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We study waves in a chain of dispersively coupled phase oscillators. Two approaches—a quasicon-
tinuous approximation and an iterative numerical solution of the lattice equation—allow us to
characterize different types of traveling waves: compactons, kovatons, solitary waves with expo-
nential tails as well as a novel type of semicompact waves that are compact from one side. Stability
of these waves is studied using numerical simulations of the initial value problem. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2955758�

The topic of this paper unifies two principal directions of
nonlinear science: coupled self-sustained oscillators and
soliton theory. Coupled autonomous self-sustained oscil-
lators appear in different fields of science, and demon-
strate a variety of fascinating phenomena. In this study
we demonstrate that particularities of the coupling for a
rather simple setup—all oscillators are identical, peri-
odic, and form a regular lattice with a nearest neighbor
coupling—can lead to highly nontrivial wave structures.
Remarkably, a dispersive coupling of the phases of dissi-
pative oscillators results in a simple lattice equation
which is equivalent to a Hamiltonian one. We show that
different types of traveling waves exist in this lattice:
compactons (ultralocalized waves with a compact sup-
port), usual solitary waves with exponential tails, as well
as the corresponding kink-type solutions. These waves
appear from rather general initial conditions and exist
for long times. After very long transients they are de-
stroyed due to inelastic collisions and evolve into phase
chaos.

I. INTRODUCTION

Coupled autonomous oscillators are the subject of high
interest in nonlinear science.1,2 When the coupling of the
oscillators is weak, they can be described in the phase
approximation,3 where only a variation of the oscillator
phases matters. The corresponding models are used for the
description of lattices,4–8 globally coupled ensembles and
networks.3,9–12 In the absence of coupling, the phase equa-
tions have only zero Lyapunov exponents. Therefore,
whether the phase dynamics is dissipative or conservative
depends solely on the properties of the coupling. In studies
which focus on synchronization properties, one typically as-
sumes that the coupling is dissipative which thus tends to
equalize the phases. However, certain types of coupling lead
to a conservative dynamics; a prominent example is a splay
state in a globally coupled ensemble of oscillators.13–17

In the present work we consider the dynamics of a one-
dimensional lattice of oscillators with a dispersive, conserva-
tive coupling. A realization of such a lattice may be a multi-
core fiber laser,18 where individual self-oscillating lasers are
arranged in a ring, or an array of Josephson junctions. Since
both, the local phase dynamics and the coupling are nondis-

sipative, the dynamics is expected to be similar to that of the
well-known Hamiltonian-type. An example of a Hamiltonian
lattice is the sine-Gordon lattice, for which the basic building
blocks are traveling solitary waves like pulses or kinks, that
on integrable lattices collide elastically, and in the noninte-
grable cases evolve into chaos.19

In recent years two new concepts appeared that have
significantly extended our understanding of nonlinear re-
gimes in Hamiltonian lattices. One concept introduces local-
ized periodic breathers;20 the other introduces compact exci-
tations in genuinely nonlinear lattices and wave equations.
Unlike the usual solitons that have exponential, or algebraic,
tails, the corresponding traveling waves have compact or al-
most compact support. These waves, named compactons,
have been introduced in Refs. 21–23.

In the present paper we study general traveling waves in
a chain of dispersively coupled nonlinear self-sustained os-
cillators, continuing our previous works24,25 focused on com-
pacton solutions in phase oscillator chains. Contrary to Refs.
24 and 25, we consider here a generic phase model without
additional symmetries. We show that dispersively coupled
oscillators possess not only compactons, but also “classical”
solitary waves with exponential tails. In dependence on pa-
rameters of the coupling and on the velocity these solution
bifurcate. Remarkably, some of the compact solutions de-
scribed in Refs. 24 and 25 exist only in the symmetric situ-
ation, while others can be continued to the nonsymmetric
case. In general, in the nonsymmetric case, we describe a
novel type of semicompact waves which are compact from
only one side and have an exponential tail on the other side.
Another novel feature appears in the analysis of traveling
waves on the lattice. Here we describe a particular bifurca-
tion from monotonic to oscillatory tails of a solitary wave;
such a bifurcation does not exist in the quasicontinuous ap-
proximation where waves are described by means of a partial
differential equation. We also report on a remarkable prop-
erty of the solitary waves with exponential tails. They are
extremely stable to collisions, so that a chaotization in a
finite lattice occurs–contrary to the case of compactons–after
exponentially long transients.
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II. BASIC MODEL

We consider the phase dynamics of a chain of identical
self-sustained oscillators with frequency �,

d�n

dt
= � + q��n−1 − �n� + q��n+1 − �n� . �1�

Here �n is the phase of the nth oscillator and q���
=q��+2�� is the coupling function. Hereafter, we assume
that this function is even, what corresponds to dispersive
coupling, see Ref. 25 for details. Introducing the phase dif-
ferences vn=�n+1−�n, Eq. �1� can be rewritten as

dvn

dt
= �dq�v� = q�vn+1� − q�vn−1� . �2�

The simplest possible even 2�-periodic coupling func-
tion is q�v�=cos v. This case was studied in Ref. 25, where it
was shown, that compactons and kovatons �glued together
compact kink–antikink pairs� are solutions arising out of the
background v*=0. Here, we extend the results of Ref. 25 and
demonstrate that this lattice also bears periodic waves and
solitons, as well as semicompact waves. In Ref. 25 it was
also shown that Eq. �2� is a Hamiltonian system. It possesses
several integrals but is nonintegrable. Additional symmetries
in q�v� may result in additional symmetries in Eq. �2�; we
will encounter them below.

Our main analytic tool for the study of the wave solu-
tions of Eq. �2� is the quasicontinuous approximation �QCA�.
Associating n with a continuous variable x, one develops
q�vn�1� by the Taylor series expansion up to the third order

q�vn�1� = �1 �
�

�x
+

1

2

�2

�x2 �
1

6

�3

�x3�q�v� . �3�

Inserting this into Eq. �2� results in the partial differential
equation

�v
�t

= 2� �

�x
+

1

6

�3

�x3�q�v� , �4�

which is the QCA for the lattice. We stress here, that this
approximation is not based on a small parameter; because
spacing between the sites is one, the higher-order terms are
in general of the same order as the lower-order ones. Thus
the validity of this approximation may be supported only by
a comparison of its predictions �Sec. III� with the numerical
solutions of the full equations �2� �Sec. IV�.

III. TRAVELING WAVES IN THE QUASICONTINUUM

In this section we analyze waves in the QCA, Eq. �4�.
First, we note that any constant v=v* is a solution. We will
look for waves on the base of such a flat profile. Inserting the
traveling wave ansatz v�x , t�=v�x−�t�=v�s�, where � is the
wave velocity, into Eq. �4� and integrating once yields

��v − v*� + 2�q�v� − q�v*�� +
1

3

d2

ds2q�v� = 0. �5�

The integration starts at s0, where it is assumed, that v�s0�
=v*=const. This is not valid for periodic waves, where one
has to introduce the curvature of q�v�s0��; however the re-

sulting equations are equivalent to those derived below. We
multiply Eq. �5� with dq�v� /ds and integrate again, to obtain

��q�v��v − v*� − Q�v,v*�� + �q�v� − q�v*��2 +
1

6
�dq

ds
�2

= 0.

�6�

The function Q�v ,v*� is defined as

Q�v,u� = �
u

v

q�x�dx . �7�

Equation �6� can be rewritten as

�dq

dv
	2�1

2
�dv

ds
	2

+ U�v�� = 0, �8�

with the potential

U�v� = 3
��q�v��v − v*� − Q�v,v*�� + �q�v� − q�v*��2

�q��v��2 .

�9�

Besides Eq. �8� one can also derive a system of first-order
ordinary differential equations �ODEs� from Eq. �5�, which
reads

dv
ds

= u,
du

ds
= −

3��v − v*� + 6�q�v� − q�v*�� + q��v�u2

q��v�
.

�10�

In the following we also need the properties of the linear
approximation q�v�=q�v*�+q��v*��v−v*�, then Eqs. �10�
simplify to

dv
ds

= u,
du

ds
= −

3� + 6q��v*�
q��v*�

�v − v*� , �11�

provided that q��v*��0. The stability of the fixed point at
v=v* is determined by the eigenvalues of the Jacobian

l1,2 = � 
− �3� + 6q��v*��/q��v*� . �12�

A. Solitary waves

Solitary waves on the base of the constant field v=v* are
the homoclinic orbits of Eqs. �8� and �10�. They start at v*,
grow to a peak at vm, and then go back to their origin v*. An
equation for the wave velocity �S can be obtained from the
condition U�vm�=0 which immediately yields

�S =
�q�vm� − q�v*��2

Q�vm,v*� − q�vm��vm − v*�
. �13�

Solitary waves with exponential tails. For the existence
of a homoclinic trajectory one needs the fixed point of Eq.
�10� to have one stable and one unstable direction, hence v*

has to fulfill

−
3� + 6q��v*�

q��v*�
� 0. �14�

This condition yields a critical velocity �C=−2q��v�, which
separates a saddle-type stationary solution from a center.
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A solitary wave with exponential tails is shown in Fig. 1.
The coupling function is q�v�=cos�v� and the background is
v*=� /4. The wave velocity is a free parameter, but bounded
by the above condition. For the case v*=� /4 and vm�v*

this results in ��2 sin � /4=
2. In Fig. 1 the wave velocity
was chosen to �=� /2. The tails of the solitary wave decay
exponentially, corresponding to the eigenvalues of the sta-
tionary state v*.

Solitary waves with compact tails: Compactons.
Compactification may occur, if q��v*�=0. Linear waves do
not exist around this point and the approximation in Eq. �11�
does not hold. Therefore, one needs to approximate q�v� to
the second order in the vicinity of v*. When this approxima-
tion is inserted into Eq. �4� one obtains the K�2,2� equation,
defined in Ref. 21. For q�v��q�v*�+av2 a solution of Eq.
�5� is given by

v�s� + v* = �−
2�

3a
cos2�
3

8
s	 , x � �
2

3
,

0, else.
� �15�

Usually, one cannot match two different solutions of one
ODE, but here, the highest order operator degenerates at v
=v* and the solution’s uniqueness is lost. In the surrounding
of v* the solution will behave like the K�2,2� and compact
waves occur in the full phase equation �4�. In Fig. 2 we show
a compacton for the coupling function q�v�=cos v and v*

=0. The wave velocity was chosen to �=2 /�.

B. Kinks

The second class of traveling wave solutions are kinks,
which correspond to heteroclinic orbits between two uniform
states v* and v̄*. The height v̄* of the kink has to fulfill
condition �13� and furthermore it has to be a fixed point of
Eq. �8�, meaning that U��v̄*�=0. This gives the following
condition for the speed of the kink �it can also be derived
from Eq. �5� where one assumes a constant solution vm

=const�:

FIG. 1. �Top panel� Soliton solution for the coupling
q�v�=cos v, which arise out of the background v*

=� /4. The form of the soliton was calculated numeri-
cally with the help of Eq. �28� and the velocity is �
=� /2. Here and in the following figures, bold dots
show the soliton on the lattice and the dashed line the
solution of QCA �5� which has an additional offset for
better visibility. �Bottom panel� The soliton in the loga-
rithmic scale.

FIG. 2. �Top panel� The shape of the compacton for the
coupling q�v�=cos v. The background is v*=0 and the
velocity was set to �=2 /�. Markers show the compac-
ton on the discrete lattice and the dashed line is the
corresponding solution in the quasicontinuum approxi-
mation. �Bottom panel� The same plot in the logarith-
mic scale. The super exponentially decaying tails are
clearly visible.
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�K = 2
q�v̄*� − q�v*�

v* − v̄*
. �16�

Combining the velocity relations �13� and �16� by �S=�K

results in the final condition for the height of the kink

Q�v̄*,v*� =
�q�v̄*� + q�v*���v̄* − v*�

2
. �17�

In Fig. 3 the values of possible uniform states connected by
a kink are shown for the particular coupling function q�v�
=cos v+a cos 2v. Note, that a bifurcation occurs at a
= �1 /4 and two new branches of kink points emerge. For

q�v�=cos v one finds v̄*=�−v* and the velocity belonging
to this kink is �max=�K=4 cos v* / ��−2v*�.

Kinks with exponential tails. For kinks with exponen-
tial tails the same condition �14� as for the solitary waves has
to be fulfilled. In Fig. 4 a kink with exponential tails is
shown. The coupling function is q�v�=cos�v� and v*=� /4,
v̄*=3� /4. The velocity is �=
32 /�.

Compact kinks: Kovatons. If v* and v̄* fulfill the com-
pactification condition q��v*�=q��v̄*�=0, both tails will be-
come compact and may form a compact kink–antikink pair,
named kovaton.24 An example of this wave form is shown in
Fig. 5, with q�v�=cos v and v*=0, v̄*=� and �K=4 /�.

π

π/2

0

-π/2

-π
ππ/20-π/2-π

v*

v*

a=0.0

a=0.2

a=0.5

a=-0.2

a=-0.5

FIG. 3. The values of uniform background states that
can be connected by kinks, in the QCA for the
particular coupling q�v�=cos v+a cos 2v and various
values of a.

FIG. 4. �Top panel� The shape of the kink for v*

=� /4, the velocity is �=
32 /�. �Center panel� The
kink in the logarithmic scale. �Bottom panel� The kink
shown from its top in the logarithmic scale. Markers
show the kink on the lattice and the dashed line is the
QCA with an additional offset for better visibility.

037118-4 K. Ahnert and A. Pikovsky Chaos 18, 037118 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



Exponential-compact kinks. In addition to kinks with
exponential tails and kinks with compacton tails one can also
observe semicompact kinks with one exponential and one
compact tail. Consider the coupling q�v�=cos v+a cos 2v
with a=0.2. In this special setup v*=0 fulfills the compacti-
fication condition and v̄*=2.39955 is the kink point satisfy-
ing Eq. �17� with velocity equation �16� �K=1.60011. This
kink is shown in Fig. 6. It is compact at v=v* and exponen-
tial at v= v̄*.

C. Periodic waves

Periodic waves around v* exist if the eigenvalues l1,2 in
Eq. �12� are purely imaginary. A periodic wave in the QCA is
shown in Fig. 7. The velocity of a periodic wave must satisfy
the condition resulting from Eq. �10�,

−
3� + 6q��v*�

q��v*�
� 0. �18�

For q�v�=cos v and 0�v*�� this condition yields �
�2 sin v*. At �=�C=−2q��v*� some kind of bifurcation
occurs.

To quantify the dynamical behavior of the QCA near �C

we simplify Eq. �10� to

dv
ds

= u,
du

ds
= ��v − v*� − v2 − v*2. �19�

This ODE is not an approximation of Eq. �10� in the strict
sense, since we have neglected the terms q��v�u2 and q��v�,
but the qualitative behavior does not change. System �19�
has two fixed points �v1 ,u1�= �v* ,0� and �v2 ,u2�

FIG. 5. �Top panel� The wave form of the compact kink
solution between v*=0 and v̄*=� for the coupling
q�v�=cos v. Markers show the wave form on the dis-
crete lattice and the dashed line represents the quasicon-
tinuum approximation of the kink. �Bottom panel� The
sine of the kink in the logarithmic scale.

FIG. 6. �Top panel� The shape of a kink with one ex-
ponential and one compact tail. The coupling for this
specific wave is q�v�=cos v+a cos 2v with a=0.2. The
position of the kink point and the wave velocity can be
obtained from Eqs. �31� and �23�, their values are �

=1.60011 and v̄*=2.39955. �Middle panel� The kink in
the logarithmic scale. The compact tail of the kink is
near clearly visible. �Bottom panel� The kink shown
from its top in logarithmic scale, the exponential tail
becomes visible.
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= ��−v* ,0�. The eigenvalues of the corresponding Jacobian
are

l1,2
�1� = � 
� − 2v* l1,2

�2� = � 
2v* − � .

If the velocity reaches the critical value �C=2v*, the two
fixed points coincide and furthermore both fixed points
change their roles; if ���C the center is �v1 ,u1� and �v2 ,u2�
is a saddle-point; if ���C the roles have changed and
�v1 ,u1� is the saddle and �v2 ,u2� is the center. Now we return
to Eq. �10�. In Fig. 8 the phase space of Eq. �10� near the
critical velocity is shown. If ���C the first fixed point will
be a center, hence periodic waves exists in the QCA and for
���C the fixed point is a saddle point. Furthermore, the
unstable and the stable manifold of this saddle are connected;
a homoclinic orbit exists, resulting in solitonic solutions in
the QCA. So, at the critical velocity we have a transition or
a bifurcation from periodic waves to solitons.

IV. TRAVELING WAVES IN THE LATTICE

Now we turn our attention to traveling waves in the full
phase lattice model �2�. The wave ansatz for this model can
be formulated as

vn�t� = v�n − �t� = v�s� �20�

with velocity �. Inserting Eq. �20� into Eq. �2� yields

v̇ =
1

�
�q�v�s − 1�� − q�v�s + 1��� . �21�

We integrate this equation from s0 to s to obtain

v�s� − v* =
1

�
�

s−1

s+1

�q�v*� − q�v�����d� , �22�

where it is supposed that v�s�s0�=v*. Again, as in the con-
tinuous version, the exact initial conditions v�s0� are not rel-
evant, they can be absorbed into the constant of integration.
If one requires that v�s�= v̄* is a constant solution, hence a
kink exist, the corresponding velocity �K has to satisfy

�K = 2
q�v*� − q�v̄*�

v̄* − v*
. �23�

This condition is exactly analogous to condition �16� in the
QCA.

A. Fixed point analysis

Similar to the fixed point analysis in the QCA, one can
analyze the behavior of traveling waves close to the back-
ground v*. To this end we linearize q�v��q�v*�+a�v−v*�
in Eq. �21� and apply the exponential ansatz v�t�=A exp lt.
This yields the characteristic equation

l =
a

�
�e−l − el� . �24�

Note again, that a=q��v*��0, meaning that this approxima-
tion does not hold for the compacton backgrounds.

We split l into its real and imaginary part l= p+iq to
obtain

p = − 2
a

�
cos q sinh p and q = 2

a

�
sin q cosh p . �25�

For a purely imaginary eigenvalues p=0 we obtain

FIG. 7. The shape of a periodic wave on the lattice. The
offset is v*=� /4, the wavelength is w=5� and the ve-
locity �=� /2.

FIG. 8. Phase space of Eq. �10� for v*=� /4 and �a� �=�C−0.1 and �b� �

=�C+0.1. The critical velocity is �C=2 sin � /4=
2. It is clearly visible that
below the critical velocity the fixed point �v1 ,u1� is a center, hence periodic
waves exist in Eq. �4�. Above �C one can observe solitonic solutions: the
background v1 is a saddle point and a homoclinic orbit exists.
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q = − 2
a

�
sin q or � = − 2a

sin q

q
. �26�

This function is plotted in Fig. 9�a�. In this plot, the dots
mark possible points for transitions to eigenvalues with real
parts. In Fig. 9�b� all eigenvalues l= p+iq are shown. Purely
real eigenvalues are

p = − 2
a

�
sinh p or � = − 2a

sinh p

p
. �27�

So, when � crosses −2a �point 1 in Fig. 9�a��, a bifurcation
from two purely imaginary eigenvalues to two purely real
eigenvalues occurs. This scenario corresponds to the transi-
tion from periodic to solitary waves and the critical velocity
is �C=−2a. The situation is analogous to the bifurcation in
the QCA and the critical velocity is in both situations.

The next bifurcation occurs, when � crosses point 2, see
Fig. 9. Then, a bifurcation from a center to a stable and an
unstable spiral point occurs. This refers to the transition from
periodic waves to solitary waves with oscillating tails and
exponentially decaying amplitude. Since the bifurcation oc-
curs on the imaginary axis, one can calculate the critical
velocity from Eq. �25� by setting ���q�=0 and for the special
case q�v�=cos v one obtains ��−2a ·0.217. Note, that there
is no counterpart in the QCA for this bifurcation.

B. Numerical determination of traveling waves

From Eq. �22� it is possible to construct a numerical
scheme to find solitary wave solutions of the lattice.25–27 One
initially guesses a wave profile v0�t� and then iterates

ṽ�s� = v* +
1

�
�

s−1

s+1

�q�v*� − q�vk�����d� ,

�28�

vk+1 = � �vk�
�ṽ�

	3/2

ṽ ,

� · � denotes the L1-norm. The integral is calculated by a high
order Lagrangian integration rule.28 To construct kink solu-
tions, one has to omit the normalization in Eq. �28� by setting
vk+1= ṽ. Periodic waves can be obtained by a slight modifi-
cation of Eq. �28�. Here, the wavelength w is introduced and
periodic boundary conditions ṽ�0�= ṽ�w� are assumed in Eq.
�28�.

We want to point out two issues one has to keep in mind
when using this algorithm. First, in Eq. �28� the normaliza-
tion exponent 3 /2 is used. In a few cases this exponent is too
large and has to be set to smaller values, otherwise the algo-
rithm will diverge. Secondly, for backgrounds different from
0 one has to shift the coordinates v�v*+v.

C. Solitary waves

Solitary waves arise out of a background with one stable
and one unstable direction. So, they have to fulfill ��
+2q��v*�� /q��v*��0 in order to obtain two real eigenvalues
of the fixed point.

Solitary waves with exponential tails. In Fig. 1 we
show a solitary wave with exponential tails. The coupling is
q�v�=cos v and the background is v*=� /4. The velocity of
was chosen to �=� /2, fulfilling the condition ��
+2q��v*�� /q��v*��0. The solitary wave was computed with
the scheme �28�.

Compact solitary waves. Again, as in the QCA, the
condition q��v*�=0 allows the compactification of the tails.
In Fig. 2 we show a compacton arising out of the background
v*=0 for the coupling q�v�=cos v. The wave velocity was
set here to �=2 /�. The compacton is not purely compact,
but has superexponentially decaying tails.25 Thus, although
there is a qualitative difference between the lattice and the
QCA, quantitatively these solutions are very close to each
other.

FIG. 9. �a� Wave speed � in dependence of the imaginary eigenvalue q, see Eq. �26�. The dots mark possible bifurcation points to real eigenvalues. �b� Wave
speed � vs the real and imaginary part of the eigenvalues, with a=sin�0.2�. Only the positive parts of the real and imaginary axes are shown.
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D. Kinks

To derive an analog to Eq. �17�, we rewrite Eq. �23� as
�K�v̄*−v*�=2�q�v*�−q�v̄*��, multiply with q��v̄*�, and inte-
grate over v̄* from v* to v̄* to obtain

�K�
v*

v̄*
q��v��v − v*�dv = 2�

v*

v̄*
q��v��q�v*� − q�v��dv ,

�29�

and finally

�K =
�q�v*� − q�v̄*��2

Q�v̄*,v*� − q�v̄*��v̄* − v*�
. �30�

Combining Eqs. �23� and �30� yields

Q�v̄*,v*� =
�q�v̄*� + q�v*���v̄* − v*�

2
, �31�

which exactly matches the kink condition for the QCA.
Kinks with exponential tails. In Fig. 4 we show the

shape of a kink. The coupling is q�v�=cos v and the back-
ground is v*=� /4. The velocity of the kink is given by Eq.
�23� �K=
32 /�.

Kinks with compact tails. One can observe compact
kinks, if q��v*�=0 and q��v̄*�=0. For the coupling q�v�
=cos v such a case exists with v*=0 and v̄*=�. The shape of
this compact kink is shown in Fig. 5. Here, the velocity is
�=4 /�.

Semicompact kinks. It also possible to observe kinks
with one exponential decaying tail and one compact tail. This
is the case for q�v�=cos v+a cos 2v with a=0.2. For �
=1.60011 and v̄*=2.39955 the kink condition �31� is satis-
fied and such a kink is found by the numerical method de-
scribed above, see Fig. 6.

E. Periodic waves

Periodic waves can be calculated with Eq. �28� and pe-
riodic boundary conditions. An example is shown in Fig. 7.
Here, the offset is v*=� /4, the wavelength is w=5� and the
velocity is �=� /2.

F. Solitary waves with periodically decaying tails

From the fixed point analysis of the advanced-delayed
equation �21� a bifurcation occurs at point 2 in Fig. 9�a�. So,
if the velocity � reaches the critical point �C, the fixed point
changes its type from a center to a stable and an unstable
focus. This corresponds to a solitary wave with oscillatory
decaying tails. In Fig. 10 we show an example of such a
wave. The offset is v*=−0.2 and the wave velocity is �
=1.0. This behavior does not occur in the quasicontinuum.

V. NUMERICAL SIMULATIONS OF THE INITIAL
VALUE PROBLEM

In this section we demonstrate, how the traveling waves
described in the previous sections appear in the course of the
evolution of the lattice. We will restrict ourselves to the sim-
plest coupling term q�v�=cos v, while the background state
will be general v*�0. Furthermore, we will study the stabil-
ity properties of the colliding waves.

A. Evolution of an initial pulse

First, we consider the evolution of an initial cos-pulse
with the coupling q�v�=cos v. The initial condition is

vn�0� = �v* +
A

2
�1 + cos�n − n0

w
�	� , n − n0 � w ,

v*, else,
�
�32�

where A is the amplitude, n0 is the center, and w is the half
width of the pulse.

In Figs. 11 and 12 we compare the evolution for differ-
ent values of v*. In Fig. 11 we set v*=0 �q��v*�=0� and one
can observe compactons and kovatons arising from the initial
pulse. In Fig. 11�a� a wave train of compactons emerges out
of the initial pulse. The speed of the compactons increases
with increasing amplitude. In Fig. 11�b� we have increased
the width and the amplitude of the pulse and one kovaton is
observed. In the bottom plot of Fig. 11 a narrow initial pulse
creates a wave source, emitting periodic waves.

FIG. 10. Solitary wave with periodic and exponentially
decaying tails. v*=−0.2 and �=1.0. The plot was gen-
erated with the help of the traveling wave scheme, Eq.
�28� for the lattice equation; it has no QCA counterpart.
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In Fig. 12 we show results for the background v*=� /4.
Here, q��v*��0 and the solitary waves arising from the ini-
tial pulse possess exponential tails. Figures 12�a� and 12�b�
are similar to Figs. 11�a� and 11�b�, where the initial pulse
decomposes into a train of solitons and kink. Note, that the

number of emitted solitary waves is smaller than for the case
v*=0. Furthermore, periodic waves around v* can emerge,
see Figs. 12�c� and 12�d�. The plot in �d� is somehow similar
to Fig. 11�c�, with the difference, that appearing periodic
waves are around v*. Figure 12�e� shows the evolution of a

FIG. 11. Evolution of different initial pulses for the
coupling q�v�=cos v and v*=0. The initial conditions
were set according to Eq. �32�. �a� w=10 and A=2, �b�
w=15 and A=3, and �c� w=1 and A=1. The dashed line
shows the initial condition vn�t=0� and the solid line
the lattice at the time t=100.

FIG. 12. Evolution of different initial pulses for the
coupling q�v�=cos v and the background v*=� /4. The
initial conditions were set according to Eq. �32�. �a� w
=10 and A=1, �b� w=15 and A=1.5, �c� w=10 and A
=2, �d� w=1 and A=1, and �e� w=1 and A=2. The
dashed line shows the initial condition vn�t=0� and the
solid line the lattice at the time t=100. Furthermore the
position of the kink point at 3 /4� is shown.
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narrow initial pulse with a relative large amplitude. It results
in a kink with periodic waves around the top of the kink. A
detailed analysis of all possible waveforms goes beyond the
scope of this paper and will be reported elsewhere.

B. Transition to chaos in a finite lattice

Wave trains shown in Figs. 11 and 12 are obtained for an
effectively infinite lattice �during the calculation times the
boundaries are not reached�. In a finite lattice, collisions be-
tween waves occur. We have used periodic boundary condi-
tions, and observed that at large times eventually a chaotic
regime appears. In Fig. 13 we show the evolution of an ini-
tial cos pulse with v*=0.1. The upper plot shows the initial
decomposition of this pulse into one kink and several solitary
waves. These structures appear to survive collisions quite
unaffected. The lower plot shows that after some transient
time, chaos emerges. The chaotic state begins to develop,
after a collision of two solitons produces a large-amplitude
soliton–antisoliton pair. Then an avalanche of soliton–
antisoliton collisions is triggered on, resulting in a fast chao-
tization.

In Fig. 14 we show a remarkable dependence on the
average transient time, after which chaos establishes, on the
parameter v*. For larger values of v* the transient time is
exponentially large, what means extreme stability of the soli-

tary waves. Qualitatively, this stability can be attributed to a
smallness of effects of discreteness of the lattice for large v*.
Here, the waves are relatively wide, thus they are well ap-
proximated in the QCA, which is close to the integrable
Korteweg–de Vries equation. For small v* the waves are
close to compactons that are short and for them the discrete-
ness that causes nonelasticity of collisions is essential. Fur-
thermore, the number of emitted waves decreases with in-
creasing v* and the velocity of the waves is bounded from
below. These two effects reduce the possibility that two
waves meet each other, resulting in an increased transient
time.

VI. CONCLUSIONS

We have demonstrated a variety of nontrivial wave
structures in dispersively coupled oscillator lattices. Remark-
ably, they appear in a very simple lattice described by Eq.
�2�. In this study we have focused, contrary to previous
works,24,25 on the features that appear for a general, nonsym-
metric coupling function. While some nontrivial solutions
�compactons� survive in a general case, others �kovatons�
exist only in the symmetric situation. Instead, for a general
case we have reported a novel type of semicompact waves.
In our study of the waves on a lattice we have described a
novel transition from monotonic to oscillatory tails of soli-
tary waves that does not exist in the quasicontinuous ap-
proximation. Our comparison of general typical solutions of
the lattice model with special ones studied in Refs. 24 and 25
has shown that the waves with exponential tails are much
more “resistant” to chaotization compared to the compac-
tons.

Here, we would outline several possible extensions of
the analysis. In general, coupling between oscillators can
possess both dispersive and dissipative parts. The waves de-
scribed in this work will still be observed if the dissipation is
sufficiently small; this is confirmed by the perturbation
analysis in Ref. 25. Another feature disturbing the waves is a
nonhomogeneity of the lattice, e.g., due to nonuniformity of
coupling. We expect that the waves will scatter on such in-
homogeneities, but this issue has not been studied yet. Fi-

FIG. 13. Transition to chaos. The background is v*=0.1 and the lattice
contains N=100 sites with periodic boundary conditions. The field is shown
in a gray scale vs time �horizontal axis� and space �vertical axis�. �Upper
plot� A kink and several solitons emerge out of a cos pulse. The time interval
is 0	 t	400. �Lower plot� Emergence of chaos after a collision of two
solitons which creates an soliton–antisoliton pair. The time interval is
2600	 t	3000.

FIG. 14. Transient times to chaos for different back-
grounds v*. The length of the lattice is N=32 and the
initial cos-pulse is vn=� /4�cos���n−N /2� /w�+1�+v*

for n−N /2  �w and v=v* else. In order to obtain an
average of the transient times we also varied the width
of the initial pulse from 5 to 15 and calculated the tran-
sient time as the average over the transient times for
different initial pulses. The line is an exponential fit and
the transient times scales with T�exp 16.7v*.
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nally, it is intriguing, what kinds of waves can be observed in
two- and three-dimensional lattices. The results in this direc-
tion will be published elsewhere.
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