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We develop an effective description of noise-induced oscillations based on deterministic phase dynamics.
The phase equation is constructed to exhibit correct frequency and distribution density of noise-induced
oscillations. In the simplest one-dimensional case the effective phase equation is obtained analytically, whereas
for more complex situations a simple method of data processing is suggested. As an application an effective
coupling function is constructed that quantitatively describes periodically forced noise-induced oscillations.
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Complex dynamics of self-sustained oscillating systems
lies in the focus of nonlinear science. Prominent physical
examples include lasers, electronic circuits, chemical au-
tokatalitic reactions but also many biological processes, such
as firing neurons, oscillating genetic networks, rhythmic
heartbeats, and circadian rhythms, can be attributed to this
class although one can hardly derive corresponding math-
ematical models from first principles. Many phenomena
characteristic for oscillatory systems, such as synchroniza-
tion �1,2� are common for all these examples. The theoretical
and experimental description of oscillatory dynamics relies
heavily on the notion of phase, which is a starting point for
the treatment of deterministic and noisy dynamics �1–3�.

Many oscillating systems �the best example are neurons�
are not autonomous but excitable: they posses a stable steady
state but being adequately perturbed they perform a stereo-
typical large-amplitude oscillation before they relax back to
the stable state. In the presence of an appropriate periodic or
noisy perturbation such a system may demonstrate persistent
oscillations, as it never stays long enough close to the stable
steady state. If the perturbation is noisy, the observed dynam-
ics is termed noise-induced oscillations �see review �4,5��. In
some situations noise-induced oscillations can be rather co-
herent, this is often called coherence resonance �6�. In many
aspects noise-induced oscillations behave similar to the self-
sustained ones: they can demonstrate synchrony when
coupled in ensembles �7� and can be controlled by a time-
delayed feedback �8�. While a qualitative similarity between
noise-induced and self-sustained oscillations is quite obvi-
ous, an extension of theoretical and analytical tools suitable
for self-sustained dynamics on the excitable case is problem-
atic. Indeed, the basic tool in the study of self-sustained
noisy oscillators, the introduction of phase, cannot even per-
turbatively be applied to excitable oscillators because phase
cannot be defined for a system residing on a stable steady
state.

In this paper we propose to describe noise-induced oscil-
lations via an effective phase dynamics, where we define an
invariant phase in a nonperturbative way �as opposed to typi-
cal perturbative approaches to noisy dynamics of self-
sustained oscillators �3��. Therefore, our definition of phase
inherently depends on the noise intensity, and correspond-

ingly all derived characteristics such as coupling functions as
well. We present the theoretical framework by the example
of noise-induced oscillations in one dimension, for which we
also construct an effective coupling function describing a
periodic forcing. Finally, we consider periodically driven
noise-induced oscillations in a prototypic example of excit-
able dynamics, the FitzHugh-Nagumo system, and construct
its effective phase description.

Although presented in this context, the approach is not
restricted to a particular class of excitable systems or to
realm of computational neuroscience but is applicable as a
theory for a wide class of excitable systems, e.g., in chemical
physics, biology etc. �see examples in �5��. Furthermore, the
theoretical description of effective coupling functions may
lead to additional insight concerning potential pitfalls for bi-
variate data analysis �9�.

Our basic model is a noise-driven oscillator described by
a 2�-periodic variable � called hereafter protophase �10�
governed by the Langevin equation

�̇ = h��� + g�����t�, ���t���t��� = 2��t − t�� . �1�

In the excitable case the deterministic system �̇=h��� has
two steady states, one stable and one unstable, but in the
presence of noise one observes nearly monotonic growth of �
with a mean frequency � and a smooth probability density
P���. Therefore, we model the dynamics as that of an “ef-
fective” autonomous oscillator by approximating the equa-
tion for the protophase as

�̇ = H��� . �2�

We impose following conditions on the effective velocity H:
�i� the oscillation frequency should coincide with � and �ii�
the distribution density of the protophase should be equal to
P���. To meet these requirements we draw a correspondence
between the Fokker-Planck equation to the noise-driven os-
cillator �Eq. �1�� given by

�tP = − ��hP + ��g��gP , �3�

and the Liouville equation to the model �Eq. �2�� given by
�tP=−��HP=−��J. In the stationary case the flux J is related
to the frequency by �=2�J. Thus, the effective velocity can
be expressed in terms of its frequency and distribution den-
sity by*jschwabedal@googlemail.com
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�̇ = H��� =
�

2�P���
. �4�

Conditions �i� and �ii� are fulfilled exactly if � and P��� are
given by the corresponding stationary solutions of Eq. �3�,
which are well known �2,11,12�. Then, using Eq. �3� the

effective velocity can be written as H=h���− h̃���=h���
−gg�−g2�� ln P. Additionally to the deterministic velocity h

there appears a noise-induced velocity h̃ which can be called
osmotic �13�.

From the protophase of the effective model we define the
phase � by the transformation

� = S��� = 2��
0

�

P���d� . �5�

The phase satisfies the properties P���=1 /2� and �̇=�.
Thus, we have constructed an invariant effective phase dy-
namics of noise-induced oscillations.

By a simple modification we may extend the effective
model to account for the random component of noise-
induced oscillations. We introduce an effective fluctuating
force to the dynamics of �:

�̇ = � + �D��t�, ���t���t��� = 2��t − t�� . �6�

For any coefficient D of the noise term, the distribution of �
is uniform and the mean frequency is �, thus the conditions
�i� and �ii� above remain fulfilled. Therefore, we are free to
choose D, and we choose it from the condition: �iii� the
diffusion constant of the effective phase �mapped on the real
line�, which is D, should be the same as in the original os-
cillator �Eq. �1��. It is given by D=limt→�����t�−�t�2� /2t.
Fortunately, one can get an exact expression for D following
�14�:

D =

1

2�
�

0

2� d	
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	 d
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�
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,	�
2�

	

	+2� d
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�
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�
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2�
�

0

2� d	

g�	��	−2�

	 2d


g�
�
r�
,	�
3 ,

where r�� ,
�=exp�−��

 h���

g2���d��. Inverting the transforma-
tion to the phase �, we obtain the effective model with noise
�Eq. �6�� in terms of the protophase �:

�̇ = H��� +
�D

�
H�����t� . �7�

We see that the effective model is fully determined by the
distribution density P��� and the mean frequency �, and
knowing the diffusion constant D also random effects can be
taken into account, effectively. These quantities can be esti-
mated from synthetic �numerical� or experimental observa-
tions ��n�t�=�n by a straightforward analysis. If the sam-
pling rate 1 /�t is sufficiently large it may be easier to
estimate the effective velocity H��� instead of P���. This is
done via averaging of central differences as

H��� � ��n+1 − �n−1�
2�t


�n=�

�8�

�while forward differences �n+1−�n provide the deterministic
part h��� only, see �15� for details�.

Although model �Eq. �7�� captures many essential proper-
ties of noise-induced oscillations, it fails to describe the
Lyapunov exponent properly. The exponent vanishes in the
effective model with noise �Eq. �7��, while in the original
system �Eq. �1�� it is generally negative, corresponding to
synchronization of oscillators by a common external noise
�see �16� and references therein�.

We illustrate the above theory in Fig. 1 with two ex-
amples, both with an additive noise g���=�. Model A is a
simplified theta-model �cf. �17�� used in the description of
excitable neurons: h���=a+cos �. Model B is constructed to
mimic an excitable oscillator that demonstrates a pronounced
coherence resonance: h���=5 tanh2�5�1−sin ���+c. The ef-
fective velocities H heavily depend on the noise intensity �,
especially at the region around the stable equilibrium. For
large � the effective velocity converges to the constant func-
tion H���=�.

Next, we extend the effective model �Eq. �4�� to describe
periodically driven noise-induced oscillations described by

�̇ = h��� + g�����t� + f�	�t�,�� , �9�

with a 2�-periodic driving phase 	=t. We want to obtain
an effective phase description including an effective cou-
pling. As above, the principle of correspondence between the
flux of the Liouville equation and the � component of the
probability flux

J = �h��� + f�	,�� − g��g�P��,	� �10�

is applied that yields the driven effective dynamics

�̇ = H��,	� =
J

P
= h − gg� − g2�� ln P + f . �11�

It is essential to rewrite H as a sum of a 	-independent
marginal effective velocity Hm��� and an effective coupling
F�� ,	�. The former is obtained in terms of the marginal
probability density Pm���=�0

2�P�� ,	�d	 by integrating Eq.
�10� over 	:
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FIG. 1. �Color online� Functions h �dashed� together with effec-
tive velocities H �solid� for model A �left� at a=0.95 and model B
�right� at c=−0.05. Noise intensities are as indicated.
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Hm��� =
�

2�Pm���
= h − gg� − g2�� ln Pm + �

0

2�

f
P

Pm
d	 .

Rearranging H=Hm+F, we find the effective coupling

F�	,�� = f − �
0

2�

f
P

Pm
d	 − g2����� ln

P��,	�
Pm���

. �12�

As for the effective velocity, the first two terms represent the
deterministic part of the coupling, while the last term, pro-
portional to the noise intensity, represents the osmotic part.
Combining effective coupling and velocity, the local effect
��	 ,��=F�	 ,�� /Hm��� can be defined serving as a natural
quantification of coupling strength in terms of the pro-
tophase.

For the driven effective model, we introduce a phase vari-
able � by transformation �Eq. �5�� using the marginal den-
sity. By this, we have Pm���=1 /2� �this definition of phase
slightly differs from the one presented in �10��. Transforming
Eq. �11� in this way we get

�̇ = � + 2�Pm�S−1����F�	,S−1���� = � + Q�	,�� . �13�

Equation �13� provides the effective phase dynamics of the
periodically driven noise-induced oscillations in a standard
form with an effective coupling function Q that heavily de-
pends on the noise intensity. For example, the amplitude of
Q�	 ,�� is severely enhanced for small noise at values of �
where Pm�S−1���� sharpens.

In the following examples we use the periodic force
f�	�t� ,��=k sin�t−�� with driving frequency  and cou-
pling strength k. First, we illustrate with Fig. 2 the difference
between the coupling in terms of the protophase �� and the
phase coupling function Q, all for the model B. The function
��	 ,�� is concentrated around a vicinity of the stable steady
state �s�� /2, as this value is apparently most sensitive to
external forces. However, around �s the evolution of � is
slow, and thus this region is significantly extended when
transformed to the phase �. Correspondingly, the sensitive
region of � transformed to the phase � is stretched.

Second, we consider the important case of weak coupling.
Here, an averaged �over period of forcing� coupling function
provides an adequate description of the dynamics. By aver-
aging Eq. �13� over the period 2� of the external phase 	,
the equation for the phase difference ��=�−t is obtained
in the standard Adler form �2�

d��

dt
= � −  + q���� ,

q���� =
1

2�
�

0

2�

Q��� + 	,	�d	 . �14�

Again, there is a deterministic and an osmotic contribution to
q, and they are in general of the same order of magnitude,
but typically have opposite signs.

The case where the external frequency  is close to the
natural frequency � of noise-induced oscillations is of spe-
cial interest. From Eq. �14� and the form of Q as shown in
the example it could be expected that the oscillator would
enter a synchronization regime where the phase is com-
pletely locked and ���t� remains bounded. However, for a
stochastic oscillator �Eq. �9�� with g�0, such a perfect syn-
chronization with the external forcing is in general impos-
sible. In the effective model �Eq. �14�� the riddle is resolved
by the fact, that as  approaches �, an masking of the de-
terministic by the osmotic part of the averaged coupling
function occurs. In this way, the oscillator does not “feel” the
driver on average. We illustrate this phenomenon in Fig. 3,
where the averaged coupling function q���� is shown for
different values of . As �− approaches zero, the osmotic
and the deterministic part cancel such that the average effec-
tive coupling vanishes. From the standpoint of bivarate data
analysis of coupled oscillators the effect of masking may
lead to a biased detection of coupling.

After a throughout treatment of one-dimensional oscilla-
tors, we demonstrate how to construct an effective phase
model for a general noise-driven excitable system, which
contrary to the one-dimensional example above, does not
allow an analytic treatment. To illustrate this construction,
based on the observations of the oscillations, we take a
noise-driven FitzHugh-Nagumo model as a paradigmatic ex-
ample of an excitable system:
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FIG. 2. A comparison of effective coupling functions for the
protophase �left panel� and the phase �right panel� for the model B
with c=−0.05, �=0.8, k=0.1, and =3.4.
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FIG. 3. �Color online� Averaged coupling function q���� �Eq.
�14�� divided by the coupling strength k for model A at parameters
a=0.95, k=0.01, and �=0.5 where ��0.436. q /k is drawn for
several values of . Additionally contour lines for q /k= �0.1 in-
dicate where q vanishes.
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�
dx

dt
= x −

x3

3
− y ,

dy

dt
= x + a + ���t� + b cos t . �15�

Together with a noisy force ���t� that in the chosen excitable
case a=1.1, �=0.05 induces oscillations, we have incorpo-
rated a periodic force for which we determine the effective
phase coupling.

Although we do not have analytical expressions for the
mean frequency and the probability density, these character-
istics can be straightforwardly obtained from numerical
simulations. Adopting the simplest choice for the protophase
�=arctan�y /x� and calculating � and Pm���, we perform a
transformation to the phase � according to Eq. �5�. With long
enough time series �n and 	n at hand, we determine the
effective coupling function Q�	 ,��. For this we use a least
square fit to approximate the dependence of the central dif-
ference �Eq. �8�� on 	 and � with a double Fourier series
�see �10� for details�. Both effects, the increase in effective
coupling for vanishing noise and the masking of coupling,
were observed in numerically obtained effective coupling
functions for driven noise-induced oscillations of the
FitzHugh-Nagumo model. With Fig. 4, we want to present an
interesting case in order to illustrate certain pitfalls that may
arise in the interpretation of effective coupling functions.
Here, the effective coupling function was computed for two

noise intensities corresponding to ��0.62 and 0.95, whereas
the driving frequency was chosen as =1.3. One can see in
Fig. 4 that the amplitude of Q decreases with increasing
noise intensity. The change in amplitude may have been re-
lated to a more pronounced masking of coupling induced by
the frequency shift �cf. Fig. 3� or to the generic decrease in
effective coupling for stronger noise because of flattening of
Pm. For an exploration of the extent to which the two effects
participate, it is necessary to reconstruct the deterministic or
osmotic part from data �15�. However, we will not discuss
the related problems of data analysis in the scope of this
article.

In summary, we have presented an effective phase dynam-
ics description of autonomous and driven noise-induced os-
cillations. For oscillators based on one-dimensional dynam-
ics many features of the effective dynamics can be found
analytically. For complex oscillating processes, where an
analytical treatment is not possible, we propose to determine
an effective phase dynamics from synthetic or experimental
observations of the system under analysis, this method is
exemplified with the FitzHugh-Nagumo system. Further-
more, the method can be easily applied to real experimental
data provided a long enough detailed time series is available.

The main feature of the effective phase dynamics is that it
intrinsically depends on the noise intensity and on the regime
observed. Thus, the effective dynamics obtained from one
observation generally cannot be used for a prediction of the
dynamics at other noise intensities, forcing amplitudes, or
driving frequencies. In a general context of noisy oscillating
systems, the effective phase approach gives a tool of reduc-
tional analysis where noise is not treated perturbatively.
Thereby it can be applied to systems where the noise is not
just an additional small factor but changes the dynamics
qualitatively, such as excitable systems. In this paper we re-
stricted our attention to single and periodically driven noise-
induced oscillators. While in the former case it is of meth-
odological relevance, as it provides another description of
stochastic coherence in excitable systems, in the latter case it
goes far beyond a standard numerical approach by yielding a
well-defined coupling function that gives further inside for
modeling and data analysis. Easily, the approach can be ex-
tended to the case of several coupled oscillators; this study
will be presented elsewhere.
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