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Hyperbolic chaos in the phase dynamics of a Q-switched oscillator
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Abstract – We propose a device based on a Q-switched self-sustained oscillator with two nonlinear
delayed feedback loops. Due to the appropriate phase transformation of the signal that influences
the generation of each successive pulse, the phase difference between the two neighboring pulses
evolves according to the Bernoulli doubling map. It corresponds to a hyperbolic chaotic attractor
yielding a robust, structurally stable chaos. We discuss possible experimental implementations of
the scheme.
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Although deterministic chaos is ubiquitous in natural
and technical systems, its mathematical description is far
from being complete. In a mathematical theory of dynam-
ical systems one introduces a class of uniformly hyper-
bolic chaotic attractors [1–3]. In such attractors all orbits
are of saddle type, with stable and unstable manifolds of
equal dimension all over the attractor, and no tangen-
cies between the manifolds occur: their intersections can
be only transversal. The dynamics on such attractors
possesses strong chaotic properties and allows a precise
mathematical analysis. For about 40 years of existence of
the corresponding mathematical theory, it was commonly
believed that the hyperbolic chaotic attractors are not
relevant for real-world systems with complex dynamics. In
textbooks and tutorials, the traditional examples of such
attractors are represented by rather artificial construc-
tions, the Plykin attractor [4] and the Smale-Williams
solenoid [1].
Recently, several examples of realistic systems with

attractors of the Smale-Williams type have been
suggested [5–8]. A general principle behind the construc-
tion of these models is a manipulation of the phases
of oscillations in the course of the excitation transfer
between two (or more) alternating self-oscillatory systems.
In this letter we exploit the same main idea to construct

a chaotic system on a base of a single active element.

(a)E-mail: pikovsky@uni-postdam.de

We consider a Q-switched self-sustained oscillator demon-
strating periodically alternating activity, interrupted with
stages of silence. The oscillator is supplemented with two
additional nonlinear delayed feedback loops. Due to this
feedback, when the oscillator enters a new active stage,
its phase is determined by the phases from two previous
activity stages through a chaotic map. The presence of the
delay complicates the mathematical nature of the model
(formally, the phase space of the system becomes infinite
dimensional), but in a physical implementation the delays
can be arranged rather easily.
As we hope, the proposed scheme is mostly appropriate

for a realization with lasers. There the Q-switching —the
method of obtaining pulses from lasers by modulating the
intracavity losses— is a widespread tool for designing of
a pulsed laser generation (see, e.g., [9], Chapt. 26). Our
setup below in fig. 1 corresponds to the so-called active
Q-switch, where the modulation is achieved by applying
an external signal via, typically, an acousto-optic or an
electro-optic modulator. Here one can explicitely control
the periodicity of the pulse train, contrary to the case of
a passive Q-switch, where pulsation appears due to an
instability of the continuous generation because, e.g., of
a saturable absorber. Nonlinear delayed feedback loops
are also a common scheme in laser experiments [10],
where very efficient methods for the second and the
third harmonic generation have been developed [11–14].
However, in the presentation below we do not follow a
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Fig. 1: Block diagram of the system. Crossed boxes are
nonlinear elements —quadratic multipliers. The feedback loop
includes two delay units with times T and T1. A separate
block is a modulator with frequency Ω controlling the periodic
Q-switch of the self-oscillator, the main element of the device.

description for a particular type of laser, rather we deal
with a generalized mathematical model for a self-sustained
oscillator, valid for a wide class of systems. For example,
the proposed scheme is relevant also for experiments
with electronic circuits, because all essential features (a
periodic modulation of losses, a nonlinear transformation
of a quasiharmonic signal, a delay) can be easily realized
electronically.
The block diagram of the system is shown in fig. 1. It

contains the main active element, a self-sustained oscil-
lator with the operating frequency ω. Because of a slow
external modulation of the activity/losses with frequency
Ω� ω, the oscillator becomes active periodically with
period τ = 2π/Ω, and the stages of activity are inter-
rupted with intervals of silence (see fig. 2(a) below).
We denote successive pulses of oscillation with indices
. . . n− 1, n, n+1 . . . . If there were no additional feedback
loops (depicted in the lower part of the block diagram),
the phase of each new pulse were arbitrary, because each
pulse grows from very small amplitudes on which the field
is essentially noisy and the phase is not defined.
Let us consider how this sequence of pulses with unde-

termined phases is modified by the delayed feedback loops.
Introducing the amplitude fn and the phase ϕn of the
n-th pulse, we can represent the oscillatory process as
x(t) =

∑
n fn(t) cos(ωt+ϕn). The time constants of the

delay loops, T and T1 are chosen in such a way, that the
(n− 1)-th pulse delayed by time T1 and the n-th pulse
delayed by time T overlap during the time interval, when
the intensity of the (n+1)-th pulse starts to grow. (This
means that the optimal value for T is slightly less than τ ,
and the optimal value for T1 is T + τ ; in our numerics

below we use τ = 2π, T = 5 and T1 = 11.) In the input of
the delay line T we send the third harmonics of the process
x(t), this is obtained by means of two multipliers with
quadratic nonlinearity. Thus, at the output of the delay
line T we have a process ∝ f3n cos(3ωt+3ϕn+const). In
the input of the delay line T1 we send the second harmon-
ics of the process x(t). Thus, at the output of this delay
line we have a process ∝ f2n−1 cos(2ωt+2ϕn−1+const).
Note that all other harmonics possible at the outputs of
the delay lines are supposed to be filtered out. These two
processes from the outputs of the delay lines are mixed
in the quadratic multiplier, and the resulting compo-
nent at frequency ω is proportional to f3nf

2
n−1 cos(ωt+

3ϕn− 2ϕn−1+const). This harmonic component reso-
nantly forces the self-sustained oscillator at the beginning
of the activity stage (n+1) and serves as a “germ” for
the excitation of the oscillator. It means that the pulse
(n+1) will adopt the phase of the forcing according to
the relation

ϕn+1 = 3ϕn− 2ϕn−1+const. (1)

This discrete-time evolution of phases, from one pulse
to another, can be interpreted in terms of the one-
dimensional dynamics, if we introduce the phase difference
between the successive pulses

ϑn =ϕn−ϕn−1. (2)

As follows from (1), this new variable will behave in
accordance with the expanding map of a circle, the so-
called Bernoulli doubling map [2,15]:

ϑn+1 = 2ϑn+const (mod 2π). (3)

(The constant in the equation, which depends on delay
times and details of manipulation with signals in the
feedback loops is of no principal significance because it can
be removed from the equation by an appropriate selection
of the offset for the variable ϑ.)
After the qualitative explanation of the phase transfor-

mation, let us turn to a consideration of the delay differen-
tial equation corresponding to the block diagram of fig. 1.
Representing the oscillatory process x(t) by means of the
slowly varying complex amplitude x=Re[a(t)eiωt], we can
write for this amplitude

da

dt
= (γ0+ γ1 cosΩt− |a|2)a+ ε[a(t−T )]3[a∗(t−T1)]2.

(4)
The oscillator is assumed to be of the Stuart-Landau
type, the modulation of the parameter responsible for its
excitation follows the expression Γ(t) = γ0+ γ1 cosΩt. The
stages of activity correspond to Γ(t)> 0, and those of
silence to Γ(t)< 0. The structure of the retarded terms
in the right-hand part is selected in accordance with the
signal transformations in the feedback loops, as described
in our qualitative considerations above. From all possible
terms appearing when the signal of the third harmonic
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Fig. 2: (Color online) Modulus of the amplitude (a), the phase
ϕ= arg(a) of the oscillator (b), and real and imaginary parts of
the complex amplitude (c) vs. time, obtained from a numerical
solution of eq. (4) at Ω= 1, γ0 = 0.2, γ1 = 2, ε= 0.1, T = 5,
and T1 = 11. Simulations have been checked by using different
numerical methods, in particular a predictor-corrector scheme
with fixed time step ∆t= 0.00125.

with delay time T , and the signal of the second harmonic
with delay time T1 are multiplied, we chose only the
resonant term at frequency ω. It is proportional to [a(t−
T )]3[a∗(t−T1)]2, where a∗ denotes the complex conjugate.
The overall performance of the three quadratic multipliers
and the delay lines is summarized in a single complex
parameter, the feedback strength ε. Non-resonant terms
practically do not affect the oscillator and are therefore
neglected.
Figures 2 and 3 show some results of numerical simu-

lation of the system dynamics at a particular set of the
dimensionless parameters Ω= 1, γ0 = 0.2, γ1 = 2, ε= 0.1,
T = 5, and T1 = 11. From fig. 2 one can conclude that
the amplitudes of the pulses are nearly equal (panel (a)),
while the phases are different from pulse to pulse (within a
pulse the phase is nearly constant, panel (b)). In fig. 3 we
present a stroboscopic mapping of the phase difference ϑn,
it nearly perfectly corresponds to the theoretical predic-
tion (3). In fig. 4 we illustrate similarity of the attractor in
eq. (4) to the Smale-Williams solenoid. For this, we chose
a special stroboscopic observation at a particular phase
of Q-switching, because at other phases of this cycle the
fractal transverse structure is hardly visible.
To characterize further the chaotic dynamics we have

calculated the 7 largest Lyapunov exponents in depen-
dence on the feedback strength ε for γ0 = 0.2 and γ1 = 2,
see fig. 5. One can see that there is no chaos for ε < 0.05.
For ε > 0.065 we observe a hyperbolic chaos as described

Fig. 3: Iteration diagrams for the phase differences obtained
from numerical simulation of the dynamics of eqs. (4), the
parameters are the same as in fig. 2. The phases ϕn are
taken stroboscopically at times τ, 2τ, . . . , from them the phase
differences according to eq. (2) are calculated. Observe a good
agreement with expression (3): the sets of points look like
straight lines.

Fig. 4: A stroboscopic portrait illustrating a similarity of
the attractor in eq. (4) to the Smale-Williams solenoid. The
pictures are drawn in projection on the plane (Xn, Yn), where
Xn+ iYn = a(nτ + τ0)a

∗((n− 1)τ + τ0), τ = 2π/Ω, τ0 = 8τ/11.
The parameters are the same as in fig. 2.

above; it has one positive Lyapunov exponent. Its value
corresponds to multiplications of a small state perturba-
tion approximately by factor of 2 over a period of the
Q-modulation τ , in a good agreement with what one
expects from eq. (3). Additionally, the system possesses
a zero Lyapunov exponent corresponding to the invari-
ance of eq. (4) in respect to the phase shift. All other
exponents are negative. The Lyapunov dimension of the
attractor in this parameter range is between 1.5 and 2.5. In
fig. 5 one can also see a transitional region 0.05< ε< 0.065,
where the largest Lyapunov exponent is positive but less
than the value following from eq. (3). Here, presumably, a
non-hyperbolic chaos occurs. As the problem of the transi-
tion to hyperbolic chaos under parameter variations is yet
unresolved neither in mathematical nor in physical litera-
ture, we postpone a study of the transitional region to the
future.
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Fig. 5: (Color online) Panel (a): Seven largest Lyapunov expo-
nents (normalized by period τ , filled circles of different colors)
in eq. (4) as functions of the feedback strength ε (which is
assumed to be real). The Lyapunov dimension (panel (b))
is calculated by neglecting the zero Lyapunov exponent corre-
sponding to the phase invariance.
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Fig. 6: (Color online) Panel (a): Seven largest Lyapunov
exponents (normalized by period τ , filled circles of different
colors) in eq. (4) as functions of the modulation level γ1. The
Lyapunov dimension (panel (b)) is calculated by neglecting the
zero Lyapunov exponent corresponding to the phase invariance.

In fig. 6 we perform a similar analysis for the dependence
on the modulation level γ1, for fixed values ε= 0.1 and
γ0 = 0.2. The behavior is qualitatively similar to that of
fig. 5: there is a large range of this parameter 1.8<γ1 < 5
where the hyperbolic chaos is observed.
At all values of the parameters presented in figs. 5, 6

we observed a single attractor and no multistability.
While generally a multistability may appeaar in systems
with delay, in our setup the attracting domain in the
phase space is largerly determined by the non-delayed

Fig. 7: The observable |ρ(t)|= |a(t)+ a(t− τ)| vs. time for
the same parameters as in fig. 2. Contrary to fig. 2(a), this
observable demonstrates chaotically varying pulse amplitudes.

dynamics, which is simply a response of a self-sustained
oscillator to the modulation of losses and shows therefore
no multistability. The delayed feedback is relatively weak
as it serves only for the phase transfer, therefore it
does not lead to multistability as well. One can expect
multistability to appear only for rather large values of the
feedback parameter ε.
We would like now to discuss, how the hyperbolic

chaos can be detected in experiments. As we have laser
experiments in mind, a direct registration of the phases
seems hardly possible. However, a proper observable may
be obtained by looking on the interference between two
successive pulses. Indeed, the sum of the pulse fields

ρ(t) = a(t)+ a(t− τ) (5)

demonstrates a strong irregular variability of intensity
(fig. 7). Assuming that the amplitude A of the field a(t) is
periodic and only the phase changes, we can write ρ(t) =
A(t)(eiϕ(t)+ eiϕ(t−τ)) and for the modulus we obtain a
strong dependence on the phase difference

|ρ(t)| = |A| · |1+ ei(ϕ(t)−ϕ(t−τ))|
= |A|

√
2(1+ cos(ϕ(t)−ϕ(t− τ))).

The dynamics of the observable ρ can be also characterized
via a stroboscopic map. Because |ρn|2 = 2|An|2(1+ cosϑn)
and An ≈ const, such a map is just a nonlinearly trans-
formed Bernoulli doubling map (3). The most simplest
form this map has if the constant in (3) vanishes, then
the stroboscopic map for |ρn|2 is the logistic map in the
regime of full chaos, see fig. 8.
In conclusion, we have suggested a simple feedback

scheme that leads to a hyperbolic chaotic dynamics in a
Q-switched self-sustained oscillator. We have considered
the case of active Q-switching, but the same mechanism
will work for a passive Q-switching as well, although it
will require more careful selection of the delay times.
In comparison with schemes proposed in our previous

works [5–8,16], the present one has several advantages
from the point of view of a possible experimental real-
ization. First, the use of a single oscillatory element obvi-
ously simplifies the device in comparison to those with two
or more active elements (one does not have a problem of
adjusting the parameters etc.). Second, in this scheme we
exploit a resonant transmission of the excitation from the
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Fig. 8: The stroboscopic map of the variable |ρn|2 for the same
parameters as in fig. 2.

previous activity stages to the next one, which appears
to be possible because of the use of two delays and of
the signal transformations involving the second and the
third harmonics. As the resonance condition is automat-
ically satisfied in this scheme, there is no problem with
adjusting the frequencies; moreover, the feedback can be
relatively small. The resonant mode of operation allows
us to describe the system in terms of slowly varying
complex amplitudes, so that the equations do not contain
the basic frequency at all. This makes the model rele-
vant for a wide range of oscillators —from very fast
(lasers) to extremely slow (chemical reactions) ones. The
robust hyperbolic chaos manifests itself in the dynamics
of the phase variable, which is hardly observable in optics,
but using the “interference” technique it is possible to
reveal it via a chaotically varying intensity. As the hyper-
bolic strange attractors are structurally stable objects,
the scheme may have advantages for applications in all
cases where a robust low-dimensional chaos is needed, e.g.
in chaotic communication. This property of a hyperbolic
chaos distinguishes it from a chaos that typical smooth
dynamical systems, like e.g. Rössler system, demonstrate.
Indeed, in the Rössler-type system as well as in general
smooth unimodal maps the chaotic regions are intermigled
in parameter space with periodic windows. The set of
parameters for which chaos is observed is typically a fat
fractal set with holes everywhere (although in numerical
and physical experiments small periodic windows are prac-
tically unobservable). Although one can construct fami-
lies of chaotic smooth unimodal maps like in [17], this
does not mean their robustness with respect to generic

perturbations. Contrary to these systems, the hyperbolic
chaotic attractor constructed in this letter is structurally
stable to generic perturbations and exists in a rather large
range of parameters. Moreover, as the symbolic dynami-
cal description of the Bernoulli doubling map (3) is robust,
one can reliably employ it in commonucation schemes.
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