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a b s t r a c t

We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a
generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model
regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles
of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized
dynamics: self-organized bunch states and self-organized quasiperiodic dynamics. The analysis based
on the Watanabe–Strogatz ansatz allows us to describe the self-organized bunch states in any finite
ensemble as a set of equilibria, and the self-organized quasiperiodicity as a two-frequency quasiperiodic
regime. An analytic solution in the thermodynamic limit of infinitely many oscillators is also discussed.
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1. Introduction

A model of all-to-all coupled limit cycle oscillators describes
many natural phenomena in physics, chemistry, biology and
social sciences. For ensembles of weakly interacting units, the
description of the dynamics is often provided by the paradigmatic
Kuramoto model of globally coupled phase oscillators [1,2]. This
model explains self-synchronization and appearance of a collective
mode in an ensemble of generally non-identical elements—the
problem relevant for Josephson junction and laser arrays [3,
4], electrochemical reactions [5], neuronal dynamics [6], social
behavior [7–9], etc. According to the analysis, first performed by
Kuramoto, the transition to synchrony occurs at a certain critical
value of the coupling constant that is roughly proportional to the
width of the distribution of natural frequencies. The ordered phase
is characterized by a non-zero mean field (collective mode) that
maintains the collective synchrony. Many relevant references to
the Kuramoto model can be found in [10,11].
The physical reason for the Kuramoto transition is an attractive

force between the oscillators. In the present context the terms
‘‘attraction’’ and ‘‘repulsion’’ mean that the interaction between
two oscillators tends to lock them in phase or in antiphase,
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respectively. Note that for two coupled oscillators both attraction
and repulsion synchronize the oscillators in the sense that their
frequencies become adjusted and eventually coincide, and their
phases become locked. The situation is different if many oscillators
interact, since, obviously, they cannot arrange themselves in
antiphase. Thus, in an ensemble, an attracting interaction tends
to adjust the phases of elements so that they all are in phase,
i.e. form a cluster, and their mean field (order parameter) is large;
this state is called a synchronous one. On the contrary, a repulsive
interaction tends to distribute the phases uniformly, so that the
mean field vanishes; this state is called an asynchronous one. We
emphasize that in a particular case of identical oscillators, studied
below, synchronization cannot be characterized by the adjustment
of frequencies (since they are identical from the very beginning),
but only by the adjustment of phases.
In this paper, following our brief communication [12], we

describe and systematically discuss an extension of the Kuramoto
model that demonstrates a novel transition from the synchronous
state to a regime of partial synchronization, when the system
settles in a self-organized fashion at the border between stable
synchrony and asynchrony. Remarkably, the transition can be
observed already in a population of identical units. Partial
synchronization has beenpreviously studied for coupled integrate-
and-fire oscillators [13,14]; however, this system does not exhibit
a transition from full to partial synchrony. We would also like to
mention thework [15],where a similar phenomenonwas observed
numerically.
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The main physical effect that is responsible for the transition
to partial synchrony is nonlinearity of coupling . We will discuss
this crucial issue in more detail in Section 2, while here we
just briefly present the main idea. Roughly speaking, a nonlinear
coupling means that the response of an oscillator to a strong
forcing cannot be simply ‘‘upscaled’’ from its response to a weak
forcing. For the simplest example, let us assume that weak forcing
leads to ‘‘attraction’’, while strong forcing leads to ‘‘repulsion’’
(another case of nonlinear coupling which remains attractive for
all nonlinearities have been considered recently in [16,17]). Now
recall that in a large, globally coupled ensemble each oscillator
can be considered as forced by the mean field; the strength of
the forcing is determined by the product of the coupling constant
and the amplitude of the mean field (see [1,2] and discussion
below). Hence, with an increase of the coupling constant, the
forcing increases as well, unless at some point the interaction
changes from the attractive to the repulsive one, and the initially
synchronous state dissolves. However, this would reduce the
mean field and, therefore, the effective forcing. It means that
the interaction would again become attractive and therefore a
completely asynchronous state would be also impossible. As a
result, an intermediate state sets in, where the interaction is
tuned exactly to the border between attraction and repulsion.
This neutral state is a self-organized partially coherent state with
the order parameter (amplitude of the mean field) between zero
and one. Below we demonstrate that there are two types of such
states,whichwe call ‘‘self-organized quasiperiodic state’’ and ‘‘self-
organized bunch state’’, respectively. We shall show that in the
former case the dynamics is generally quasiperiodic.
Nonlinearity of the coupling appears to be a rather general

phenomenon. One mechanism of its appearance was mentioned
in the previous paragraph: if a response to strong forcing cannot
be simply ‘‘upscaled’’ from the response of a very small forcing,
this means that the coupling is nonlinear. Another mechanism
works if the oscillators are coupled not directly to each other
(like neurons which communicate via synaptic connections) but
interact through a dynamical mediator (e.g., Josephson junctions
or electrochemical oscillators can be coupled via a common load).
If the equations for the mediator are nonlinear, the coupling is
nonlinear as well (see discussion in [12]).
The paper is organized as follows. We introduce a minimal

model with nonlinear coupling in Section 2. The self-organized
bunch state is described numerically and theoretically in Section 3.
In Section 4 we present results of numerical simulations,
illustrating the properties of the self-organized quasiperiodicity
(SOQ) and of the transition to this partially synchronized state. The
theory of the effect is developed in Section 5; this theory is heavily
based on the seminal paper by Watanabe and Strogatz [18] where
a full analysis of linearly coupled identical phase oscillators has
been performed. We first describe the approach of [18] and then
show how it can be extended to the case of nonlinear coupling. In
a particular case, which is, however, relevant for large ensembles
with homogeneous initial conditions, the resulting equations are
rather simple and their bifurcation analysis can be performed
analytically. We discuss our results in Section 6.

2. A minimal model for an ensemble of nonlinearly coupled
identical phase oscillators

2.1. Linear vs. nonlinear coupling: A generalized Kuramoto model

We start by a brief description of the popular Kuramoto model
of sine-coupled identical phase oscillators:

ϕ̇k = ω +
ε

N

N∑
j=1

sin(ϕj − ϕk + β), (1)
where ϕk is the phase of the k-th oscillator, N is the number of
oscillators in the ensemble, ε is the strength of the interaction
between each pair of oscillators, β is the phase shift, inherent to
coupling, and ω is a natural frequency. The model with β 6= 0 is
also called the Sakaguchi–Kuramotomodel [19]. Themodel (1) can
be reformulated in terms of the complex mean field, defined via

Z1 = MeiΘ =
1
N

N∑
k=1

eiϕk , (2)

where M and Θ are the amplitude and the phase of the mean
field. M is also called the order parameter of the synchronization
transition; obviously, it varies from zero in the absence of
synchrony to one, if all elements have identical phases. By means
of simple manipulations, Eq. (1) can be re-written in the form

ϕ̇k = ω + εM sin(Θ − ϕk + β). (3)

To explain the notion of the nonlinear coupling, let us interpret
each of the Eq. (3) as an equation of a phase oscillator, driven by a
harmonic forcewith amplitude δ = εM and phaseΘ . Although the
interaction is described by a nonlinear sine-function, we denote
the coupling in this model as linear, since all the parameters in
Eq. (3) are independent of δ. Generally, the response of an oscillator
to the forcing can depend on the amplitude of the latter. It means
that the oscillator frequency as well as the parameters of the
coupling function in Eq. (3) can depend on δ = εM . Considering
these dependencies as a minimal possible nonlinear effect, we
generalize Eq. (3) to

ϕ̇k = ω(εM)+ R(εM)εM sin(Θ − ϕk + β(εM)), (4)

where the functions ω, R, and β tend to some constants as εM →
0. Model (4) is minimal, because here the dependence on ϕk
remains purely harmonic; for a general nonlinear coupling see the
discussion in [12].
To summarize, we call the coupling nonlinear, if the parameters

of the coupling function depend on the amplitude of the force
that acts on the oscillator. We emphasize that the dependencies
themselves can be linear.

2.2. Effect of nonlinearity on the stability of the self-consistent
synchronous solution

Let us again interpret the basic model (4) as equations for
oscillators, driven by the force with amplitude δ = εM and
frequencyωext , so that the driving phase isΘ = ωext t . Considering
one oscillator and dropping the index, we write:

ϕ̇ = ω(δ)+ R(δ)δ sin(ωext t − ϕ + β(δ)). (5)

Now we discuss synchronization properties of this nonlinearly
forced oscillator. Writing an equation for the phase difference ϕ −
Θ , we easily find the phase locking region (Arnold tongue) on a
plane of parameters (δ, ωext):

ω(δ)− R(δ)δ ≤ ωext ≤ ω(δ)+ R(δ)δ. (6)

In addition to this standard problem of synchronization by an
external force, in our context we have to take into account the self-
consistency condition, namely, that the force itself is produced by
the ensemble of synchronized oscillators. This means that ϕ = Θ
and ϕ̇ = ωext , which being substituted in (5) gives

ωext = ω(δ)+ R(δ)δ sinβ(δ). (7)

This condition defines a line δ = δ(ωext) within the synchroniza-
tion region (6) of a harmonically driven individual oscillator; this
line corresponds to possible fully synchronized states of the en-
semble. Stability of these states is determined by the condition
dϕ̇
dϕ = −R(δ)δ cosβ(δ) < 0.
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Fig. 1. Determination of self-consistent synchronous solutions for globally coupled
oscillators. Arnold tongues (6) for individual oscillators, driven by a harmonic
force with amplitude δ and frequency ωext are shown as shadowed regions.
Bold (dashed) lines show the parameters, corresponding to stable (unstable)
self-consistent solutions (7) for the ensemble dynamics. (a) Linear coupling.
(b, c, d) Cases of nonlinear coupling, when different parameters of the model (5)
depend on the amplitude δ of the force. (b) Nonlinearity in the natural frequency
ω(δ). (c) Nonlinearity in the effective forcing R(δ). Here at some critical value δc the
tongue shrinks to zero. (d) Nonlinearity in the phase shiftβ(δ). Here at some critical
value δc the line of stable self-consistent synchronous solutions, Eq. (7), reaches the
boundary of the tongue; for δ > δc these solutions are unstable.

For simplicity of presentations let us consider the effects of
different possible nonlinearities separately. We start with the case
of linear coupling, when ω = const, β = const, |β| ≤ π/2,
and R = const > 0; it is illustrated in Fig. 1(a). Here the line of
stable self-consistent solutions is a straight line. Next we discuss
the nonlinearity in the frequency, ω = ω(δ), while β = const,
|β| ≤ π/2, and R = const > 0. Now the Arnold tongue is
skewed (Fig. 1(b)), and the line of stable self-consistent solutions
is skewed as well. However, it is easy to see that this line remains
within the synchronization region. Thus, in both considered cases
the stable synchronous solution exists for all amplitudes δ, only the
frequency of this solution experiences a linear or nonlinear shift,
respectively.
Two nontrivial cases leading to a breakdown of the collective

synchrony are depicted in Fig. 1(c, d). In the first plot we illustrate
a situation when ω = const, β = const, |β| ≤ π/2, and R(δ)
changes its sign with an increase of δ, e.g., R(δ) = a1 − a2δ2,
where a1,2 are positive constants. Here at the critical strength of
the forcing δc =

√
a1/a2 the Arnold tongue shrinks to zero1 and for

δ > δc the self-consistent synchronous solution becomes unstable,
because the coupling becomes repulsive. The same may happen in
the case when ω = const, R = const > 0, but the phase shift β
depends on the forcing strength δ; for definiteness in the example
illustrated in Fig. 1(d) we assume that |β| ≤ π/2 for δ → 0
and monotonically decreases with δ. Now the Arnold tongue has a
finitewidth for all amplitudes of the forcing, but the self-consistent
solution (7) is stable only for δ < δc , where the critical value δc is
determined from the condition β(δ) = ±π/2.
Now we come back to the coupled oscillator model (4) and

recall that the amplitude of the forcing is δ = εM , whereM is the
mean field amplitude, defined by Eq. (2). Now the discussed above
conditions for the loss of stability of a self-consistent synchronous

1 See [20] for an analysis of the closing of Arnold tongues for forced weakly
nonlinear oscillators.
solution with ϕ1 = ϕ2 = · · · = ϕN and M = 1 lead to the critical
value of the parameter ε determined according to

R(εb) = 0 or β(εq) = ±π/2. (8)

Below we demonstrate that these two conditions determine
critical values for transitions to bunch and quasiperiodic states,
respectively. Therefore, we use indices b and q to denote the
corresponding values of the critical coupling. The nontrivial
dynamics beyond the criticality is illustrated by several examples
in the next section.

2.3. Further generalization

Themodel (4) can be further generalized, ifwe take into account
that a dependence on the forcing amplitude can appear in the
equations for state variables. Then in the corresponding phase
equation the parameters of the coupling can generally be functions
of two arguments: the amplitude of the mean field M and of the
bifurcation parameter (coupling constant ε), and not just functions
of the product εM . In the following we analyze such a general
model [12] for the case of identical oscillators:

ϕ̇k = ω(ε,M)+ R(ε,M)εM sin(Θ − ϕk + β(ε,M)). (9)

For this model, as it follows from the arguments above, the critical
values of the bifurcation parameter ε are determined by the
conditions similar to (8):

R(εb, 1) = 0 or β(εq, 1) = ±π/2. (10)
Finally, we note that the Kuramotomodel (1) is a particular case

of the Daido model [21–23]

ϕ̇k = ωk + N−1
N∑
j

h(ϕj − ϕk), (11)

where h(·) is an arbitrary 2π-periodic function. In its turn, model
(9) is a particular case of the nonlinear generalization [12] of the
Daidomodel; this generalization accounts for possible dependence
of the interaction function on the generalized order parameters
Zn = N−1

∑N
j e
inϕj .

2.4. Nonlinear coupling: An example

We further motivate our generalization of the Kuramoto model
to Eq. (9) by the following example. We consider an ensemble of
Landau–Stuart oscillators, each described by a complex variable ak,
coupled nonlinearly via the mean field A = N−1

∑N
k=1 ak:

ȧk = (1+ iω)ak − (1+ iα)|ak|2ak

+ (µ1 + iµ2)A− (η1 + iη2)|A|2A, (12)

where µ1,2 and η1,2 are real parameters describing linear and
nonlinear coupling, respectively. If these parameters are small,
then in the first approximation we can neglect variations of the
amplitudes of the oscillators. Looking for the solution in the form
ak = eiϕk and A = MeiΘ , we obtain

ϕ̇ = ω − α +M[(µ1 − η1M2) sin(Θ − ϕ)

+ (µ2 − η2M2) cos(Θ − ϕ)]. (13)

Introducing new notations ω − α→ ω and

R2ε2 = (µ1 − η1M2)2 + (µ2 − η2M2)2,

tanβ =
µ2 − η2M2

µ1 − η1M2
, (14)

we finally obtain a particular case of Eq. (9), where the bifurcation
parameter ε corresponds to one of the parameters µ1,2, η1,2, or
to their combination. The bifurcation values of parameters ε, β
directly follow from relations (10).
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Fig. 2. Self-organized bunch states in themodel (15). (a) Mean field amplitudeM for positiveµ1 (hereµ1 = 1). (b) Mean field amplitudeM for negativeµ1 (hereµ1 = −1).
For ε < µ1 we observe multistability: the initial states withM > Mcr (ε) synchronize;Mcr (ε) is shown by a dashed line.
3. Self-organized bunch states

In the case when the nonlinearity in the coupling does not lead
to the phase shift, but affects only the effective coupling strength
R (like in Fig. 1(c)), the complete analysis of the dynamics is quite
simple. For a particular example we consider purely real coupling
in Eq. (13), i.e. µ2 = η2 = 0. Let us fix µ1 and take η1 as a
bifurcation parameter, i.e. ε = η1. From Eq. (14) it follows that
β = 0, the amplitude function takes the form Rε = µ1− εM2, and
the phase equation (9) reads

ϕ̇k = (µ1 − εM2)M sin(Θ − ϕk). (15)

Here we set the frequency ω to zero, which can be always done by
a transformation to the reference frame, rotating with velocity ω.
From (15) we easily obtain the equation for the evolution of the

complex order parameter Z1 (see Eq. (2)):

dZ1
dt
=
1
2
(µ1 − ε|Z1|2)(Z1 − Z∗1 Z2), (16)

where Z2 is the second generalized order parameter

Z2 = M2eiΘ2 =
1
N

∑
k

ei2ϕk . (17)

(This order parameter is in fact the complex amplitude of the
second harmonic of the distribution of the phases. It vanishes for a
uniform distribution and is large if the distribution has two humps
shifted by π .) Thus, the evolution ofM obeys

dM
dt
=
1
2
(µ1 − εM2)M(1−M2 cos(Θ2 − 2Θ)). (18)

If we exclude a situation when the phases are initially organized
in several clusters, then M2 ≤ 1 reaches unity only together with
M for the fully synchronous state ϕ1 = · · · = ϕN . Therefore
(1−M2 cos(Θ2−2Θ)) > 0 forM < 1 and (1−M2 cos(Θ2−2Θ)) =
0 ifM = M2 = 1. This consideration allows us to give a qualitative
picture of the dynamics.
Consider first the case µ1 > 0. Here the critical value of

parameter ε at which the steady stateM = 1 bifurcates is εb = µ1.
For ε < εb the fully synchronous state with M = 1 is stable,
whereas for ε > εb = µ1, a new stable state with

M =
√
εb

ε
for ε ≥ εb, (19)

appears according to Eq. (18), see Fig. 2(a). Thus, the system
organizes itself in such away that the coupling always vanishes and
the system stays at the border between attraction and repulsion.
We call this regime self-organized bunch state.Obviously, the above
consideration can be done for the full equation (12): if with
variation of a coupling parameter the nonlinear term compensates
the linear one, the system settles on the border of stability of the
synchronous regime, and the synchrony gets destroyed, cf. [24].
Fig. 3. Snapshots for the model (15) in the self-organized bunch state. Top and
bottom row correspond to nearly uniform and nearly identical initial conditions,
respectively (see text for details). Left, middle, and right column correspond to
different values of coupling: ε = 1.1, ε = 2, and ε = 8. Individual oscillators
are shown by circles; mean field is shown by a red star. For better visibility, only
100 oscillators out of N = 1000 are shown.

In the self-organized bunch state oscillators do not rotate (in the
frame moving with frequency ω) and are generally non-uniformly
distributed around the unit circle: this ‘‘static’’ distribution has
a fixed mean field amplitude M but all other generalized order
parameters Zm, m ≥ 2 are arbitrary; they depend on the
initial conditions. This is illustrated in Fig. 3, where we show
snapshots for model (15) for 3 different values of coupling and two
different sets of initial conditions: a nearly uniform and a nearly
identical initial distribution of the phases ϕk. For a nearly uniform
distribution we took the phases as ϕk = 2π(k − 1)/N and added
a perturbation 10−4 to one phase ϕ1; by the nearly identical initial
conditions wemean a uniform distribution of phases along the arc
0.02π . Parameters of the model are N = 1000 and µ1 = 1.
Consider now the case µ1 < 0. For ε > µ1 only the

asynchronous state M = 0 is stable, whereas for ε < µ1 the
system is bistable, i.e. both the fully synchronous (M = 1) and
the asynchronous (M = 0) states are possible. Indeed, if the initial
configuration has the mean field amplitude M > Mcr such that
µ1−εM2 > 0, then, according to Eq. (18), the system synchronizes.
This yields the value of the critical mean field amplitude Mcr =√
µ1/ε, see Fig. 2(b). Here, again, besides the bistability in M ,
there exists a multistability with respect to initial conditions for
asynchronous solutions.

4. Self-organized quasiperiodic states: Numerical illustration

In this Section we analyze the case illustrated in Fig. 1(d), when
the breakdown of synchrony occurs due to the nonlinear phase
shiftβ(ε,M). A complete description of the arising dynamical state
will be given in Section 5, where the theory is developed. Here we
provide a numerical illustration of the effect. For simulations we
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Fig. 4. Dynamics of 10 oscillators according to Eq. (20) for ε = 0.4 and initial
conditions ϕk = k2

100 2π . (a) Individual phases ϕk (solid lines) and the phase of the
mean fieldΘ (upper, bold, curve). (b) Time evolution of the amplitude of the mean
fieldM(t).

consider a particular case of the general model (4) with R = 1,
ω = 0 and β(ε,M) = β0 + ε2M2, i.e. the following model:

ϕ̇k = εM sin(Θ − ϕk + β0 + ε2M2), (20)

and simulate it for β0 = 0.475π . According to the stability analysis
above, the state of full synchrony ϕ1 = · · · = ϕN becomes
unstable at εc =

√
0.025π ≈ 0.2802, where β(εc, 1) = π/2.

Contrary to the bunch solutions, analyzed in Section 3, nowbeyond
the transition we generally observe time-dependent, partially
synchronous solutions where both the order parameter M as well
as the growth rate of individual phases ϕ̇k vary in time. We first
illustrate this in Fig. 4 for the case of N = 10 oscillators. As
follows from numerics, after a transient the amplitude of themean
fieldM becomes a periodic function of time with some period TM .
However, the complex mean field Z1(t) is not periodic, because
Θ(t + TM)(mod 2π) 6= Θ(t). This is demonstrated in Fig. 5,
where we plot the values Mi = M(ti) at the moments of time
whenΘ(ti)(mod 2π) = 0. This Poincaré map plot proves that the
dynamics of the system is quasiperiodic.
We emphasize that the features of the oscillationsM(t) strongly

depend on the initial conditions. Numerically we found the
oscillations of the mean field amplitude to be minimal for a nearly
uniform initial distribution of the phases ϕk(0). To be precise,
we took initially the phases as ϕk = 2π(k − 1)/N and added
a perturbation 10−4 to ϕ1. This case has been studied in more
details for different number of oscillators in the ensemble: N =
10, N = 100, and N = 1000. The results are presented
in Fig. 6, where we show the averaged over time amplitude of
the mean field amplitude M = T−1

∫ T
0 dtM(t), its root mean

square rms(M), and the mean frequencies of one oscillator ωosc =
T−1(ϕk(T ) − ϕk(0)) and of the mean field Ω = T−1(Θ(T ) −
Θ(0)) as functions of the coupling strength ε. As expected, for
small coupling ε < εc we observe a synchronous regime with
M = 1 and ωosc = Ω , whereas a transition to a time-dependent
state occurs at εq. Beyond this point, the time-averaged mean field
amplitude M decays monotonically. Its value between zero and
one corresponds to a partially coherent state, where the phases
of oscillators are scattered around the unit circle. However, the
instantaneous distributions of phases are not uniform (cf. Figs. 3
Fig. 5. The Poincaré map based on the dynamics of the mean field for ten
oscillators. Points lie on a line, indicating that the dynamics is quasiperiodic with
two incommensurate frequencies.

Fig. 6. Average value M̄ (a) and root mean square (b) of the mean field amplitude
and frequencies of oscillators ωosc and of the mean field Ω (c) as functions of the
coupling constant ε, for nearly uniform initial conditions. The results in (a) and (c)
are shown for N = 100; the corresponding curves for N = 10 and N = 1000 differ
by a third decimal and are therefore not shown here. Size effectmanifests itself only
in the fluctuations of the mean field (b); here the results for N = 10, N = 100, and
N = 1000 are shown by solid, dashed and bold lines, respectively. The theoretical
value of the critical coupling is indicated by an arrow. In (c) frequencies of themean
field and of one oscillator are shown by bold and solid lines, respectively.

and 4). The time variations of the mean field amplitude M are
characterized by the root mean square rms(M). The variations are
mostly pronounced close to the transition point, and decay rapidly
with the ensemble size N . This allows us to hypothesize that, for
the considered initial conditions, the amplitude of the mean field
in the thermodynamical limit is constant. This constant simply
corresponds to a value for which β(ε,M) = π/2, which in our
case meansM = εq/ε (we do not show this curve in Fig. 6 since it
overlaps with the numerical curves).
Another important feature of the partially synchronous regime

is a discrepancy between the frequency of the mean field Ω and
that of individual units ωosc (Fig. 6(c)). Note that both frequencies
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Fig. 7. Average value (a) M̄ and root mean square (b) of the mean field amplitude
and frequencies of oscillators ωosc and of the mean field Ω (c), as function of the
coupling strength ε for nearly identical (black solid line) and nearly uniform (red
bold line) initial conditions, for N = 1000. In (c) dashed lines show the frequencies
of the mean field and solid lines those of individual oscillators.

seemingly smoothly depend on ε and therefore are, generally,
incommensurate. It means that oscillators are generally in the
quasiperiodic state.
Next we choose a different initial distribution of the phases,

when they are almost identical, namely they are uniformly
distributed along the arc 0.02π . In Fig. 7we compare the results for
this initial conditions with those for almost uniform distribution,
for N = 1000. One can see that while for a nearly uniform initial
distribution of phasesM ≈ const , for nearly identical initial phases
there is a strong variation of M even in the thermodynamic limit.
Another way of comparison is to look for time dependence (after
a transient) of the mean field amplitude and of the instantaneous
frequency, here for ε = 0.5 (Fig. 8). Similar to the case of 10
oscillators, presented in Fig. 5, themean field itself is quasiperiodic.
This can be confirmed by plotting the Poincaré map in Fig. 9. The
map was constructed forΘ(ti)(mod 2π) = 0.
To illustrate the self-organized onset of quasiperiodic dynamics,

we plot in Fig. 10 the transients, for both nearly uniform and nearly
identical initial conditions. We see that in the former case the
amplitudemonotonically increases unless it approaches a constant
value εq/ε ≈ 0.5605. Similarly, the nonlinear phase shift β
approaches π/2.
Finally, we note that computation of the Lyapunov exponents

shows that the systemhas onenegative andN−1 vanishingly small
exponents. These results will be explained in Section 5.3.

5. Self-organized states: Theory

In this section we present a theoretical analysis of the self-
organized collective dynamics. First we mention that a particular,
however important, solution under the assumption of a harmonic
mean field (M = const, Θ = Ωt) was treated in our previous
publication [12]. Following the standard Kuramoto approach for
linearly coupled oscillators (Eq. (1)) and writing self-consistent
equations for the mean field [2,10], we have found in [12] the
quantitiesM(ε),Ω(ε), and ωosc(ε) for the nonlinear case (Eq. (4)),
Fig. 8. Time dependence of the mean field amplitude (a, b), of the instantaneous
frequency of the mean field (c, d), and of the phase of individual oscillators
(e, f) for nearly uniform (left) and nearly identical (right) initial conditions; N =
1000. It is seen that uniform initial conditions lead to a harmonic mean field,
whereas almost identical initial conditions yield a quasiperiodicmean field (see also
Fig. 9). Individual oscillators are quasiperiodic in both cases.

Fig. 9. Poincaré section for the mean field for the case of almost identical initial
conditions, N = 1000, proves that the mean field is quasiperiodic.

for supercritical coupling ε > εc . Here we exploit the method
developed by Watanabe and Strogatz (WS) [18], to analyze the
ensembles of nonlinearly coupled oscillators in a general setting
of a time-dependent mean field.

5.1. Watanabe–Strogatz theory

In the following analysis we concentrate on the effect of
functions R(ε,M) and β(ε,M), and takeω(ε,M) = const = 0. For
ω = 0 both the standard Kuramoto model (1) and the generalized
model (9) can be rewritten as

ϕ̇k = g cosϕk + h sinϕk. (21)

In the latter case the functions g , h are

g = RεM sin(Θ + β), h = −RεM cos(Θ + β). (22)
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Fig. 10. Self-organized onset of quasiperiodic dynamics for nearly uniform (left)
and nearly identical (right) initial conditions. In the first case, mean field amplitude
M and phase shift β monotonically approach their critical vales M = εq/ε and
β = π/2; in the second case they oscillate around these values. These critical values
are shown by dashed lines.

The main result of Watanabe and Strogatz is that for any time-
dependent functions g(t) and h(t), the N-dimensional system (21)
can be reduced to a three-dimensional system

γ̇ = −(1− γ 2)(g sinΦ − h cosΦ), (23)

γ Ψ̇ = −
√
1− γ 2(g cosΦ + h sinΦ), (24)

γ Φ̇ = −g cosΦ − h sinΦ, (25)

whereΨ ,Φ are ‘‘global phases’’ and 0 ≤ γ ≤ 1 is ‘‘amplitude’’; the
relation of these quantities to Ω , ωosc , and M is discussed below.
The reduction can be achieved with the help of the following
ansatz:

ϕk = Φ(t)+ 2 arctan

[√
1+ γ (t)
1− γ (t)

tan
[
1
2
(ψk − Ψ (t))

]]
,

k = 1, . . . ,N, (26)

where ψk are constants. (Note that the limit γ → 1 exists, and
therefore in the following we can consider also the value γ = 1.)
WS have demonstrated [18] that the set of constants ψk together
with the solutions of Eqs. (23)–(25) yields a solution of Eq. (21) via
transformation (26). To specify the solution, one has to determine
the initial values of γ ,Φ,Ψ and the constants ψk from the given
initial conditions ϕk; this is discussed in detail in [18]. For the
following it is important to note that two additional constraints
are imposed on the constants ψk:

N∑
k=1

cosψk =
N∑
k=1

sinψk = 0. (27)

These conditions allow one to determine unambiguously the new
variables γ (0),Ψ (0),Φ(0), ψk from the initial conditions ϕk(0)
(up to a remaining trivial arbitrary shift that can be attributed
either to Ψ or to ψk).
Nowwe discuss the relation between the mean field amplitude

M and the amplitude variable γ ; this relation follows fromEq. (26).
Fig. 11. Illustration of the transformation (26).

First we see that for γ = 0 we have ϕk = ψk + Φ − Ψ ,
which together with Eqs. (2) and (27) yields M = 0. For the other
limiting case γ = 1 we have ϕk = Φ + π , and, hence, M = 1.
Intermediate values 0 < M < 1 are determined by both γ and Ψ ,
i.e. M = M(γ ,Ψ ). Thus the variable γ is roughly proportional to
the amplitude of the mean fieldM .
To understand, how the frequencies of the oscillators and of

the mean field are related to the new variables, let us give in
Fig. 11 a graphical representation of the transformation (26). First
we consider a nearly uniform distribution of ψk. At each moment
of time the distribution of phases ϕk has a symmetrical hump
centered at Φ(t). The width of the hump is determined by the
variable γ : for γ = 0 there is no hump at all and the distribution is
flat, while for γ = 1 the hump collapses to a δ-function. Obviously,
the center of the hump corresponds to the phase of the mean
field, i.e. Φ = Θ . Thus, the averaged velocity of the hump is
the frequency of the mean field, Ω =

〈
Φ̇
〉
. For a non-uniform

distribution of ψk the hump is generally skewed so that Φ =
Θ + const; the relation forΩ holds. Next, as follows from Eq. (26),
ϕk grows by 2π when Ψ decreases by 2π . Hence, for the averaged
phase growthwe obtain 〈ϕ̇k〉 = ωosc =

〈
Φ̇
〉
−
〈
Ψ̇
〉
= Ω−

〈
Ψ̇
〉
. Thus,

generally the oscillator frequency differs from that of the mean
field. In summary,

Ω =
〈
Φ̇
〉
, ωosc = Ω −

〈
Ψ̇
〉
. (28)

For the analysis of Eqs. (23)–(25) it is convenient to introduce
quantities S and T which are directly related to the amplitude of
themean field (see Eq. (3.3), Eq. (4.10) and preceding unnumbered
equations in [18]):

S(γ ,Ψ ) = M sin(Θ − Φ) = N−1
N∑
k=1

sin(ϕk − Φ)

= N−1
N∑
k=1

√
1− γ 2 sin(ψk − Ψ )
1− γ cos(ψk − Ψ )

, (29)

T (γ ,Ψ ) = −M cos(Θ − Φ) = −N−1
N∑
k=1

cos(ϕk − Φ)

= N−1
N∑
k=1

γ − cos(ψk − Ψ )
1− γ cos(ψk − Ψ )

. (30)

For these quantities we haveM2 = T 2+ S2. Furthermore, they can
be represented via derivatives of a function H(Ψ , γ ):

H(Ψ , γ ) =
1
N

N∑
k=1

log

(
1− γ cos(ψk − Ψ )√

1− γ 2

)
, (31)

as

T = (1− γ 2)
∂H
∂γ
, S = −

√
1− γ 2

γ

∂H
∂Ψ

. (32)
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Considered as a function of polar coordinates γ and Ψ , H has
a minimum H = 0 at the origin γ = 0 and tends to infinity on
the unit circle γ = 1. A useful relation for this function (Eq. (4.9)
in [18]) is

dH
dt
= RεM2 cosβ. (33)

With the help of the quantities S(γ ,Ψ ), T (γ ,Ψ ) and with an
account of Eqs. (22)–(25) can be re-written as

γ̇ = (1− γ 2) εR (T cosβ + S sinβ), (34)

γ Ψ̇ =
√
1− γ 2εR (T sinβ − S cosβ), (35)

γ Φ̇ = εR (T sinβ − S cosβ). (36)

The first two equations represent a closed two-dimensional system
for variables γ andΨ ; this system is complemented by an equation
forΦ . The last two equations provide a relation Ψ̇ =

√
1− γ 2 Φ̇ .

5.2. Results of WS for linear coupling

Up to now we have just reproduced the equations derived
by Watanabe and Strogatz [18]. Here we briefly summarize their
results for the linear coupling. For this case we have R = 1,
ε = const, and β = const. Then, as follows from Eq. (33),
everything depends on the sign of ε cosβ . If ε cosβ < 0 (this
corresponds to the repulsion between the oscillators), the function
H monotonically decreases, and, thus, γ → 0 and an incoherent
state with zero mean fieldM = 0 sets in. If ε cosβ > 0 (attracting
interaction), then H grows and a fully synchronous state with γ =
1 establishes. This state corresponds to a stable fixed point in Eqs.
(34) and (35). As follows from Eqs. (31) and (32), in this state S = 0
and T = 1, which together with Eq. (36) yields Φ̇ = Ω = ε sinβ .
At the border between attraction and repulsion cosβ = 0 (we

exclude the trivial case ε = 0) and the system (34) and (35) has
an integral of motion. In fact, it can be rewritten as a Hamiltonian
one; here one observes a periodic motion of γ and Ψ .

5.3. General results for nonlinear coupling

The main new feature that appears in the case of nonlinear
coupling is that the product εR(ε,M) cosβ(ε,M) can change its
sign at some value of the bifurcation parameter. Suppose for
definiteness that εR(ε,M) cosβ(ε,M) > 0 (attraction) for small
M and εR(εM) cosβ(ε,M) < 0 (repulsion) for M . 1. Then both
the asynchronous state with γ = M = 0 and the synchronous
one with γ = M = 1 are unstable, and some intermediate,
partially synchronous state with 0 < γ < 1 appears. This state
corresponds either to a fixed point or to a limit cycle in the plane
γ ,Ψ . Though we cannot find these solutions explicitly for the
general case, we can do it for an important particular case, which
we consider below in Section 5.4. However, several important
conclusions can be drawn for the general case as well. Here again
we distinguish between two self-organized states—the bunch and
the quasiperiodic ones.
Bunch states. Suppose first that the partially synchronous case
appears because the function R(ε,M(γ ,Ψ )) crosses zero for some
M = M0, while cosβ(ε,M0) 6= 0. Then Eqs. (34) and (35) have a
family of fixed points determined by the conditionM(γ ,Ψ ) = M0.
Next, also Φ̇ = 0, i.e. the mean field has the same frequency, as
individual oscillators. Hence, there exist a family of bunch states,
corresponding to a family of equilibria in Eqs. (34)–(36), with
different distributions of phases depending on initial conditions.
Quasiperiodic state. Now we consider the case R(ε,M) > 0. Then
one can easily see that the only fixed points of Eqs. (34) and (35)
are those with γ = 0 or γ = 1. However, they are unstable, and
therefore the system possesses at least one stable limit cycle with
some period T ; this cycle has to wrap the origin. On this solution
γ (t) = γ (t + T ) and Ψ (t) + 2π = Ψ (t + T ). The change of the
variableΦ during the period is given by

Φ(T )− Φ(0) =
∫ 2π

0

dΨ√
1− γ 2

. (37)

With account of (28) this gives the following relation between the
frequencies

ωosc

Ω
= 1−

2π∫ 2π
0

dΨ√
1−γ 2

(38)

that is in general irrational. Thus, the dynamics of the three-
dimensional system (34)–(36) lies on a torus, it is characterized
by one negative and two zero Lyapunov exponents; all other
exponents of the full system correspond to the constants ψ and
are zeros. This explains the numerical findings of Section 4.

5.4. Self-organized quasiperiodic state in the thermodynamic limit

The system (34)–(36) can be essentially simplified in the
thermodynamic limit N → ∞. In this case we have to replace
the sums in (29) and (30) by the integrals, 1N

∑N
k=1(·) →

∫ π
−π

σ(ψ)(·)dψ , where σ(ψ) is the normalized distribution density,
determined by the initial conditions in the ensemble. Furthermore,
for the particular case of uniform initial conditions, σ(ψ) = 1/2π ,
the integrals can be computed and we obtain

S = 0, T =
1−

√
1− γ 2

γ
. (39)

Next, recalling that S2 + T 2 = M2 we obtain T = M and
γ = 2M/(1 + M2). Substituting this into system (34)–(36) we
reduce it to

Ṁ =
1
2
M(1−M2)εR(ε,M) cosβ(ε,M), (40)

Ψ̇ =
1
2
(1−M2)εR(ε,M) sinβ(ε,M), (41)

Φ̇ =
1
2
(1+M2)εR(ε,M) sinβ(ε,M). (42)

Here it is sufficient to analyze only the first equation. It has two
trivial steady states: M = 0 corresponds to complete asynchrony
andM = 1 to full synchrony. Additionally, a nontrivial steady state
with M = M0 can exist for some range of parameters, satisfying
either R(ε,M0) = 0 or cosβ(ε,M0) = 0. In the former case
Ψ̇ = Φ̇ = 0, which means that the mean field has the same
frequency as each oscillator and the distribution of phases on the
unit circle rotates as a whole, forming the bunch state as described
above.
A stationary state of Eq. (40) with cosβ(M0) = 0, sinβ(M0) =

±1 is slightly less trivial. Here the frequency of the mean field is
Φ̇ = ± 12 (1 + M

2
0 )εR(ε,M0) and the frequency of an oscillator

ωosc = Φ̇ − Ψ̇ = ±M20εR(ε,M0) deviates from that of the mean
field. This solution is a circular stable limit cycle in the system (40)
and (41), it corresponds to a stable two-frequency torus in the full
system.
As an example, in Fig. 12 we show the bifurcation diagram for

system (40)–(42) for a particular choice of functions R = const > 0
and β = β0 + ε

2M2. The bifurcation lines are defined by the
relations β(ε, 1) = (2k−1)π/2with k = . . . ,−2,−1, 0, 1, 2, . . .
and β(ε, 0) = ±π/2. In addition to synchronous (M = 1),
asynchronous (M = 0), and self-organized quasiperiodic regimes
(0 < M < 1) one observes different types of multistability.
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Fig. 12. The bifurcation diagram for system (40)–(42) on the plane (β0, ε), for the particular example R = const and β = β0+ ε2M2 . Small panels depict Ṁ vsM , according
to Eq. (40). (Note, that arrows do not exactly point to the parameter values, used for computation of Ṁ vsM , but to domain(s) where the qualitative behavior of this function
is as shown in the panel.) Stable and unstable fixed points of this equation are shown by filled and open circles, respectively. Stable points with 0 < M < 1 correspond to
SOQ state. S and AS mean synchronous and asynchronous regimes, correspondingly. AS/S denotes bistability synchrony–asynchrony, etc.
5.5. Solution M = const as an attractive state

We were able to provide a complete analysis of the self-
organized quasiperiodic dynamics only in thermodynamical limit
and only for the solution with a constant in time order parameter.
Numerical simulations indicate that such a solution with M =
const seemingly exists only in this limit N → ∞ and only for a
uniform distribution of variablesψ . The latter can be implemented
if the initial distribution of phases ϕ is chosen to be a uniform
one, as has been done in the numerical examples in Section 4.
Now we argue that this particular solution is however rather
important. Below we present a numerical evidence that this state
is in some sense ‘‘attractive’’ for general initial distributions of ϕk,
if random perturbations of the dynamics are taken into account.
In other words, with the following example we illustrate a natural
expectation that in the presence of noise, variables ψk, which are
not constants any more, spread almost uniformly. Note that the
random perturbations have to be different for different oscillators,
because a common noise preserves the time invariance of ψk.
For this purpose we consider model (9) with R = 1 and β =

π
2 ε
2k2, for ε = 1.5 > εq = 1. It is easy to see that for this

model the amplitude of the time-independent mean field solution
isM = 2/3. Initial distribution of phaseswas taken in the following
way: for k < 3N/4, ϕk = π

2N k + 0.1
2π
N sin(

√
2k) and for 3N/4 ≤

k ≤ N , 1.2π + π
2N k + 0.1

2π
N sin(

√
2k); the number of oscillators

was N = 200. First we have run a simulation with this set of
initial phases; it yields a time-dependent solution with the mean
field amplitude oscillating in a range 0.5 . M . 0.75, shown in
Fig. 13(a). This state corresponds to a nonuniform distribution of
the constantsψk, shown in Fig. 13(b).Wehave checked the stability
of this configuration by calculating the variables ψk numerically
(see Sec. 4.2 in [18]) from the initial distribution of phases ϕk and
from the distribution at the final integration time t = 2×107, these
sets of ψk practically coincide (the difference is less than 0.0145).
Next, we have run a simulation with the same set of initial

conditions for ϕk, but with small random kicks added in the
course of the evolution. At each kick ϕk → ϕk + δηk, where
ηk are independent Gaussian random variables with unit variance
and zero mean value; the interval between kicks was ∆t = 2.
The results for δ = 5 × 10−5 and δ = 10−4 are shown in
Fig. 13 c and e, respectively. We see, that on a very long time
scale ∼107 the large-amplitude oscillations of the mean field
amplitude decay and finally M fluctuates in a small range near
M = 2/3. In the stochastically perturbed system, the quantitiesψk
are not constants of motion any more, but evolve slowly towards
a nearly uniform distribution in the range (−π, π) (Fig. 13(d, f)).
This numerical experiment shows that the state with a uniform
distribution ofψk is weakly attracting if random perturbations are
present.

6. Conclusions and outlook

In this paper we presented a complete analysis of the minimal
model for an ensemble of nonlinearly coupled identical phase
oscillators. Themodel itself is a direct generalization of the famous
Kuramoto model to the case of a nonlinear coupling. The latter is
not an exotic phenomenon, but naturally arises, e.g., in ensembles
of elements, coupled via a common nonlinear unit [12] and can be
expected inmany cases, when the coupling is relatively strong.We
emphasize here that the nonlinearity of coupling does not mean
that one must go beyond the phase description of the dynamics.
The nonlinear effects, illustrated in Fig. 1, can occur while the
amplitude of the oscillator is enslaved and the phase description is
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Fig. 13. (a, c, e) Evolution of M(t) for a particular nonuniform initial distribution of phases ϕk , obtained via direct numerical simulations, with additional random kicks.
(b,d,f) The distributions of the variables ψk at the end of the integration interval. The amplitude of kicks is δ = 0 (a, b), δ = 5 × 10−5 (c, d), and δ = 10−4 (e, f). For δ = 0
(b) the distribution is the same as the initial one; for δ = 5× 10−5 and δ = 10−4 the final distribution of ψk is nearly uniform.
well-justified. Nonlinearity of coupling can appear in the equations
of motion explicitly, via higher powers of the mean field, like in
Eq. (12), or implicitly. In the latter case the force acting on an
oscillator is described by linear terms in the equations for state
variables. However, because the force is strong enough, its effect
can be nonlinear. Moreover, the effect of nonlinearity and an
onset of quasiperiodic dynamics can be demonstrated for chaotic
oscillators as well. The corresponding examples will be presented
elsewhere.
Our theoretical analysis heavily relies on the seminal paper

by Watanabe and Strogatz [18], who have found an analytical
solution for a model of identical and identically forced oscillators.
We have demonstrated, that when nonlinearity in the coupling
is present, new quasiperiodic solutions of the Watanabe–Strogatz
equations appear. These solutions describe the regime of self-
organized quasiperiodicity in the population of oscillators, where
individual oscillators are not locked by themean field, but oscillate
with a frequency incommensurate with that of the mean field.
Similar states have been studied for integrate-and-fire oscillators
in [13,14]. The self-organized bunch states correspond to a set of
non-trivial equilibriumstates in theWatanabe–Strogatz equations.
Our numerical and theoretical analysis was restricted to the

case of identical oscillators. The corresponding desynchronization
transition appears to be analogous to quantum phase transitions.
(Here we do notmean any real quantum effects, but just follow the
usual in statistical physics terminology where a transition at zero
‘‘temperature’’ is termed as a quantumone). Preliminary numerical
results show that quasiperiodic dynamics can be observed for the
case of nonidentical oscillators (described by a straightforward
generalization of Eq. (9)) as well, what corresponds to a transition
at a finite temperature. This subject, however, requires a separate
investigation. As another issue of ongoing research we mention,
that in a more general context, the effects of nonlinear coupling
appear to be relevant not only for populations of all-to-all coupled
oscillators, but also for regular and complex networks.
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