOQ). Width of the frequency distribution 6=0.1, for other param-
eters see text.

&p, ~().109, synchronization, reflected in the amplitude r of
the mean field, appears by jump. From the frequency plot
Fig. 1(b) we see that the frequency of the fastest oscillator
coincides with the frequency of the mean field, whereas the
slowest oscillator has a different frequency. Thus, in this re-
gime the subpopulation of the fast oscillators forms a
frequency-locked cluster and the slow oscillators are drifting.
We denote this regime as the state of partial synchrony [20].
This is also illustrated in Fig. 2(a). When the coupling
achieves the critical value £,~0.198, the regime of full syn-
chrony (FS) sets in. From Fig. 1(b) we see that the frequen-
cies of the slowest and of the fastest oscillators now coincide
and are equal to the frequency of the mean field. Obviously,
now all oscillators form a synchronous cluster. However,
though oscillators in this regime have identical observed fre-
quencies, their phases differ due to difference in the natural
frequencies, see Fig. 2(b); as a result, the amplitude of the
mean field is r<<1. Full synchrony is preserved until the
coupling achieves another critical value g, =~0.793. At this
coupling strength the slowest oscillator leaves the synchro-
nous cluster, whereas the frequency of the fastest one still
equals the mean field frequency (). It means that the system
is again in the state of partial synchrony [Fig. 2(c)]. With the
further increase of &, more and more oscillators fall out of
synchrony what is reflected in the decrease of the mean field
amplitude r. The PS regime holds for g,,<e<g,~1.558. At
the critical value g, this regime is destroyed: even the fastest
oscillator now lags behind the mean field and the whole en-
semble is in the state of the self-organized quasiperiodicity
(SOQ). Although all oscillators in this state have different
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FIG. 2. Snapshots of phases of the ensemble (1) and (2) dem-
onstrate that with the increase of coupling strength the system ex-
hibits transitions between several states. (a) State of partial syn-
chrony, £=0.15. (b) Fully synchronous state, £=0.4. (c) Second
state of partial synchrony, e=1.2. (d) Regime of self-organized
quiasiperiodicity (SOQ), e=2. The parameters are same as in Fig. 1.

frequencies, the distribution of their phases is not uniform
[Fig. 2(d)], what results in the nonzero mean field.

The picture of the dynamics is essentially different for the
semiwidth of the frequency distribution 6=0.5, see Fig. 3.
Now we observe a transition from the asynchronous state of
the system (r=0) directly to the state of PS and then to SOQ;
the regime of FS is absent here. In the following section we
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FIG. 3. (Color online) Dynamics of the ensemble with the non-
linear coupling, see Egs. (1) and (2), for varying coupling strength
e. Width of the frequency distribution §=0.5, other parameters are
same as in Fig. 1. (a) Mean field amplitude r vs . (b) Mean field
frequency Q) (black solid line), frequencies of the slowest and fast-
est oscillators in the population, v,,;, (red bold line) and v,,,, (blue
dashed line), as functions of €. and v,,,, (red bold line), as functions
of €. The vertical dotted lines separate different dynamical states:
asynchrony (AS), partial synchrony (PS), and self-organized quasi-
periodicity (SOQ).
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develop the theoretical description of the observed behavior
and derive the expressions for the critical values of the cou-

pling.

III. THEORY

In this Section we use the Watanabe-Strogatz (WS) theory
[19,21], its extension to the case of nonidentical oscillators
[17,22]), and the Ott-Antonsen (OA) ansatz [10,11] to derive
the equations for the amplitude and phase of the mean field.
Next we analyze different regimes and transitions between
them.

A. Watanabe-Strogatz equations

For the following it is convenient to rewrite the model (1)
as

(;.bk = Wy + Im(He"iqSk) s (3)
where
H= sePery (4)

is the effective forcing, common for all oscillators. Since we
are interested in the dynamics of large ensembles, we exploit
the thermodynamical limit N—cc for the theoretical treat-
ment. The frequencies of oscillators are now described by the
distribution g(w) that is g(w)=(28)"! for —d=w=4 and
g(w)=0, otherwise. The distribution of the oscillator phases
is described by a density function w(w, ¢,r). Now we can
introduce the complex local order parameter

21T
Z(w,1) =J w(w, p,1)edep (5)
0
with an obvious relation to the mean field,

5 s
Y=re®= J g(wZ(w,t)dw= (25)_1j Z(w,t)dw. (6)
-5 -0

The dynamics of the ensemble [Eq. (3)] with a general
function H can be efficiently and exactly described by means
of the WS equations. For an ensemble of nonidentical oscil-
lators in the continuous limit N— o these equations read (see

[17D),

p(w,) 1-p° >

B P Re(He ™), 7
p 2 e(He™™) (7)

D (w,t 1+p° .

@0 _ L e, (8)

at 2p

IV(w,t) 1-p° .

ﬂ - _pIm(He—zCIJ) ) (9)
ot 2p

Here p(w,1), P(w,1), and V(w,?) are the modified WS vari-
ables. Their relation to the original WS variables and their
physical meaning is discussed in details in [17,22]; the
meaning will also become clear later on. For an unambigu-
ous description of the ensemble one has to compliment the
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WS variables by integrals of motion , having constant in
time distribution o(w, ). The original variables ¢ are re-
lated to the new ones ¢, p, ®, W by an invertible trans-
formation [19], see also [17,22],

tan<¢_q)>:l_ptan<$_q,). (10)
2 1+p 2

We briefly give an idea of how Egs. (7)—(9) can be de-
rived. The density function w(w, ¢,7) obeys the continuity
equation which expresses the conservation of the number of
oscillators:

aw d
E+Iﬁ(wv)=0, (11)

where the velocity v = ¢=w+Im(He™?) is determined by the
microscopic equation of motion. Following Watanabe and
Strogatz, we performed a variable substitution

t,p,w — =1, = o, d,t;p,P, V)

in the continuity equation and demonstrated that the density
w(w, ¢,1) becomes a stationary distribution o(w, ), i.e., ¥
become constants of motion, provided the macroscopic WS
variables obey Egs. (7)—(9), see [17] for details.

The crucial issue is that the system Egs. (7)—(9) can be
further simplified, if we are interested only in the asymptotic
behavior for t— . As argued by Ott and Antonsen, a system
of oscillators with global sinusoidal coupling and with a con-
tinuous frequency distribution settles for r— at the so-
called reduced manifold [10,11]. We discuss now the reduc-
tion to this manifold in terms of the WS theory. First, as
shown in [22], if for each frequency w the integrals of mo-
tion ¢ are distributed uniformly, then the WS variables p and
@ simply coincide with the amplitude and phase of the local
mean field

pw)e ™ = Z(w),

and Egs. (7) and (8) become equivalent to the Ott-Antonsen
Eq. [10]:

2

—=iwZ+-H-—H".

at 2 2
Generally, the time-independent distributions of ¢, unam-
biguously determined by initial conditions, can be arbitrary.
However, as argued in [17], the asymptotic dynamics of the
global mean field Y is the same as if the distributions were
uniform, provided the frequency distribution is smooth. The
reason is that computation of Y requires averaging over the
frequency distribution [cf. Eq. (5)], and as a result of this
averaging the contribution of the inhomogeneities in the dis-
tributions of ¢ is eliminated, see [17] for a detailed discus-
sion.

Thus, for the asymptotic description of the mean field we
make use of the reduction to the Ott-Antonsen manifold and
obtain closed system of Egs. (7), (8), (4), and (6), whereas
Eq. (9) decouples. Thus, we are left with the equations

dplw,t) 1-p?

P Tsr cos(®-d+ ), (12)
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P (w,1) 1+p?
=w+
at 2p

ersin(® —d + B). (13)

Since in the following we are looking for the harmonic so-
lution for the mean field with ®=Qz, it is convenient to
introduce the frequency dependent phase shift between the
phase ® of the local mean field and the phase © of the global
one,

a(w)=P(w) - 0.
As a result, we obtain the closed equation system,
p(w,) 1-p°
%: 2p er cos(B- a), (14)
dalw,t 1+p°
M=w—Q+ p ersin(B- a), (15)
ot p
5 .
2&:] plw)e®“dw. (16)
)

Below we present an analysis of these equations.

B. Full synchronization

We start by analyzing the regime of full synchrony. In this

state we have p(w)=1 and ®(w)=. Hence, @(w)=0 and the
system [Egs. (14)—(16)] yields

Q=w+ersin(B-a), (17)
5 .
25r=f &g, (18)
-5

From the first equation we obtain

a(w)= B+ arcsin( @- Q);

er
this solution exists if
lo-Q|=er. (19)

Substituting « into the second equation, separating real and
imaginary parts and solving the corresponding integrals, we
obtain two equations for yet unknown r and (),

Q=¢er’sin B, (20)
46 S Q+8 C0-46
—cos 8= arcsin — arcsin
e er er

Q+6 <Q+5>2
+ 1-

er er

Q-6 . (Q—&Y

Er

(21)

er

For given nonlinearity 8=p(e,r) these equations shall be
solved numerically. We analyze them for the particularly
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chosen nonlinear function Eq. (2), which includes as a par-
ticular case the Kuramoto-Sakaguchi model, and find the
critical values of g, r,, and (), where the subscript s stands
for full synchrony.

Notice that for the chosen nonlinearity and for the chosen
signs of B, and B; we have (2 >0 [23] and the condition (19)
becomes )+ = er. Thus, the critical condition for the onset
of the full synchrony is

O+ 6=¢,r,. (22)

1. Kuramoto model

Before proceeding with the analysis of the nonlinear
model, we check the obtained result for the simplest case of
the Kuramoto model where B=0. For this case Eq. (20)
yields =0 and Eq. (21) becomes an equation for r (for
given & and ),

arcsin—+ —\/1-—55=—. (23)

This equation has been derived by Pazé [13]. Its solution
exists if er= &. Thus, the critical value of the coupling &, and
the corresponding mean field amplitude r; are determined
from the condition S=g,r, [cf. Eq. (22) with Q;=0]. Substi-
tuting this into Eq. (23) we obtain the result of Pazé [13],
ie., rg=m/4.

2. Nonlinear model

Now we consider B=p,+8,&*>>0. Substituting Eq.
(22) into Eq. (21) we obtain

2.2
sTs

™ i o o o &
—+arcsin| 2— -1 +2(2— -1
2 &7 &7 gy €
o
=4—cos B, (24)
N
where ,83=,6'0+,8183rf. It is convenient to introduce x
=6/ egry; obviously, 0=x=1. (Taking into account the sta-
bility condition B= /2, we obtain x*= 3,8/ (m/2-f,).)
Using Egs. (20) and (22) to write the critical condition as
Q.+ 6= ssrf sin B+ d=¢,r;, we obtain

gy — 0 1-x 25)
r,= =
’ EsTs sin IBS Sin(ﬁo + ,81 52/)(?2)

and

1 —
-5 (26)
X

Qs=ssrs_

Equation (24) becomes now a closed equation for x

a+2 arcsin(2x — 1) +4(2x — 1) Vx — x°

=8x(1 —x)cot(By + B, 6%/x?). (27)

Solving this equation numerically for given 3), 3; we obtain
ry and () via Egs. (25) and (26) and the critical value of the
coupling as

PHYSICAL REVIEW E 82, 016212 (2010)

. 0, 2
o= o _ ésin(By+ B167/x7) . (28)
Xrg x(1-x)

C. SOQ state

From the theoretical analysis of identical nonlinearly
coupled oscillators [16] we can expect to observe a state
when all oscillators are not locked by the mean field, i.e., the
SOQ state. This expectation is also confirmed by the numeri-
cal simulation presented above. For the chosen nonlinearity,
the mean field frequency in this regime is larger than fre-
quencies of all oscillators. Hence, fully unlocked state ap-
pears when the fastest oscillator falls out of the synchrony. It
means that Eq. (15) does not any more possesses a solution
a=const for o= and p=1. It is easy to see that this solution
is lost if Q)—dJ6=er, i.e., the critical condition is

O,-=g,r,. (29)

Now we look for the stationary solution p=0, with p<<1.
Equation (14) yields

ks

Be,r)—a= * 5 (30)

We see that in this case « is also constant in time. Hence, we

obtain from Eq. (15)

1+p
2p

Since we consider for definiteness the case 1> w, in the
following we choose the plus sign in Egs. (30) and (31).
Solving Eq. (31) for p, we obtain

Q-w==* er. (31)

_ Q- w-V(Q-w)-e*

Er

p (32)

(We ignore the second root because it yields p=1.)

The self-consistency condition for the mean field [Eq.
(16)] takes the form:

ei(ﬁ—ﬂ'/Z) 3
—s
26r= f Q-w-—VQ-w?-e*dw, ((33)

Er -5
or
28er’eB=—i280-1), (34)
where
S U —
I= f V(Q - w)? - *rfdw: (35)
-5

the exact expression for the integral is given in Appendix A
[see Eq. (A1)].
Separating the real and the imaginary parts we obtain

cos B(e,r) =0, (36)

28er” sin Ble,r) =280 - 1. (37)

For positive S the first equation simplifies to
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Ble.r) = g (38)

it yields the mean field amplitude for given coupling
strength. Remarkably, this equation does not contain & and
coincides with the corresponding equation, derived for the
ensemble of identical nonlinearly coupled oscillators in the
SOQ state [16]. As shown below, the width of the frequency
distribution determines only the critical value of the cou-
pling, when this regime sets in. With account of Eq. (36), Eq.
(37) takes the form

28Q -er?) =1, (39)

see Eq. (A2) for an explicit expression. For given &, &, Egs.
(38) and (39) can be solved numerically to yield the mean
field amplitude r and frequency ). The critical values, cor-
responding to the onset of the fully unlocked state, can be
found with the help of the condition Eq. (29).

For our particular choice of nonlinearity 8= 8,+£%r?, Eq.
(38) simplifies to

T

er=-\5- Bo (40)

and the corresponding particular case of Eq. (39) is given in
Appendix A [see Eq. (A2)]. The critical condition Eq. (29)
immediately yields the critical value of the frequency:

N
Q=6+ \Nm/2 - B,. (41)
The critical value of the coupling is given by Eq. (A4).

D. Partially locked state

Now we are ready to describe the most complicated re-
gime when some part of the population is locked to the mean
field whereas the other part is not. Since we consider the case
when B8>0 and therefore {)>0, we conclude that unlocked
are the oscillators with the natural frequencies

Here 9, is yet unknown parameter which determines the bor-
der between synchronized and asynchronous subpopulations.
Correspondingly, the natural frequencies of the synchronous
group satisfy

S =w<39. (43)
Parameter J, is determined from the condition
Q- 4,=er. (44)

The self-consistency Eq. (16) can be written with the help of
the corresponding equations for the fully locked and fully
unlocked states, obtained in the previous Sections. It now
becomes:

ol B-T2) (% e —
20r= f Q-w-VQ-w)’-erde
Er )

)
+ eiﬁf ei arcsin w_“/‘wd(v. (45)
)
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Here the first (second) integral describes the contribution of
the unlocked (locked) subpopulation. In Appendix B we
present the reduction of this equation to a system of two
transcendental equations for the amplitude r and frequency
Q of the mean field [see Egs. (B3) and (B4)].

In order to find critical values of parameters we note that
the borders of this regime correspond to &,= + 6, what yields
Q,—¢,r,=+ o. This equation, together with Eqs. (B3) and
(B4), constitutes an equation system for computation of &,
r,,» and (), Introducing variables x=(6-Q)/er and y=(8
+Q)/er, we obtain from Egs. (B3) and (B4),

46
—cos B=xV1 —x?+arcsin x + g, (46)
&

46 | — Iy
2+ ;sin B=y"-y\y*=1-In(y—\y*-1), (47)

with obvious transformations

20
8r=}Tx, (48)
Q:é-y—;x, (49)
y+x
28 \?
B=po+ yTx : (50)

Obviously, the solution of these equations exist for x><1
and y?>=1. Notice also that x, y are positive. Hence we ob-
tain two critical conditions: x=1 and y=1. The latter one
determines the point where the partial synchrony becomes
the full synchrony [cf. condition (22)] and yields the already
known solution, given by Egs. (25)—(28). The former condi-
tion x=1 or, equivalently, },=6-g,r,, corresponds to the
point where partially synchronous state emerges from the
fully asynchronous state. Using this condition, we obtain

from Eq. (46),

4500:3@2)’ 51)

p

where y, is the solution of the transcendental Eq. (47),

.
mtan B(y,) =y, — 1 —y,\y;— 1 =In(y, -y, - 1).
(52)

Solving this equation and finding the value of y,, we can
calculate the remaining critical values r,, and (), from Egs.
(48) and (49).

IV. RESULTS AND DISCUSSION

In this Section we present more numerical results and
compare them with the developed theory. We start by a rela-
tively simple particular case 8;=0, B,# 0, when the model
(1) and (2) reduces to the Kuramoto-Sakaguchi model with
B=const.
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FIG. 4. (Color online) Dynamics of the Kuramoto-Sakaguchi
model for varying coupling strength e; width of the frequency dis-
tribution 6=0.5, By=0.157. (a): Mean field amplitude r vs &. (b):
Mean field frequency () (bold black line), frequencies of the slow-
est and fastest oscillators in the population, v,,;, (red bold line) and
Vnax (blue dashed line), as functions of & and v,,,, (solid red line),
as functions of e. (Here Q) and v,,,, overlap.)

A. Kuramoto-Sakaguchi model

For this model only two nontrivial states are possible: (i)
the regime of full synchrony, when all oscillators are locked
to the same frequency but have different phases due to dif-
ference of natural frequencies and (ii) regime of partial syn-
chrony, when a subpopulation forms a synchronous cluster
and the rest of oscillators are asynchronous, see Fig. 4.

Now we find the critical parameters, starting with those
for the state of full synchrony. Expressing from Eq. (25)
x=1-r,sin B, and substituting it into Eq. (27), we obtain a
closed equation for r

7+ 2 arcsin(1 — 2r, sin By) +4(1
—2r,sin By) V(1 - ry sin By)r, sin By =8(1
—r, sin By)r, cos By, (53)

which now does not contain 8. Equations (26) and (28) sim-
plify to

0 Q,=gr,— 6= _orgsin o Sir? Po .
1 —r,sin By

(54)

&= (1 =r, sin By)

For determination of the critical parameters for the partial
synchrony we use Egs. (46) and (47). Using the condition
x=1 and B=pB,=const we have

_4dbcos By

o

&p

(55)
Note that in this case, Eq. (52) does not depend on 6. Solving
the derived equations numerically, we obtain the critical pa-
rameters for given pf,, the corresponding dependencies
are shown in Fig. 5. In particular, for the example, shown
in Fig. 4, the theory yields the critical values €,=0.5672,
r,=0.3445, ,=0.3046, and &,=0.9346, r=0.9155,
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o
= 06 S<

Bo/m

FIG. 5. (Color online) Critical parameters for the Kuramoto-
Sakaguchi model in dependence on S, for the width of the fre-
quency distribution 6=0.5. In all panels black solid lines corre-
spond to the critical values for full synchrony, blue dashed lines
correspond to the critical values for partial synchrony. Horizontal
dotted lines in two upper panels show the corresponding values for
the Kuramoto model: r;=7/4, e,=46/ .

0,=0.3556, in a good correspondence with the direct nu-
merical simulation. We note, that except for the case of the
Kuramoto model, B,=0, (i) the mean field emerges discon-
tinuously and (ii) transition to FS occurs via PS. With
Bo— /2, &, and r, also tend to zero, but the synchroniza-
tion transition remains a first-order transition. Naturally,
g,—® when 3, approaches the border of stability of the
synchronous solution.

B. Nonlinear model

We first discuss the effect of the width of the frequency
distribution. Numerics demonstrate, that for 8,=0.157 and
5=0.1858 Eq. (27) has two roots, whereas for large & it has
no roots. We remind that these roots correspond to the bor-
ders of the fully synchronous state. This agrees with the
simulation results presented in Figs. 1 and 3: if the frequency
distribution is relatively small, then full synchrony is ob-
served, and the borders of this regime are given by the solu-
tion of Eq. (27), otherwise only PS and SOQ states are pos-
sible.

The equations, derived in the previous Section, nicely
describe the numerical results. To illustrate this, we present
the theoretically obtained critical values for By,=0.157 and
6=0.1 and 6=0.5 in Table I. Finally, we mention that, for
Bo=0 and 6=0 the first domain of PS is absent: like in case
of the Kuramoto model, the system immediately transits to
FS. With the further increase of the coupling strength, FS
gets destroyed due to nonlinearity.

C. Conclusions

We have numerically and theoretically analyzed the dy-
namics of a large oscillator population with nonlinear cou-
pling and uniform distribution of frequencies. We have
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TABLE I. Critical values for the nonlinear model with By=0.157: comparison of theoretical and numeri-

cal results.

6=0.1 6=0.5
Regimes Theory Simulation Theory Simulation
€pi 0.114 0.113 0.558 0.558
PS1 Tp1 0.343 0.341 0.317 0.319
Q, 0.061 0.061 0.323 0.322
ER 0.195 0.199
FS I 0.921 0.926
QO 0.080 0.083
Ep 0.797 0.790
PS2 p2 0.985 0.984
Q,, 0.685 0.676
g4 1.560 1.560 2.416 2.410
SOQ T4 0.672 0.672 0.434 0.435
Q, 1.149 1.149 1.548 1.547

shown, that with increase of the coupling strength the system
undergoes several transitions, exhibiting states of full syn-
chrony, partial synchrony and self-organized quasiperiodic-
ity. In the latter state all oscillators have different frequencies
which span the interval v,,;,, v,,,.» whereas the frequency of
the mean field lies outside of this interval. For the considered
positive values of B, and 3, this state emerges when B(e,r)
achieves 7/2; in this case we have (> v,,,,.. Similarly, SOQ
state emerges if negative values are considered and B(e,r)
achieves —r/2. In this case ) <w,,;,. Interesting, the depen-
dence of the mean field amplitude on the coupling in the
SOQ state does not depend on the width of the frequency
distribution and therefore coincides with that for identical
oscillators [16].

Appearance of SOQ in ensemble of nonidentical oscilla-
tors is due to combination of two aspects of our model: non-
linearity and frequency distribution with a finite support. In
case of infinite distribution, e.g., a Lorentzian one, the non-
linearity results in shift of the mean field frequency, but syn-
chronous cluster always exists. Only in case of distribution
with a finite support the frequency of the mean field can
differ from the frequency of all oscillators. We believe that
our results obtained for a uniform frequency distribution, re-
main quantitatively valid for other distributions with a finite
support. This belief is supported by numerical simulation of
the ensemble dynamics for the following frequency distribu-
tion:

7 mw-15)
glw)=12 26

0 otherwise.

, we[-67], (56)

The results of this simulation are presented in Fig. 6 which is
qualitatively similar to Fig. 1.

An important manifestation of the uniform frequency dis-
tribution is the discontinuous synchronization transition. Re-
markably, this property is rather robust and is observed not

only for the Kuramoto model [13], but also for the nonlinear
one.
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0 0.5 1 1.5 2 2.5 3

FIG. 6. (Color online) Dynamics of the system with the nonuni-
form frequency distribution, see Eq. (56), and 6=0.1, to be com-
pared with Fig. 1. Mean field amplitude r vs €. (b) Mean field
frequency ) (black solid line), frequencies of the slowest and fast-
est oscillators in the population, v,,;, (red bold line) and v,,,, (blue
dashed line), as functions of . The vertical dotted lines separate
different dynamical states: asynchrony (AS), partial synchrony
(PS), full synchrony (FS), and self-organized quasiperiodicity
(SOQ). Note the differencies with the results of Fig. 1: (i) the syn-
chronization transition is smooth, like for any other frequency dis-
tribution with a maximum; (ii) due to the same reason, the synchro-
nous cluster in the first PS state is formed around the center of the
distribution.
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APPENDIX A: AUXILIARY EQUATIONS FOR THE FULLY UNLOCKED STATE

Computation of the integral [Eq. (35)] yields

-6

Equation (39) becomes

) 2.2
/= f @-w)?-erdo= @+ 9\(Q+ 5 -7 - (2= 9\(Q - 97~ 7]+ i111[

N
(Q+8)-V(Q+ 5)2-82#]
. .

Q-8 -V(Q-9>-&
(A1)

45 480 Q-8 [[Q-5)\° Q+8 [[Q+5)\° Q-8 -V(Q -84
— =+ - 1-— — | =1+In 7 . (A2)
e &7 er er er er (Q+6) = V(Q+ 62—

For the chosen nonlinearity 8= 8,+¢%r?, Eq. (39) becomes

45(Q_w)
&

=(Q+ )V + 8>+ By— 2= (A= )V(Q = 8>+ By — /2

5~

(77 ) l(Q+5)—\/(Q+5)2+,80—77/2
+ | — ﬂo ln
Q=8 - \V(Q- 82+ B,- 72

} , (A3)

which is an equation for (). Substituting here (), =6+ \@, y=m/2—-[3, we find the critical value for the coupling

1 y

APPENDIX B: AUXILIARY EQUATIONS
FOR THE PARTIALLY LOCKED STATE

Separating real and imaginary parts of Eq. (45), we obtain
o w-0 2
26r cos B= 1- dw, (B1)
5 er

o S
28er? sin B=— f V(Q - w)? - e*FPdw - f (w-Q)dw.
s )

(B2)

Computing the integrals and using §,={)—gr, we obtain af-
ter straightforward manipulations,

/_ —
S+\Ny 28+4 1
LAY TW V& + 8\ y+ ool y=4In(Vo+ Vy=8)1. (A4)
Y

6-0

Er

45 5-0Q . (5—9

2 . -
—cos B= + arcsin +—,
€ 2

Er Er

(B3)

5 . | Q+ 6 Q+6)\
26er” sin B=2000— — -1
2 er er

<Q+6 <Q+5)2 )]
+1In - -1]]. (B4)
Er Er

[1]1Y. Kuramoto, in International Symposium on Mathematical
Problems in Theoretical Physics, Springer Lecture Notes
Phys., v. 39, edited by H. Araki (Springer, New York, 1975), p.
420; Chemical Oscillations, Waves and Turbulence (Springer,
Berlin, 1984).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, England, 2001); D. Golomb, D. Hansel,
and G. Mato, in Neuro-informatics and Neural Modeling,
Handbook of Biological Physics, edited by F. Moss and S.
Gielen (Elsevier, Amsterdam, 2001), Vol. 4, pp. 887-968; S. H.
Strogatz, Physica D 143, 1 (2000); S. H. Strogatz Sync: The

Emerging Science of Spontaneous Order (Hyperion, New
York, 2003); E. Ott, Chaos in Dynamical Systems, 2nd ed.
(Cambridge University Press, Cambridge, England, 2002); J.
A. Acebrén, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[3] H. Kori and Y. Kuramoto, Phys. Rev. E 63, 046214 (2001); Z.
Liu, Y.-C. Lai, and F. C. Hoppensteadt, ibid. 63, 055201
(2001); Y. Maistrenko, O. Popovych, O. Burylko, and P. A.
Tass, Phys. Rev. Lett. 93, 084102 (2004).

[4] E. Niebur, H. G. Schuster, and D. M. Kammen, Phys. Rev.
Lett. 67, 2753 (1991); M. K. Stephen Yeung and S. H. Stro-
gatz, ibid. 82, 648 (1999); E. Montbrié, D. Paz6, and J.

016212-9


http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/PhysRevE.63.046214
http://dx.doi.org/10.1103/PhysRevE.63.055201
http://dx.doi.org/10.1103/PhysRevE.63.055201
http://dx.doi.org/10.1103/PhysRevLett.93.084102
http://dx.doi.org/10.1103/PhysRevLett.67.2753
http://dx.doi.org/10.1103/PhysRevLett.67.2753
http://dx.doi.org/10.1103/PhysRevLett.82.648

BAIBOLATOV et al.

Schmidt, Phys. Rev. E 74, 056201 (2006); W. S. Lee, E. Ott,
and T. M. Antonsen, Phys. Rev. Lett. 103, 044101 (2009).

[5] H. Sakaguchi, Prog. Theor. Phys. 79, 39 (1988); L. M. Childs
and S. H. Strogatz, Chaos 18, 043128 (2008); Y. Baibolatov,
M. Rosenblum, Z. Z. Zhanabaev, M. Kyzgarina, and A. Pik-
ovsky, Phys. Rev. E 80, 046211 (2009).

[6] M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. Lett. 92,
114102 (2004); Phys. Rev. E 70, 041904 (2004); O. V. Pop-
ovych, C. Hauptmann, and P. A. Tass, Phys. Rev. Lett. 94,
164102 (2005).

[7] K. Okuda and Y. Kuramoto, Prog. Theor. Phys. 86, 1159
(1991); L. Cimponeriu, M. G. Rosenblum, T. Fieseler, J. Dam-
mers, M. Schiek, M. Majtanik, P. Morosan, A. Bezerianos, and
P. A. Tass, ibid. 150, 22 (2003); E. Montbrio, J. Kurths, and B.
Blasius, Phys. Rev. E 70, 056125 (2004); J. H. Sheeba, V. K.
Chandrasekar, A. Stefanovska, and P. V. E. McClintock, ibid.
79, 046210 (2009).

[8] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex
Syst. (Dordrecht, Neth.) 5, 380 (2002); D. M. Abrams and S.
H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004); O. E.
Omel’chenko, Y. L. Maistrenko, and P. A. Tass, ibid. 100,
044105 (2008); C. R. Laing, Physica D 238, 1569 (2009).

[9] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley,
Phys. Rev. Lett. 101, 084103 (2008).

[10] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).

PHYSICAL REVIEW E 82, 016212 (2010)

[11] E. Ott and T. M. Antonsen, Chaos 19, 023117 (2009).

[12] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T.
M. Antonsen, Phys. Rev. E 79, 026204 (2009).

[13] D. Paz6, Phys. Rev. E 72, 046211 (2005).

[14] D. Paz6 and E. Montbri6, Phys. Rev. E 80, 046215 (2009).

[15] G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, Phys. Rev. E
75, 017201 (2007); F. Giannuzzi, D. Marinazzo, G. Nardulli,
M. Pellicoro, and S. Stramaglia, ibid. 75, 051104 (2007).

[16] M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 98, 064101
(2007); A. Pikovsky and M. Rosenblum, Physica D 238, 27
(2009).

[17] A. Pikovsky and M. Rosenblum, e-print arXiv:1001.1299
Physica D (to be published).

[18] H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76, 576
(1986).

[19] S. Watanabe and S. H. Strogatz, Phys. Rev. Lett. 70, 2391
(1993); Physica D 74, 197 (1994).

[20] We note that the term “partial synchrony” (PS) is often used in
a different sense.

[21] S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Chaos 19,
043104 (2009).

[22] A. Pikovsky and M. Rosenblum, Phys. Rev. Lett. 101, 264103
(2008).

[23] We assume that coupling is not too strong so that S< .

016212-10


http://dx.doi.org/10.1103/PhysRevE.74.056201
http://dx.doi.org/10.1103/PhysRevLett.103.044101
http://dx.doi.org/10.1143/PTP.79.39
http://dx.doi.org/10.1063/1.3049136
http://dx.doi.org/10.1103/PhysRevE.80.046211
http://dx.doi.org/10.1103/PhysRevLett.92.114102
http://dx.doi.org/10.1103/PhysRevLett.92.114102
http://dx.doi.org/10.1103/PhysRevE.70.041904
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1143/PTP.86.1159
http://dx.doi.org/10.1143/PTP.86.1159
http://dx.doi.org/10.1143/PTPS.150.22
http://dx.doi.org/10.1103/PhysRevE.70.056125
http://dx.doi.org/10.1103/PhysRevE.79.046210
http://dx.doi.org/10.1103/PhysRevE.79.046210
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1016/j.physd.2009.04.012
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1103/PhysRevE.79.026204
http://dx.doi.org/10.1103/PhysRevE.72.046211
http://dx.doi.org/10.1103/PhysRevE.80.046215
http://dx.doi.org/10.1103/PhysRevE.75.017201
http://dx.doi.org/10.1103/PhysRevE.75.017201
http://dx.doi.org/10.1103/PhysRevE.75.051104
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://arXiv.org/abs/arXiv:1001.1299
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1103/PhysRevLett.101.264103
http://dx.doi.org/10.1103/PhysRevLett.101.264103

