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Periodically forced ensemble of nonlinearly coupled oscillators: From partial to full synchrony
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We analyze the dynamics of a periodically forced oscillator ensemble with global nonlinear coupling.
Without forcing, the system exhibits complicated collective dynamics, even for the simplest case of identical
phase oscillators: due to nonlinearity, the synchronous state becomes unstable for certain values of the coupling
parameter, and the system settles at the border between synchrony and asynchrony, what can be denoted as
partial synchrony. We find that an external common forcing can result in two synchronous states: (i) a weak
forcing entrains only the mean field, whereas the individual oscillators remain unlocked to the force and,
correspondingly, to the mean field; (ii) a strong forcing fully synchronizes the system, making the phases of all
oscillators identical. Analytical results are confirmed by numerics.
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I. INTRODUCTION

Ensembles of globally, or all-to-all, coupled oscillators
serve as models for many physical, chemical, biological, etc.,
systems allowing one to describe diverse natural phenomena
as synchronous blinking of fireflies, pedestrian synchrony on
the millennium bridge, emergence of brain rhythms, just to
mention a few [1-7]. The main effect is the self-
synchronization and the appearance of a collective mode in
an ensemble of generally nonidentical elements—the prob-
lem relevant for Josephson junction and laser arrays [8,9],
electrochemical reactions [10], neuronal dynamics [11], hu-
man social behavior [ 12—14], etc. This collective mode arises
due to an adjustment of frequencies and phases of at least
some group of the elements; the larger is this synchronized
group, the larger the amplitude of the collective mode.

An ensemble, exhibiting the collective mode, can be con-
sidered as a macroscopic oscillator. A natural idea is to ana-
lyze the response of this oscillator to an external perturbation
or to a coupling to another macroscopic oscillator (en-
semble). This study is relevant, e.g., for modeling of neu-
ronal rhythms in the case when an ensemble of interacting
neurons is influenced by rhythms from other brain regions
[15-17]. In particular, one can analyze a collective phase
resetting by pulsatile stimuli [18—20], entrainment of the col-
lective mode by external forcing [21-23], mutual synchroni-
zation of two ensembles [24,25], suppression or enhance-
ment of the collective mode by a feedback [26,27], etc. In
the first approximation, the macroscopic oscillator behaves
like a usual limit cycle oscillator and the description of the
dynamics in this approximation can be obtained by means of
a model equation for the collective mode, incorporating the
terms responsible for forcing, coupling [24], or feedback
[26,27], respectively. However, there are interesting effects
which go beyond this simplistic description. For example,
the coupling between populations of identical units can de-
stroy synchrony in one of the populations and cause a par-
tially synchronous chimera state [28], when the phases of
individual units are not adjusted, but the collective mode
exist, though its amplitude is reduced with respect to that in
the synchronous state. Another effect is the appearance of
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synchronous subgroups with different frequencies in a har-
monically forced ensemble of nonidentical elements [21].

In the present paper we study the effects of periodic forc-
ing on an oscillator ensemble that by itself exhibits complex
dynamics even in the simplest setup of identical units.
Namely, we consider ensembles with global nonlinear cou-
pling (see [29,30] and a detailed discussion below). Due to
nonlinearity in the coupling, the completely synchronous
state loses its stability upon increase in the coupling strength,
whereas the completely asynchronous state remains unstable
as well. As a result, for a sufficiently large coupling, such
ensembles demonstrate an intermediate state of partial syn-
chrony, when the phases of oscillators are nonuniformly dis-
tributed between 0 and 2. Especially interesting is the re-
gime of self-organized quasiperiodicity, when the frequency
of the collective mode differs from the frequency of indi-
vidual oscillators. Here we demonstrate that nonlinearly
coupled ensembles, subject to external forcing, exhibit non-
trivial synchronization properties. We show that a harmonic
external force can destroy partial and induce full synchrony;
however, it is also possible that the forcing entrains only the
collective mode but not individual oscillators.

The paper is organized as follows. In the next section we
describe the basic model of the ensemble of phase oscillators
with global nonlinear coupling. In Sec. III we use the
Watanabe-Strogatz theory to derive the equation for the col-
lective dynamics of the driven system. In Secs. IV and V we
analyze regimes of full synchrony and of mean-field locking,
respectively. In Sec. VI we summarize and discuss our re-
sults.

I1. BASIC PHASE MODEL

A. Kuramoto-Sakaguchi model
A paradigmatic model for the description of the dynamics
of large ensembles of weakly interacting units is the Kura-

moto model [1,2] of each-to-each, or globally coupled phase
oscillators. The model reads
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N
b=+ — >, sin(e;— i+ ). (1)
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where ¢, and w, are the phase and the natural frequency of
the k-th oscillator, N is the number of oscillators in the en-
semble, ¢ is the strength of the interaction within each pair of
oscillators. Generally, the model can also include a constant
phase shift B; this case is also called the Kuramoto-
Sakaguchi model [31]. It is convenient to rewrite Eq. (1) as

N

. & . . . .

br= wp + ]T/E Im[e’¢fe’(_¢k+3)] =w + Im(ee'PZe ),
j=1

)

where Z is the complex Kuramoto order parameter, or the
mean field

N
Z=re® =N‘12 ek,
k=1

The mean-field amplitude, or the real order parameter r,
varies from zero in the absence of synchrony to one, if all
elements have identical phases.

B. Generalization to nonlinear coupling

Recently, the Kuramoto model has been generalized
[29,30] to cover the case of coupled ensembles with nonlin-
ear interaction between oscillators. “Nonlinear” in this con-
text means that the effect of the force on an oscillator quali-
tatively depends on the amplitude of the forcing, e.g., a weak
force tends to induce in-phase synchrony, whereas a stronger
force tends to synchronize the oscillator in antiphase. In case
of a globally coupled ensemble, nonlinear interaction means
a dependence of the form of the coupling function on the
mean-field amplitude r. In other words, with a variation in a
bifurcation parameter, the interaction can change from an
attractive one to a repulsive one. The generalized model
reads

= w(r,e) + Im[eA(r,e)e P9 Ze™ %], 3)

where wy(r,e), A(r,e), and B(r,e) are some functions of
the amplitude of the mean field r=|Z|. The model can be
treated analytically for the case of identical oscillators
wy=w, see [29,30]. It is easy to show that the fully synchro-
nous cluster state (p;=¢,...=¢py=0, r=1) is stable if
A(r,e)cos B(r,e)>0. When either the amplitude function A
or the phase function cos 8 changes its sign upon an increase
in the coupling strength &, the synchronous cluster dissolves
and a partial synchrony arises.

If the loss of synchrony occurs via zero crossing of the A
function, whereas cos 8 remains positive, a regime appears
where the oscillator phases scatter on the circle, but their
distribution is not uniform. It means that the mean-field am-
plitude is 0<r<1. The frequency of the mean field equals
that of oscillators, Q=(0)=w,,.=(¢). The appearance of
this partially synchronous state can be easily understood
qualitatively (for a quantitative analysis see [30]). Assume
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for definiteness that A is a monotonically decreasing function
of ¢ and r and is positive for small € and r=1, so that the
completely asynchronous state (r=0) is unstable, and
A(1,&,)=0 for some critical value €,. Then the fully syn-
chronous state is stable for € <g, and unstable for £>¢g,.
Hence, for €> ¢, the oscillators tend to desynchronize, but
they cannot desynchronize completely, because with the de-
crease of r the function A becomes positive again, what
means that the interaction becomes attractive, so that the
oscillators again tend to synchronize. As a result of this
counterplay the system settles at the border of stability so
that A(r,&)=0; this equation determines the mean-field am-
plitude r as a function of e. The described state is called the
self-organized bunch state (SOB) [30].

The most interesting effect is observed if the function
cos B becomes zero. In this regime the oscillators are not
locked to the mean field they produce, so that in this state the
oscillators and the mean field have different frequencies,

w,s. # O. These frequencies are smooth functions of the cou-
pling strength &, what means that generally they are incom-
mensurate. We denote this dynamics as self-organized quasi-
periodicity (SOQ). This state is also characterized by a
nonuniform scattering of phases, and, hence, by the mean-
field amplitude in the range 0<<r<1; it emerges from the
fully synchronous state with r=1 via a desynchronization
transition when the function cos 8 crosses zero upon in-
crease in the coupling strength . Again, the peculiar feature
of the state is that with the variation in the coupling strength
beyond a critical value g,, the system always stays exactly
on the border of stability, when full synchrony is lost and
partial synchrony sets in. This border is determined by the
condition B(1 ,eq)z *m/2, and for > ¢, the system is or-
ganized in a way that it stays at this critical state, so that
B(r,e)=*m/2; the latter expression provides the depen-
dence r(e). Hence, the mean-field amplitude also smoothly
depends on e. The quantitative analysis of SOQ dynamics
can be found in [29,30].

C. Forced ensembles

In this paper we analyze the dynamics of an ensemble
with global nonlinear coupling, described by Eq. (3), under
an external periodic forcing. This study is relevant, e.g., for
modeling of neuronal rhythms in case when an ensemble of
interacting neurons is influenced by rhythms from other
brain regions. On the other hand, this study is a first step to
consideration of an interesting problem of two interacting
nonlinearly coupled ensembles. In our analysis we restrict
ourselves to the case of identical oscillators, when the model
(3) of the autonomous ensemble can be treated analytically
[29,30], and introduce a harmonic forcing ue’”, where u and
v are the amplitude and the frequency of the external force.
The model reads

I = w(r,e) + Im[eA(r,e)e PO Ze % 4 pe ™%, (4)

Next, we take w(e,r)=w=const and make a transforma-
tion to a frame, rotating with the frequency w. The phases of
oscillators and of the mean field are then transformed to slow
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phases as ¢, — ¢+ wt, ® — O+ wt and the equations in the
rotating frame are:

¢y =Im[He %], (5)

H=gA(r,e)ePre)re® 4 e, (6)

where v=7—-w is the frequency mismatch. Here we have also
introduced the complex effective force H, acting on indi-
vidual oscillators.

In the following analysis we concentrate separately on the
effect of the amplitude function A(e,r) and of the phase shift
function B(e,r). In other words, we concentrate on two cases
when the unforced system is partially synchronous either in
the SOB or in the SOQ state. We demonstrate and analyze
two different synchronous regimes: (i) the external force en-
trains only the mean field, but not individual oscillators and
(ii) the regime of full synchrony, when the force entrains all
oscillators and, hence, destroys the SOQ/SOB regime.

III. WATANABE-STROGATZ EQUATIONS FOR
THE FORCED OSCILLATOR ENSEMBLE

A complete analysis of the model (5) and (6) can be per-
formed by means of the Watanabe-Strogatz (WS) theory
[32,33]. Their main result is that for any time-dependent
function H(r) the N-dimensional system of identical oscilla-
tors (5) can be reduced to a three-dimensional system for
global variables p, ®, ¥ [40]:

dp 1-p? -

L " Re(He ™), 7
” 5 e(He™) (7)
dd 1+ p° .

e _-*P Im(He ), (8)
dt 2p

dv 1-p° 4

P Im(He ™). (9)
dt 2p

Here 0=p=1 is the global amplitude and ®, ¥ are global
phases; their meaning is discussed below. The original phase
variables can be reconstructed from the WS variables by
means of the time-dependent transformation

d=D() +2 arctan{ i : 28 tan( Ui _2‘1,([) )] . (10)

Here ¢, are N constants of motion, which should obey three
constraints, otherwise the transformation is overdetermined;
this is discussed in detail in [33]. It is convenient to choose
two constraints as follows:

N N
> cos =0, > sin . =0. (11)
k=1 k=1

The third condition on ¥, is somehow arbitrary, it only fixes
the common shift of i, with respect to W. It can be taken,
e.g., as 2, =0 (this implies that constants are defined in the
[-7,7] interval) [33]. Another convenient choice is
2c08(2¢;,)=0. These conditions allow one to determine un-
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ambiguously the variables p(0), ¥(0), ®(0), and constants
i from the initial conditions ¢;(0), except for the case when
initial state contains too large clusters (see [33] for details).
Our next goal is to relate the WS variables to the Kura-
moto mean field Z=re'®. This can be done by rewriting the
transformation Eq. (10) in the following form [34,35]

| pl1) + el

i, _ id(t _
e ()T

(12)

With the help of this equation the combination of two WS
variables, namely, pe’®, can be related to Z as follows [34]:

N
reizN—IE eiﬁf’k:peiq)’y(p,\l,), (13)
k=1
where
N .
1+ p—lel('ﬁk—q’)
Ao W) =N"S (4

= 1+pei('//k—‘l') )

The obtained relation helps to understand the physical mean-
ing of the WS variables. The amplitude variable p is roughly
proportional to the mean-field amplitude r. Indeed, if p=0,
then from Eq. (12) with account of Eq. (11), we obtain r
=0. From Egs. (13) and (14) obviously follows that p=1
yields r=1. For intermediate values 0<<p<1 the relation
between p and r generally depends also on W. The phase
variable ® characterizes the position of the maximum in the
distribution of phases and is therefore close to the phase of
the mean field ®. They coincide for p=r=1; for 0<p<1, ®
is shifted with respect to © by an angle that depends on p, W.
Finally, the second global phase variable W determines the
shift of individual oscillators with respect to ®. As it follows
from Eq. (10), ¢, grows by 27 when ¥ decreases by 2.

Hence, for the time averaged phase growth we obtain (¢,)

=w,,.=(P)—(P). For the following it is useful to write, us-
ing Egs. (8) and (9), the expression for the oscillator fre-

quency as:
. 2p?
Wy = <\I’l +p2>. (15)

We emphasize now an important case when WS Egs.
(7)-(9) simplify. As it was shown in [34], for large N and
uniform distribution of constants of motion ;, factor y in
Eq. (13) equals one, and, hence, p=r, ®=0. This also means
that H depends on p and ® and does not depend on V. As a
result, from three Egs. (7)—(9) for Watanabe-Strogatz vari-
ables we obtain two equations for the amplitude and phase of
the Kuramoto mean field r, O:

dr 1-72

— = Re(He 9), 16
5 > e(He™) (16)
d® 1+7? 4

= — L Im(He ). (17)
dt 2r

An analysis of these equations, performed in the following
sections, yields a description of synchronous states in the
forced ensemble; there we also present numerical results for
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the case of nonuniformly distributed ;. We note that the
case of uniformly distributed constants of motion, i.e., y=1,
corresponds to the recent Ott-Antonsen ansatz [23] (this cor-
respondence was shown in [34]). Noteworthy, this is not just
a solvable, but also the mostly interesting case, because for a
continuous distribution of oscillator frequencies the corre-
sponding solutions are the only attractors [36]. However, we
emphasize that Egs. (16) and (17) are also valid for an arbi-
trary distribution of constants ¢, in the particular case of full
synchrony p=1, since y(1,¥)=1.

For the further analysis of synchronous states it is conve-
nient to present the phase shift §=vr—® between the exter-
nal force and the mean field and, with account of Eq. (6), to
rewrite Egs. (16) and (17) as:

2

Zr [eA(r,e)r cos B(r,e) + u cos 8], (18)

=

1+72

S=v

Y [eA(r,e)r sin B(r,e) + wsin 8].  (19)
A solution of these equations with bounded & describes syn-
chronization of the ensemble by the external force. Below
we consider different cases, starting with the full synchrony
in Sec. IV and proceeding to the mean-field locking in Sec.
V. Our starting point is the unforced system (18) and (19) in
a state of partial synchrony with 0 <r <1, resulting from the
condition A(r,&)cos B(r,e)=0. We analyze the effects of the
forcing taking its amplitude w and frequency v as main pa-
rameters.

IV. FULL SYNCHRONIZATION

In this section we analyze the case when the external
force entrains all oscillators in the initially partially synchro-
nized ensemble and imposes the regime of full synchrony
(FS), ¢=...=¢py=0, r=1. Then Eq. (19) yields

5=v—eA(1,&)sin B(1,e) — w sin 6. (20)

This is a first-order equation for &, it can have fixed points
and running solutions. The former correspond to fully syn-
chronous state. As follows from Eq. (18), such a solution is
stable if

eA(1,e)cos B(1,e) + mcos §>0, (21)
or
wucos 8> |eA(1,e)cos B(1,8)]. (22)

[We remind that the unforced ensemble is in the state of
partial synchrony, what implies that eA(1,&)cos B(1,&)<0.]
This means that the fully synchronous regime exists only if
the forcing is sufficiently strong, pu> w., where

.= |eA(1,g)cos B(1,¢)|. (23)
Thus, for the border of the domain of FS we have

psin 8=v—eA(l,e)sin B(1,¢), (24)
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ucos 8=¢lA(1,&)cos B(1,¢)| = u,. (25)

Excluding & we obtain the equation for the border of the
synchronization region (tongue)

[v—eA(1,e)sin B(1,e)]* +[eA(1,€)cos B(1,8)]* = u?.
(26)

The variation in the phase shift & between the external
force and the mean field across the tongue, i.e., for fixed u,
is determined by Eq. (24). The range of this variation fol-
lows from Eq. (25), so that —&, = 0= Spax» Where &«
=arccos(u,./ pu); for large w, Sy.— 7/2. For comparison,
recall that synchronization regions for one driven oscillator
or for a driven ensemble of identical linearly coupled phase
oscillators are of a triangular shape, the synchronization
threshold is zero, and the variation in the phase shift across
the region is —m/2=d=m/2.

Below we analyze the fully synchronous solution for two
particular cases, when the partial synchrony in the unforced
system arises either due to the amplitude function A(r,&) or
due to the phase function B(r,e). These cases correspond to
the SOB and SOQ states in the unforced system, respec-
tively.

A. SOB state in the unforced system

For definiteness, we consider the model (5) and (6) with
eA(r,e) monotonically decreasing with the mean-field am-
plitude r and the coupling . Suppose that A(r,e) vanishes
for some critical coupling g, determined from the condition
A(1,g,)=0. Suppose also that |3(r,&)|=const< /2. Then
for € > ¢, the synchronous solution of the unforced system,
m=0, becomes unstable due to the amplitude function and
we observe an SOB state. For € > g, we have A(1,&) <0 and
Eq. (23) yields

. =|eA(1,&)|cos B(1,e). (27)

-
Using A(1,&)sin B(1,8)=—\[eA(1,e)]*~u?, we obtain
from Eq. (26) the equation for the border of the tongue:

v, == \[eA(Le) P - u2 = Vu? - . (28)

Here indices / and r denote the left and the right border of
the tongue, respectively. The tip of the tongue has coordi-
nates [—g|A(1,¢)|sin B(1,¢&),e|A(1,€)|cos B(1,€)], so that
for a fixed & it stays on a circle with radius &|A(1,¢)|, cen-
tered at the origin (Fig. 1). Note, that the tongue is parabolic
for pw—pu,. < u,. Note also that for B(1,&)— = 77/2 the syn-
chronization threshold vanishes and the tongue becomes tri-
angular, v;,=—¢lA(1,&)| * pu.

We illustrate the theory by simulating an ensemble of
1000 oscillators for S=1/4 and A=1-egr?. For each point in
the parameter plane v, u we run the simulation with two sets
of initial conditions: nearly uniform and nearly identical
[41]. These numerical results are presented in Fig. 2; they
demonstrate that numerically obtained domain of the full
synchrony has a good correspondence with the theory. In
addition, we find that the system is multistable: in a certain
region the nearly identical initial conditions lead to full syn-
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FIG. 1. Regions (tongues) of full synchrony for the harmonically forced ensemble with global nonlinear coupling [see Egs. (5) and (6)]
with B=const and A=1—gr?. With a variation in /3, the tip of the tongue moves along a circle with radius £— 1. The tongues are plotted for
B=0, B=0.25m, B=0.4m, and B=0.57; the value of coupling is e=1.4.

chrony, whereas the nearly uniform initial conditions result
in an asynchronous state.

B. SOQ state in an unforced system

Now we consider the model (5) and (6)) with the ampli-
tude function A, which has no roots and is positive, and the
phase-shift function B(r,e), that monotonically increases
with the mean-field amplitude » and the coupling . We re-
call that for £>g,, where g, is determined from the condi-

1

0.8 —

0.4

-1 -0.5 0 0.5

FIG. 2. (Color online) Simulation of a periodically forced en-
semble [model Eq. (5) and (6)] with B=const=7/4 and £A(r,¢)
=1—-er?, for e=1.4. For each point in the parameter plane v, u the
simulation was performed twice, with nearly uniform and nearly
identical initial conditions for oscillator phases. Black dots denote
parameter values when both initial conditions lead to full syn-
chrony; gray (yellow in color) dots denote the parameters when
only nearly identical initial conditions lead to a fully synchronized
state, while nearly uniform initial conditions lead to asynchrony.
The border of the synchronization region nicely corresponds to the
theoretical curve (black bold line), obtained according to Eq. (28).

tion B(1,e,)=/2, the system exhibits SOQ. Then, for &
>¢g, we have B(1,&) > /2 and Eq. (23) yields for the criti-
cal forcing amplitude

. =eA(1,8)|cos B(1,¢)|.
Then from Eq. (26) we find the border of the tongue:

v, =eA(l,&)sin B(1,e) = Vpu* - el (29)

Again, like in the previous example, the region is not trian-
gular but parabolic for pu—pu,.<< .. The tip of the tongue has
coordinates [A(1,&)sin B(1,&),eA(1,€)|cos B(1,¢&)|]. Vary-
ing € we see that the tip of the tongue moves along a spiral.
For an illustration we take the model with A=1 and B=2,
+&2r? and assume that the coupling & is not too strong so that
cos B(1,¢) remains negative, B(1,&)<3/2, i.e., the condi-
tion for SOQ dynamics in an unforced system holds. It
means that the coupling satisfies &, <& =7+ sfl. The theory
is illustrated in Fig. 3 and the numerical results for 1000
oscillators, £=0.4, and By,=0.4757 are shown in Fig. 4. One
can see that the border of the full synchronization domain
determined according to Eq. (29) corresponds to the numer-
ics. Again, we find multistability with respect to initial con-
ditions: for certain parameter values a fully synchronous so-
lution coexists with an asynchronous one.

V. MEAN-FIELD LOCKING

The case of full entrainment with r=1 is not the only
possible stable dynamical regime in our system. In the other
interesting regime the external force entrains only the mean
field, while individual oscillators remain unsynchronized to
forcing. We call this regime mean-field locking (MFL). First
we illustrate it numerically and then provide a theoretical
analysis.

A. Illustration of the effect

For the illustration of the effect of mean-field locking we
solve numerically Egs. (18) and (19) for the case of the non-

046211-5



BAIBOLATOV et al.

PHYSICAL REVIEW E 80, 046211 (2009)

0.5

FIG. 3. Regions (tongues) of full synchrony for the harmonically forced ensemble with global nonlinear coupling [Egs. (5) and (6)] with
B=pBy+<*r* and A=1. With variation in & the tip of the tongue moves along a spiral. The tongues are plotted for By=0.4757 and £=0.8,

s=14,s=L7des=€W+8?¥179

linearity in the amplitude function, i.e., we take eA=1 —er?,
e=1.4, and B=0. Note that for the chosen coupling strength,
the critical value for the full synchrony is w.=0.4 [see Eq.
(27)]. First, we fix the amplitude of the external force at u
=0.2<pu,, vary the forcing frequency v, and for each v com-
pute (r) and (&)=v—{, where (-) means time averaging.
Then we repeat this numerical experiment for ©=0.6> ..
The results are shown in Fig. 5. We see that for << u,. there
exists a parameter range, where the mean-field frequency is
locked to the external force. This locking increases the co-
herence of the ensemble; however, the force is not suffi-
ciently strong in order to overcome the instability of the fully
synchronous state due to the nonlinearity in the coupling. As
a result, the amplitude of the mean field increases in the
synchronization region, but remains less than unity.

In this figure we also plot the frequency of individual
oscillators w,,., computed according to Eq. (15), and see that
in the MFL state the oscillators are not locked to the force
(and, correspondingly, to the mean field). We remind that the

0.1

0.08 —

0.06 —

| | |
0.3 0.35 0.4 0.45 0.5

FIG. 4. (Color online) Simulation of a periodically forced
ensemble Egs. (5) and (6) with A(r,e)=1 and B=pBy+e’r?, for
Bo=0.4757 and £=0.4. Black bold curve is determined by Eq.
(29). Gray (yellow in color) area corresponds to multistability (cf.
Fig. 2).

unforced system exhibits a bunch state, where the phases of
the oscillators are scattered, but the frequencies of the oscil-
lators and of the mean-field coincide. The forcing shifts both
frequencies, but entrains only the frequency of the mean field
Q). Thus, in this regime w,,. and v={) become generally
incommensurate, similarly to the SOQ state. For a stronger
force, u> w., the mean-field amplitude reaches unity in the
center of the synchronization region, so that both regimes of
full synchrony and MFL are present; the borders of full syn-
chrony correspond to Eq. (28). Finally, we note that a direct
simulation of an ensemble of oscillators according to Egs.
(5) and (6) yields very similar results (not shown).

B. Domain of mean-field locking

The next step is to determine the domain of MFL regime
from Egs. (18) and (19). This can be done (semi)analytically
for the case when in the MFL state r=const and d=const,
what corresponds to the fixed point solution of Egs. (18) and
(19). (Another possible type of solution is discussed below.)
Thus, we have:

0=eA(r,e)r cos B(r,e) + u cos 5, (30)

1+ 72

T

0=v [eA(r,e)r sin B(r,e) + wsin 8].  (31)

Excluding &, we obtain an equation for r:

4pr?
1+72

[eA(r,e)r]* -

2ur \?
A(r,e)si L&) + - u’=0,
eA(r,e)sin B(r,e) ( s r2) 7

(32)

which we solve numerically for particular functions A and .
Picking up real valued solutions 0 <r <1 and computing the
eigenvalues of the found fixed point solutions r,d as de-
scribed in Appendix A, we determine the existence domain
of MFL regime for given v,u and the corresponding bifur-
cations.

We illustrate the determination of MFL domain by the
same example as we used in Sec. IV (eA=1-1.4/> and 8
=0) in Fig. 6. The first result is that, contrary to the case of

046211-6



PERIODICALLY FORCED ENSEMBLE OF NONLINEARLY...

PHYSICAL REVIEW E 80, 046211 (2009)

0.92
0.9
o088

0.86
0.84

D=V, Wose =V
T

|
-0.2

|
-04  -02 0 0.2

v

FIG. 5. (Color online) Illustration of the mean-field locking in a periodically driven oscillator ensemble with nonlinearity in the amplitude
function (see text for details). Left column: subcritical driving u=0.2 < .. Right column: supercritical driving u=0.6> .. In the lower
plots red dashed and black solid lines show the frequencies of the individual oscillators and of the mean field, respectively. For u=0.2 the
force is not strong enough to induce full synchronization; it entrains the mean field, but not individual oscillators, so that r<<1. For u
=0.6 there are both domains of full synchrony and of MFL. Nonlinearity in the amplitude function sA(e,r)=1-gr? and 8=0.

FS, the MFL has no threshold. For a small force, the loss of
the MFL occurs via a saddle-node bifurcation, when one of
the two real eigenvalues becomes positive. The lines of this
bifurcation end in the vicinity of Takens-Bogdanov points,
which can be found as discussed in Appendix B. Above these
points, a desynchronization occurs via a Hopf bifurcation,

1

0.8

0.6

0.4

0.2

FIG. 6. (Color online) Bifurcation diagram for the forced en-
semble with the amplitude nonlinearity (see text for details). Do-
mains of FS, MFL, and asynchrony (AS) are seen. The black dotted
curve is the border of the FS area, obtained via Eq. (28). Black solid
and red dashed curves at the borders of the MFL domain correspond
to the loss of synchrony via saddle-node and Hopf bifurcations,
respectively. The black filled circles are codimension-2 Takens-
Bogdanov points; the bifurcation structure in the vicinity of these
points is shown in Fig. 11. Also, near Hopf bifurcation lines there
exist narrow areas of MFL regimes with modulation in amplitude
and phase (libration) which are not shown here (see text for details).
The mean-field amplitude and frequencies of mean field and indi-
vidual oscillators along the horizontal dashed lines are shown in
Fig. 5. Nonlinearity in the amplitude function gA(e,r)=1—-er? and

B=0.

and here we have to distinguish two cases. First, the limit
cycle that appears as a result of a Hopf bifurcation is small so
that variation in ¢ is less than 27, see Fig. 7. Expressed in
the other way, the cycle in coordinates r cos &, r sin & does
not revolve the origin. Physically, this means that the mean
field is modulated both in the phase and the amplitude, but
its frequency in average remains locked to the forcing; we
denote such regimes as MFL with libration. The second case
appeares with the further variation in v when the limit cycle
grows and the variation in & becomes unbounded. (The cycle
in coordinates r cos &, r sin & now revolves the origin.) As a
result, the mean-field locking is destroyed. (Note that the
similar dynamics is known in the analysis of a forced weakly
nonlinear oscillator [4], in a system of globally coupled sto-
chastic phase oscillators [37], and in a forced Kuramoto
model with the Lorentzian distribution [22].) In the immedi-
ate vicinity of the Takens-Bogdanov points complex bifurca-
tions occur, see Appendix B.

Next, we briefly discuss what changes if B=const# 0;
this case is illustrated in Fig. 8. The main effect here is an
appearance of bistability: there are domains where the asyn-
chronous solution coexists with the MFL solution. On the
right border this happens due to fact that the Hopf bifurca-
tion here is subcritical; it means that the fixed point which
corresponds to the MFL coexists with a stable limit cycle.
The amplitude of the latter is large enough so that the MFL is
immediately lost (no librations). In the bistability domain on
the left border the fixed point solution (MFL) also coexists
with a limit cycle; the latter, however, cannot be found from
the stability analysis.

As the last example we consider the model with phase
nonlinearity A=1, B=p,+&%r?; here we have taken g,
=0.475m and £=0.4. Qualitatively, the picture remains quite
similar to the previous case of the model with amplitude
nonlinearity [see Fig. 9 and compare with Figs. 6 and 8], just
the synchronization regions becomes more asymmetric and
the domains of multistability increase. Finally, we note that
for all examples the results of a direct numerical simulation
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FIG. 7. Illustration of the desynchronization transition at large forcing (here u=0.8). MFL corresponds to the fixed point (shown for
v=-0.82). With the decrease of forcing frequency v the limit cycle appears; however, first it is small and the deviation of phase difference
§'is bounded (libration). It means that on average the frequency of the mean field is still locked to the force. With further decrease in v, phase
difference becomes unbounded (this takes place at v=~-0.841) and the synchrony gets lost. Nonlinearity in the amplitude function

gA(e,r)=1-gr? and B=0.

of an ensemble of 1000 oscillators are in a good correspon-
dence with the analysis of Egs. (18) and (19).

C. Beyond the Ott-Antonsen manifold

To conclude this section, we remind that Egs. (18) and
(19) have been derived under the assumption of uniformly
distributed constants of motion ;. This assumption means
that the dynamics of the ensemble is confined to the reduced
Ott-Antonsen manifold; as has been shown in [36], this

1 X ; 7
. )
- , ; /
g /
0.8 — . /
I , FS /
0.6 /
< /
S /
3 o R
AS/MFL //
0.4 ; AS/MFL
. /
- .. /
/ AS
0.2+ AS
0 \ \ \ \ \ \
1.2 0.8 0.4 0 0.4 0.8 1.2

FIG. 8. (Color online) The same as in Fig. 6, but for 8=0.257.
In addition to domains of FS, mean-field locking [gray (yellow)
area], and AS, there are two domains where bistability MFL/AS is
observed. Solid black and dashed red curves are lines of saddle
node and Hopf bifurcations, respectively. Black circle shows the
Takens-Bogdanov point (the second Takens-Bogdanov point lays
outside of the shown range of v and w).

manifold is the only attractor if the oscillators are not iden-
tical but have a frequency distribution (and that is why this
particular solution is especially important). The dynamics on
this manifold is described by a simplified system of two
Watanabe-Strogatz equations. However, for identical oscilla-
tors, generally one has to consider the full WS equation sys-
tem, which generally possesses other solutions as well (see
[30]). Moreover, the transients generally lie outside of the
Ott-Antonsen manifold.

To illustrate this issue, we numerically analyze an en-
semble of 1000 oscillators with nonlinearity in the amplitude
function, and with a nonuniform distribution of constants of
motion ¢;. For this goal, we uniformly distribute one half of
the constants i along the arc [(1-¢)7,(1+¢)75], while the

0.1
\
mo\
\
008 1\
\
L \ FS
\
0.06 - \
\
3 - \
\
0.04 - \ AS/MFL
AS
L \
\
0.02- \ AS
_—x
. AS/MFL\
0 | ‘ | | |
0.2 03 04 05

v

FIG. 9. (Color online) The same as in Figs. 6 and 8 but for
the model with phase nonlinearity: A=1, B=pB,+&>% and B,
=0.475m.
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FIG. 10. (Color online) Simulation of the ensemble of N=1000 oscillators with nonlinearity in the amplitude function and with different
distribution of constants of motion; the distribution is parameterized by g (see text). Amplitude of the force is u=0.4. (a): v=0.4. Black
circle, solid red, and orange dashed lines correspond to g=1, g=0.9, and ¢=0.7, respectively. (b): »=0.6. Solid black and orange dashed lines

correspond to g=1 and ¢=0.7, respectively.

second half of the constants of motion is distributed along
the arc [-(1+¢)5,—(1-¢)3]. Here 0=¢=1 is a parameter;
its largest value g=1 corresponds to the uniform distribution
of iy, and, correspondingly, to the simplified theory pre-
sented above. Note that this choice of ¢ satisfies constraints
Eq. (11) and 2¢;,=0. The initial values for the phases ¢, are
obtained with the help of Eq. (10), using the following initial
values for the Watanabe-Strogatz variables: ®=¥=0, p
=0.05. The parameters of the system are e=1.4, u=0.4, and
B=0.257 (cf. Fig. 8), and the frequency of the forcing was
varied. The result is as follows: in the middle of the synchro-
nization region, e.g., for v=0.2, the value of parameter g
does not influence the dynamics and we observe the MFL
with a periodic mean field. Inside the synchronization region
but close to its border, e.g., for v=0.4, the synchronized
mean field becomes modulated both in the amplitude and the
phase; in other words, we observe librations, see Fig. 10(a).
Outside of the synchrony domain, e.g., for v=0.6, the dy-
namics of the mean field also contains a second frequency:
we see that the torus is born from the limit cycle, see Fig.
10(b). We conclude that nonuniform distribution of constants
of motion ¢ generally leads to an appearance of an addi-
tional modulation, so that a static solution becomes periodic
and a periodic solution becomes quasiperiodic.

VI. DISCUSSION

We have analyzed the dynamics of periodically forced
ensembles with global nonlinear coupling, for the case of
identical phase oscillators. We have considered parameter
values where the unforced ensemble exhibits partial syn-
chrony, with the mean-field amplitude 0 <r<1. Depending
on the type of the coupling nonlinearity, the oscillators in the
autonomous ensemble either have the same frequency as the
mean field, but different phases (bunch state), or the fre-
quency of oscillators differs from that of the mean field and
therefore the oscillators exhibit quasiperiodic dynamics.

It is natural to expect that a common external forcing
increases the coherence in the system and tends to synchro-

nize all elements of the ensemble. However, the forcing has
to overcome the instability of the synchronous solution due
to the coupling nonlinearity. As a result, the state of full
synchrony appears if the forcing amplitude exceeds some
threshold value, even for identical oscillators. Next, there
exists another synchronous state, which appears already for a
very small forcing. In this state only the mean field of the
population is locked to the external force, whereas the indi-
vidual oscillators have a different, generally incommensurate
frequency. The distribution of the phases has a hump which
rotates with the same frequency as the force, and individual
oscillators pass through this hump; the amplitude of the
mean field is, respectively, between zero and one. If the pa-
rameters of the forcing are varied so that the system ap-
proaches the border of full synchrony, the distribution be-
comes more and more narrow, unless it collapses to a &
function at the border of full synchrony. Thus, comparing
synchronization properties of ensembles with linear and non-
linear coupling we conclude that nonlinearity results in a
finite threshold of full synchrony. Furthermore, it leads to a
synchronous state when the mean field of the oscillator is
entrained, but individual oscillators are in a quasiperiodic
state.

To conclude, there exist two levels of description of a
forced ensemble. From the macroscopic viewpoint, the
forced nonlinearly coupled ensemble behaves like a complex
oscillator, which exhibits multistability at the borders of the
synchronization region. The limit cycle of the collective
mode is not very stable in the sense that a relatively weak
force not only entrains the mode, but can also change its
amplitude. The macroscopic description, based on the as-
sumption of a uniform distribution of the constants of mo-
tion, leads to a low-dimensional system of equations and can
be therefore fully analyzed. However, this macroscopic con-
sideration is not sufficient for the detailed description of the
mean-field dynamics: in dependence on the microscopic state
of the ensemble, i.e., on the distribution of the constants of
motion i, the collective mode dynamics may become qua-
siperiodic. Nevertheless, the macroscopic description yields
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a correct (although “coarse grained”) picture of the main
synchronization effects. Moreover, according to Ott and An-
tonsen [36], the solutions obtained from a macroscopic de-
scription are the only asymptotically stable solutions if oscil-
lators have a continuous frequency distribution.
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APPENDIX A: STABILITY ANALYSIS

For numerical analysis of Egs. (18) and (19) it is conve-
nient to present coordinates x=r cos &, y=r sin 6 and rewrite
the system as:

l_x2 2

- 1+x°+y°
—ysA(x,y)x cos B(x,y) + SrE Ay

s
e 2 2

X eA(x,y)y sin B(x.y) + ‘2—"<1 —x2+y) =f(x.y),

X -y
y=vx— Ee—

1+x°+y° 1-
x2 u eA(x,y)x sin B(x,y) + 5

XeA(x,y)y cos B(x,y) — uxy = g(x,y).

In order to determine the stability of a fixed point solution,
we compute the eigenvalues of the corresponding Jacobian
matrix \j,=(S=* V$*-4J)/2, where

_or, o8, _drdg _9fd

S + -, = .
dx dy dxdy dydx

In the bunch state we have gA(x,y)=1-¢&(x*+y?), |B(x,y)|
=const=7/2. Presenting notation z=x2+y2, we write the
terms of the Jacobian as:

%: - 8|:Ax2+ %A +(1 —z)xz]cos B
+ e[Axy — (1 + z)xy]sin B— ux,
(9—f:— v—exy[A+ (1 -z)]cos B
dy

I+
+8[Ay2+ TZA— (1 +Z)y2}sin B+ umy,

d 1+
_g=V—8 Ax2+—ZA—(1+z))c2 sin B
ox 2

—exy[A + (1 =z)]cos B puy,
98 .
— =—exy[A-(1+2z)]sin B
dy

1—
—8|:Ay2— TZA +(1 —z)yz]cos B— ux.
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Next, we express x and y via z using Egs. (30) and (31).
Hence, all the terms of the Jacobian can be expressed via z.
Substituting x(z) and y(z) in the above derivatives we obtain,
after tedious but straightforward manipulations

S=2a-bz, (A1)

J=a*+d* - (ab +dc)z, (A2)

where
1
a= E(l +2)(1 —ez)cos B,
b=(1+e-2ez)cos B,
¢=(1-¢&-2gz)sin B,

]_
d=—=
1+z

V- %(1 —gz)(1 —z)sin B.

Thus, for given v and u we solve numerically Eq. (32),
which for a given nonlinearity becomes an equation for z
=r?=1, and, substituting the solution in Eqgs. (A1) and (A2),
check its stability.

In the SOQ state we have A(x,y)=1, B(x,y)=By+e&*(x
+y%)=pBy+e%z. Proceeding in the similar way as for the
bunch state, we obtain the eigenvalues A via z, using

S=2a-cz,

J=d>+d*-(ac+bd)z,
where the functions a, b, ¢, and d now take the form

1+z

a= g cos B(e,z),

b=¢[sin B(e,z) + (1 +z)e* cos B(e,2)],
c=¢g[cos B(e,z) + (1 —z)e? sin Ble,z)],

1=
d= " +§v— g(l —z)sin B(g,7).

APPENDIX B: DYNAMICS IN THE VICINITY
OF TAKENS-BOGDANOYV POINTS

In the Takens-Bogdanov (TB) points both eigenvalues are
zero, and, hence, in terms of variables introduced in Appen-
dix A, §=0 and J=0. Two latter equations can be solved to
obtain these critical points. Let us begin with the bunch state
case. Equation S=0 becomes a quadratic equation, which
root is:

(B1)

(Here we took into account that 0=z=1 and €>1, so we
dropped the second root). For given z,. the second equation,
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J=0, is a quadratic equation for d, its solution is
zZ s>
d1,2 = EC(C * \”bz + Cz),

where a, b, and ¢ are now computed for z=z.. The expres-
sion for d can be now solved for v,; we obtain:

1+ 1- 1-z.
V.= Z6<d12+( SZC)( ZL)Sin B)
-z, ’ 2

Finally, using Egs. (30) and (31), we obtain

40’7, 4v,z,
= 1-ez.)%2,+ —= - —(1 —ez.)sin 3,
e \/< Pt Ty e s (e
what completes determination of Takens-Bogdanov points.
The same scheme can be used in the case of the SOQ
state. However, instead of the quadratic Eq. (B1) we have a
transcendental equation

cot B(e,z) =&*(1 - 2)z,

which should be solved numerically to yield z.. Next steps
are exactly the same as in the previous case and the final
expressions are:

1 -
ZZCS sin ﬁ(s,q.)),

2
4viz, 4v.z,

2
= 'C+—_
Me \/8 < (1+z)> 1+z

e sin B(e,z,),

C

where
Ze (2, 2
dl,ZZE(b +\b*+ ).

We briefly illustrate the dynamics in the vicinity of TB
points in Fig. 11, where we schematically present the bifur-
cation diagram near the left TB point; the bifurcation dia-
gram for the right TB can be obtained by reflection with
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FIG. 11. Sketch of the bifurcation lines around the left TB point
in Fig. 6. Here sn; and sn, are lines of the saddle-node bifurcation;
H and h are lines of Hopf and homoclinic bifurcation, respectively;
the line labeled by S marks the transition from librations to rota-
tions. Domains I, II, and III correspond to fixed point solutions,
librations, and rotations, respectively. In a very small domain IV we
observe coexistence of two fixed point solutions, corresponding to
two MFL states with different amplitudes of the mean field. The
line sn; (not shown in Fig. 6) goes from one TB point to the other
and separates domains with one stable fixed point (beyond this line)
and one stable and two unstable fixed points (below this line).

respect to the vertical axis. For computation of the bifurca-
tion lines near TB points we used the AUTO 2000 package
[38,39]. It is important to note that the diagram is qualita-
tively similar to diagrams given in Ref. [37], where Zaks er
al. analyze dynamics of an ensemble of linearly coupled sto-
chastic phase oscillators; therefore for details of bifurcations
around TB points we refer to Ref. [37]. A similar bifurcation
diagram also appeared in a recent publication [22], where
Childs and Strogatz analyzed the dynamics of periodically
forced Kuramoto model with Lorentzian distribution of natu-
ral frequencies.
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