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Chaotic destruction of Anderson localization in a nonlinear lattice
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Abstract – We consider a scattering problem for a nonlinear disordered lattice layer governed
by the discrete nonlinear Schrödinger equation. The linear state with exponentially small
transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until
it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length
as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is
delocalized and this leads to a drastic increase of transparency.
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The Anderson localization, first studied in the context
of electron transport in disordered solids [1], is a general
phenomenon describing various physical situations [2,3].
Well-known examples are wave propagation in a random
medium [4] and quantum chaos [5,6]. Roughly speaking,
localization means that in a linear disordered system
for almost all random realizations of the potential the
eigenstates are exponentially localized and the spectrum
is pointlike [2]. It manifests itself as a vanishing mobility
of electrons, an exponentially small transparency of a
random layer for waves, and a suppression of classical
diffusion for quantum chaos.
Effects of nonlinearity on localization properties have

attracted large interest recently. Indeed, nonlinearity
naturally appears for localization of a Bose-Einstein
condensate, as its evolution is described by the nonlinear
Gross-Pitaevskii equation [7]. An interplay of disorder,
localization, and nonlinearity is also important in other
physical systems like wave propagation in nonlinear disor-
dered media [8–10] and chains of nonlinear oscillators
with randomly distributed frequencies [11,12].
In this letter we study effects of a relatively small

nonlinearity on the strongly localized states (for effects
of a small disorder on strongly nonlinear states see,
e.g., [13]). Recently it was demonstrated that an initialy
concentrated wave packet spreads apparently indefinitely
in a nonlinear lattice, provided the nonlinearity is strong
enough [14–16]. Here we focus on another setup, namely
on the scattering problem: we study how an incident
wave is transmitted through a finite layer of a disordered
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nonlinear medium. Such a setup fits especially the optical
experiments, where a transmission through a disordered
nonlinear layer can be studied in dependence on the
intensity of the incident light beam. Another physical
realization is a propagation of a Bose-Einstein condensate
through a waveguide with disorder [17].
We model a nonlinear disordered medium with the dis-

crete Anderson nonlinear Schrödinger equation (DANSE)

i
∂ψn

∂t
=Enψn+β|ψn|2ψn+ψn+1+ψn−1, (1)

where β characterizes nonlinearity and the on-site energies
En (which are shifted in such a way thatE = 0 corresponds
to the central energy of the band) are independent random
variables distributed uniformly in the range −W/2<En <
W/2. For β = 0 all eigenstates are exponentially localized
with the localization length l≈ 96W−2 (for weak disorder)
at the center of the energy band [3]. The DANSE (1)
exactly describes recent experiments with one-dimensional
disordered waveguide lattices (cf. eq. (1) in [10]), it also
serves as a paradigmatic model for a wide class of physical
problems where interplay of nonlinearity and disorder is
important.
For DANSE (1) we formulate the following scattering

problem. Nonlinear lattice (1) is supposed to be finite 1�
n�L and attached at the ends to linear regular lattices
with β =E = 0 (we remind that E = 0 corresponds to the
central energy of the band). In the linear lattice attached
at the left end, there is an incident wave with amplitude A
and frequency ω0: ψinc(n, t) =A exp[iK(ω0)n− iω0t] with
ω0 = 2 cosK. We are interested in the transmission of
this wave through the finite nonlinear disordered layer
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1� n�L, and particularly in the outgoing wave at n>
L. The exact boundary conditions for a finite lattice
1� n�L resulting from this setup are non-local in time,
because of dispersion of linear waves in the attached
lattices, they can be written as time integrals. As they
are rather complex for a numerical implementation, we
use below simplified boundary conditions valid for mono-
chromatic waves, i.e. we neglect the dispersion:

(ω0− eiK)ψ0 =−2i sinKAe−iω0t+ψ1,
(ω0− eiK)ψL+1 =ψL.

(2)

This is mostly justified at the center of the band, where the
dispersion is minimal, thus we set hereafter ω0 = 0, K =
−π/2, and use the following model boundary conditions:

ψ0 = 2A− iψ1, ψL+1 =−iψL. (3)

(Note that these boundary conditions are time-
independent, the same holds for a general ω0 in (2)
if one goes into the rotating with this frequency reference
frame.) In the absence of the incident wave these condi-
tions just describe radiation through the boundaries [18].
We stress here that these boundary conditions are approx-
imate ones: formally they are exact for a sinusoidal wave
having the central frequency of the band, by extending
them to other spectral components we make an approxi-
mation that enormously simplifies numerical simulations.
Possible improvements of this approximation will be
studied in the future. Note that the amplitude of the
transmitted wave is |ψL|. An additional constant term 2A
describes an income of energy due to the incident wave.
As a result, the lattice (1) with boundary conditions (3)
is a nonlinear driven dissipative dynamical system. This
imposes a viewpoint on the problem that is quite different
from those usual in the studies of nonlinear lattices:
we have to investigate attractors and their bifurcations.
Possible attractors in system (1), (3) are steady states
(they correspond to harmonic reflected and transmitted
waves having the same frequency ω0 as the incident one),
periodic and quasiperiodic regimes (corresponding to
regularly modulated reflected and transmitted waves) and
chaotic attractors (corresponding to a turbulent state in
the lattice layer with irregular reflected and transmitted
waves; see [19] for an example of chaotization of waves
at their scattering on a nonlinear impurity without
disorder). We emphasize here that the dissipation in the
model (1), (3) is purely radiative. Indeed, according to
eq. (1) there are no internal energy losses (of course, the
model can be extended for such a case as well, but this
goes beyond the scope of this letter) and the only source
of dissipation are boundary conditions (3) which describe
the effect of the excitation of the outgoing waves in the
linear lattices attached at n= 1 and n=L.
As bifurcation parameter we take the nonlinearity

constant β, while keeping the amplitude of the incident
wave constant, A= 1. These two parameters are of course

equivalent via a rescaling, thus an increasing of β is equiv-
alent to an increasing of the amplitude of the incident
wave. Particularities of attractors and their bifurcations
depend on the realization of the random potential {En},
therefore to achieve general conclusions we will perform
below a statistical bifurcation analysis of problem (1), (3);
in this aspect our approach differs from direct numerical
simulations of a nonlinear scattering problem in [17]. We
will consider the system length L as another essential
parameter of the problem; the distribution of energies will
be hereafter fixed −2�En � 2. The range of the disorder
is chosen to be equal to the band width, so this disorder
is neither weak nor strong.
Because of the symmetry of this distribution we can

restrict our numerical analysis to the case of positive β
only. Indeed, with the “staggered” transformation ψn =
(−1)nφ∗n one transforms (1), (3) to

i
∂φn

∂t
=−Enφn−β|φn|2φn+φn+1+φn−1,
ψ0 = 2A− iφ1, ψL+1 =−iφL,

which is equivalent to (1), (3) if one changes signs of
En and β. Because the distribution of En is symmetric,
statistical properties of bifurcations do not depend on the
sign of β, although for a particular disorder realization the
sign of nonlinearity is relevant.
Our starting point is the linear case β = 0. Here the

dissipative system (1), (3) has a unique global attractor:
a stationary state. This state corresponds to the unique
solution of the linear scattering problem. The amplitude
in this state decreases in average exponentially with
the index n, so that the transmitted wave for large L
is exponentially small |ψL| ∼ exp(−L/l). This is just the
manifestation of the Anderson localization in the context
of the scattering setup. This state, as well as its stability
properties, can be easily found numerically. Expectedly,
but nevertheless remarkably, the linear state becomes
less stable with the increase of the layer length L. The
system (1), (3) has 2L complex eigenvalues Re(λk)+
iIm(λk), all of them have negative real parts, so the
amplitudes of the perturbations decay ∼exp (Re(λk)t).
In fig. 1 we show the distributions of the closest to
zero real part Re(λ0), for different system lengths, this
quantity determines the slowest decay rate. One can
see that for larger L the real part of the eigenvalue
becomes exponentially close to zero, because the coupling
of localized modes at the middle part of the layer with the
boundaries is exponentially weak. We will see that these
weakly damped modes dominate the bifurcations when the
nonlinearity is increased.
Starting with the stable steady state at β = 0, we

followed this state for an increasing β, until this state
bifurcates at some βc. We have performed the bifurcation
analysis [20] automatically for about 104 realizations of the
random potential, and summarize the results for different
lengths of the layer in fig. 2. The maximal value of β in the
analysis was β = 2. If the steady state remains stable up to
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Fig. 1: (Color online) A gray scale plot of distributions of
the eigenvalues λ0 with the largest real part for different
lattice lengths, obtained from an ensemble of 104 realizations of
random potential, black indicates high probability. The dashed
line shows the value of λ0 for a regular linear lattice.
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Fig. 2: (Color online) (a): Cumulative distributions of the crit-
ical nonlinearity values, the curves show the probability that
βc >β. (b): Dependence of the median µ(β) of the distribution
(defined as prob[βc >µ(β)] = 1/2) on lattice length L. The line
is the power law µ(βc)≈ 9.2L−1.6.

this point, we indicate this realization of disorder as “non-
bifurcating”. We show the cumulative distributions of the
values of βc in fig. 2(a) for different lengths of the lattice L.
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Fig. 3: The critical values of nonlinearity vs. system length for a
particular realization of random energies (here the transition is
of fold type). The corresponding field profiles and eigenmodes
are shown in fig. 4.

One can see that the characteristic values of critical βc
decrease with the system length. In fig. 2(b) we conclude
from the log-log plot of the median of the distribution,
that the critical nonlinearity follows the power law

βc ∝L−1.6 . (4)

The type of the bifurcation also changes with the system
length. E.g., for L= 5 a fold (saddle-node) bifurcation
(where one real eigenvalue changes sign) dominates (41.3%
of all cases) over a Hopf bifurcation (31.9%), while in
26.8% of realizations no bifurcation happened until β = 2.
For L= 10 the corresponding numbers are: 55.3% for Hopf,
38.1% for fold and 6.6% for non-bifurcating. For a longer
layer L= 30 a Hopf bifurcation becomes predominant with
84.3%, followed by a fold one (14.3%), and only in 1.4%
of all realizations no bifurcation occurs.
To obtain more insight into the properties of the

critical bifurcating mode, we follow the bifurcation for one
particular realization of the random potential, for different
lattice sizes. After determining the bifurcation for a lattice
size L, we add one additional random site to the lattice and
determined the bifurcation for L+1, etc. The resulting
values of the critical parameter are shown in fig. 3. One can
see that the value of βc drops at L= 17. As is illustrated
in fig. 4, at this system length a change of the critical
eigenmode occurs. While the critical modes for L= 10 and
L= 16 are very much similar, the mode that first becomes
unstable is different for L= 17 and L= 23. As with the
increasing of the lattice length L more and more modes
with exponentially small real parts of the eigenvalues
appear, these modes become potentially dangerous for
the loss of stability. As a result, for larger lattice length
the bifurcation occurs for smaller nonlinearities. This
qualitatively explains fig. 2 and relation (4).
We now turn to the analysis of the post-bifurcation

dynamics in the lattice, that strongly depends on the
type of the bifurcation. A fold bifurcation is non-local,
in this case a new attractor in the system is gener-
ally quite different from the stable steady state prior to
the bifurcation. The same is valid for a subcritical Hopf
bifurcation, while for a supercritical Hopf bifurcation a
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Fig. 4: (Color online) “Evolution” of the critical steady state
(c) and of the critical modes |ψ̃n| [(a) and (b)] with the growing
lattice length. The curves in all panels are vertically shifted for
better visibility. At L= 17 a transition for a new critical mode
located at the sites 8� n� 15 happens.

stable periodic orbit close to the steady state appears.
This distinction is crucial for experiments: at an adia-
batic increase of the intensity of an incident wave, one
will observe a drastic change in the outgoing wave for a
non-local transition, while for a supercritical bifurcation
the transition will be continuous. Furthermore, we cannot
exclude multistability in the system, because new attrac-
tors can appear already for small nonlinearities β < βc.
We studied the post-bifurcation regimes by solving the
initial-value problem (1), (3) for a slightly supercritical
nonlinearity β = 1.01βc, starting from the initial condi-
tions in the vicinity of the just having become unstable
steady state. For L= 10, of overall 104 realizations we
observed steady states in 33% of the situations, stable
periodic/quasiperiodic orbits in 59% and chaos in 8% of all
cases. The classification of the attractors was performed
by calculating the largest Lyapunov exponent of the solu-
tions on the attractor in the system (1), (3), which in the
three cases above was negative, zero, or positive, respec-
tively. For all these different types of attractors we calcu-
lated the time average of the field |ψn| for each lattice
site, and then averaged the logarithm of this time average
over many realizations of the random energies. The result-
ing profiles are shown in fig. 5 together with the averaged
static profile prior to the bifurcation. We see that the peri-
odic post-bifurcation regimes are mostly localized, because
a periodic orbit appearing at a supercritical Hopf bifurca-
tion is mostly close to the pre-bifurcation steady state. The
strongest delocalization demonstrate chaotic regimes. We
stress here that the averaging in fig. 5 have been performed
for different absolute values of nonlinearity β but for the
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Fig. 5: (Color online) Time- and ensemble-averaged profiles of
the field in the lattice of length L= 10 in slightly supercritical
states. Open circles: linear regime; filled circles: nonlinear static
regimes; open squares: periodic regimes; filled squares: chaotic
regimes. All nonlinear regimes are less localized compared
to the static linear state prior to bifurcation. Note that
the averaging is performed for different nonlinearities, as for
different realization the values of βc differ.
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Fig. 6: (Color online) Time- and ensemble-averaged profiles of
the field in a long lattice L= 100. Bottom curve, open circles:
linear case; filled circles: periodic solutions for β = 0.1; filled
squares: chaotic solutions for β = 0.1; open squares: periodic
solutions for β = 1; open diamonds: chaotic solutions for β = 1;
the latter two curves are almost indistinguishable.

same values of nonlinearity relative to the critical one
β/βc = 1.01. We have chosen such a conditional averag-
ing to characterize regimes close to the transition, while
the transition point itself strongly fluctuates making the
averaging at a constant β less meaningful.
Unfortunately, it is extremely difficult to perform a

precise bifurcation analysis as described above for really
long nonlinear lattices. The reason is the mentioned
above exponentially weak damping of modes, resulting
in a very high sensitivity of the numerical bifurcation
algorithms. Therefore we have performed for L= 100 a
direct simulation of the initial-value problem (1), (3),
starting from the “empty” lattice ψn(0) = 0. For fixed
nonlinearity levels β = 0.1 and β = 1, after sufficiently long
transients we first determined the types of the attractors
according to the largest Lyapunov exponent, and then
separately averaged the fields, like described above, for
periodic and chaotic attractors (no static states were
observed for such large lattices, cf. [17]). We underline
that we have not studied multistability of states in each
particular lattice, different states at the same nonlinearity
“co-exist” in different lattices with different realizations
of disorder. The results are shown in fig. 6. While for a
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small nonlinearity periodic regimes are almost as localized
as linear ones, for large nonlinearities there is only a
weak difference between periodic and chaotic regimes. The
latter ones are strongly delocalized for both nonlinearities.
This means that an appearance of chaos leads to a
turbulent (i.e. a high-dimensional chaotic state whose
statistical properties practically do not depend on the
system length) state in a lattice that results in an effective
equipartition between modes. Only at the right end of
the lattice the radiation through this boundary leads to
a depletion of the profile. The transmission coefficient
becomes length independent, allowing us to name this
state the chaos-induced self-transparency of the disordered
nonlinear lattice.
The findings presented in figs. 5, 6 can be summarized

as follows. For a particular realization of the disorder in a
lattice of fixed length, one observes, in dependence on the
nonlinearity parameter β, three regimes. i) The regime
of static localization prior to the critical value βc. Here
the field distribution is very close to that in the linear
lattice. Correspondingly, one can characterize it with the
linear localization length l, so that the transparency of
the layer decreases in average exponentially with the
lattice length:∼exp(−L/l). ii) Just above the critical value
βc an intermediate state is observed, whose properties
heavily depend on the type of the bifurcation and on
other parameters. We were able to identify this state
for relatively small lattices only, therefore we cannot
characterize it with, e.g., an effective localization length
because the latter is defined asymptotically for large
lattices only. In this state the transparency is larger
than in the static state. Finally, for larger nonlinearities
a turbulent state iii) arises as shown in fig. 6. Here
the average transparency becomes finite and system-
size independent. Therefore, one can attribute to this
state an infinite localization length. Thus the destruction
of Anderson localization can be viewed as a drastic
increase of transparency of the layer or, equivalently, as
a divergence of the localization length.
We have restricted our numerical experiments to a

particular distribution of the on-site energies in the lattice.
Several calculations for a different range of the distribution
have shown only a quantitative, not a qualitative differ-
ence. A full statistical analysis in dependence on differ-
ent disorder distributions (what means also different linear
localization lengths) needs enormous numerical efforts and
will be presented elsewhere.
In conclusion, we have formulated the scattering

problem for a disordered nonlinear layer as a bifurcation
problem for a nonlinear dissipative system. A static
localized regime, very similar to the linear one, exists up
to a critical nonlinearity that depends on the disorder
realization and in average decreases with the lattice
length as the power law βc ∝L−1.6. Beyond this critical

value different attractors can be observed, corresponding
to different regimes of transparency. In short lattices we
separately averaged the three classes —static, periodic,
and chaotic— of states just beyond the critical point,
and have found that periodic states are more strongly
localized than static and chaotic ones. In long lattices
for chaotic regimes we observe an almost equidistribution
of the field along the lattice with a drastically increased
transmission through the layer. These regimes appear to
be dominant for relatively large nonlinearities.
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