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Effects of Delayed Feedback on Kuramoto Transition
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We develop a weakly nonlinear theory of the Kuramoto transition in an ensemble of
globally coupled oscillators in presence of additional time-delayed coupling terms. We show
that a linear delayed feedback not only controls the transition point, but effectively changes
the nonlinear terms near the transition. A purely nonlinear delayed coupling does not effect
the transition point, but can reduce or enhance the amplitude of collective oscillations.

§1. Introduction

A transition to collective synchrony in an ensemble of globally coupled oscillators
is known as the Kuramoto transition.3) An important application of the theory is
collective dynamics of neuronal populations. Indeed, synchronization of individual
neurons is believed to play the crucial role in the emergence of pathological rhythmic
brain activity in Parkinson’s disease, essential tremor, and epilepsies; a detailed
discussion of this topic and numerous citations can be found in Refs. 2), 4) and 8).
One approach to suppress such an activity is to apply to the system a negative
feedback loop.5)–7)

The goal of this paper is to develop a weakly nonlinear theory of the Kuramoto
transition in the presence of linear and nonlinear time-delayed coupling terms. We
heavily rely in our analysis on the corresponding treatment of the system without
delay by Crawford.1)

§2. From limit cycle systems to phase models

Here we introduce our basic model — an ensemble of autonomous oscillators
subject to different types of global coupling. We take individual oscillators as Van
der Pol ones and write the model as

ẍi − µ(1 − x2
i )ẋi + ω2

i xi = 2
√

2ωiξi(t) + ε′F (x, y), (2.1)

where ξi(t) is a δ-correlated Gaussian noise: 〈ξi(t)ξj(t − t′)〉 = 2D δij δ(t′). The
ensemble averages are defined as

x =
1
N

N∑
j=1

xj , y =
1
N

N∑
j=1

ẋj

ωj
.

In the reduction to phase equations we use the smallness of parameters µ and ε′,
and suppose the natural frequencies ωi to be distributed in a relatively close vicinity
of the mean frequency ω0 ≡ N−1

∑N
j=1 ωj . Because µ � ωi, the solution of the
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autonomous Van der Pol oscillator can be written as xi(t) ≈ Ai(t) cos(ϕi(t)) where
on the limit cycle Ai ≈ 2 and ϕ̇i = ωi. Because ε′ � µ, coupling does not affect the
amplitude (which remains ≈ 2), but only the phase. It is convenient to introduce
the complex order parameter

R(t) = |R|eiθ(t) =
1
2
(x + iy) =

1
N

∑
j

eiϕj(t) (2.2)

and to represent the global coupling in terms of R. The absolute value of the order
parameter is close to zero for nearly uniform, nonsynchronized distributions, and
reaches 1 for strongly synchronized states.

Below we will be interested in linear coupling with and without time delay,6),7)

and in a nonlinear coupling:5)

ε′F (x, y) = 2ω0εy(t) + 2ω0εfy(t − T ) +
d

dt
(x2(t − T ))(Kxx(t) + Kyy(t)) .

As a result, the phase equations for the oscillators read

ϕ̇i = ωi +
ε

N

N∑
j=1

sin(ϕj(t) − ϕi(t)) +
εf

N

N∑
j=1

sin(ϕj(t − T ) − ϕi(t))

+εof |R|2(t − T )|R|(t) sin[2θ(t − T ) − θ(t) − ϕi(t) + ν] + ξi(t), (2.3)

where εofeiν = 2(Kx +iKy). Here three coupling parameters describe different types
of coupling: ε describes collective linear coupling without delay, as in the original
Kuramoto model; εf describes linear coupling with delay, as has been proposed in 6)
and 7); εof describes nonlinear coupling with delay as has been proposed in 5).

§3. Linear feedback: thermodynamic limit and stability

We start with a consideration of an ensemble of oscillators with linear couplings,
i.e. in this and the next sections we consider (2.3) with εof = 0. In the thermody-
namic limit N → ∞ we can introduce a distribution of natural frequencies g(ω) and
rewrite system (2.3) as

ϕ̇(ω) = ω + ε

∫ +∞

−∞
g(ω′) sin

(
ϕ(ω′, t) − ϕ(ω, t)

)
dω′

+εf

∫ +∞

−∞
g(ω′) sin

(
ϕ(ω′, t − T ) − ϕ(ω, t)

)
dω′ + ξ(ω, t) . (3.1)

For a statistical description one introduces a distribution density ρ(ω, ϕ, t) (nor-
malized as

∫ 2π
0 ρ(ω, ϕ, t) dϕ = 1) that is governed by the Fokker-Planck equation:

∂ρ

∂t
+

∂

∂ϕ
(ρ v) − D

∂2ρ

∂ϕ2
= 0, (3.2)
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where

v(ω) = ω + ε

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ)ρ(ω′, θ, t)

+εf

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ)ρ(ω′, θ, t − T ) . (3.3)

The order parameter introduced in (2.2) now takes the form

R(t) =
1
N

∑
j

eiϕj(t) =
∫ +∞

−∞
dω g(ω)

∫ 2π

0
dϕρ(ω, ϕ, t) eiϕ. (3.4)

Here we shortly discuss a linear stability analysis of the absolutely nonsynchro-
nous state ρ0 = 1

2π . Infinitesimal perturbations ρ1 of this state are governed by the
linearization of Eq. (3.2)

∂ρ1

∂t
+ ρ0

∂v1

∂ϕ
+ v0

∂ρ1

∂ϕ
− D

∂2ρ1

∂ϕ2
= 0 (3.5)

with
∂v1

∂ϕ
= −ε

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) cos(θ − ϕ)ρ1(ω′, θ, t)

−εf

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) cos(θ − ϕ)ρ1(ω′, θ, t − T ). (3.6)

Substituting ρ1 =
∑

k ck(ω)eikϕ+λt (k 	= 0), one finds independent equations for
different ck:

(λ + ikω + Dk2)ck(ω) =
ε + εfe−λT

2
(δk, 1 + δk,−1)Ck, (3.7)

where Ck =
∫ +∞
−∞ g(ω)ck(ω) dω. Modes with |k| 	= 1 always decay while for k = 1

one finds

c1(ω) =
ε + εfe−λT

2(λ + D + iω)
C1. (3.8)

Multiplying this equation by g(ω) and integrating over ω, one finds that the spectrum
is formed by the roots of the “spectral function” Λ(λ)

Λ(λ) ≡ 1 − ε + εfe−λT

2

∫ +∞

−∞

g(ω) dω

D + λ + iω
= 0. (3.9)

Generally, 

(∫ +∞

−∞ g(ω)(D + iω)−1 dω
)

=
∫ +∞
−∞ ωg(ω)(D2+ω2)−1 dω 	= 0; there-

fore real roots of Λ(λ) (including λ = 0) are not admitted and only one complex root
λ = −iΩ with the corresponding mode ρ1 = α(ω)ei(ϕ−Ωt) + cc determines linear sta-
bility. From the linear analysis we thus expect a Hopf bifurcation for the transition
to synchrony.

In the degenerated case
∫ +∞
−∞ ωg(ω)(D2+ω2)−1 dω = 0, a relation Λ∗(λ) = Λ(λ∗)

holds, then real roots are admitted and complex roots appear in pairs (λ, λ∗). We
expect that in real applications the degeneracy of the frequency distribution is absent,
so we do not consider this situation below.
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§4. Weakly nonlinear analysis

In this section we perform a weakly nonlinear analysis of the synchronization
transition, considering ε as a bifurcation parameter. We write ε = ε0 + κ2ε2

where ε0 is the critical value of ε and κ is a small parameter, and represent
the probability distribution ρ(x, t) as ρ0 + κρ1 + κ2ρ2 + κ3ρ3 + . . . . Assuming
ρ1 = α1(ω, t2, t4, ...)ei(ϕ−Ωt0) + cc (here tk are “slow times”) and substituting this in
Eq. (3.2) we obtain in the order κ2 (there are no secular terms in this order):

∂ρ2

∂t0
+ ρ0

∂v2

∂ϕ
+

∂

∂ϕ
(ρ1v1) + v0

∂ρ2

∂ϕ
− D

∂2ρ2

∂ϕ2
= 0, (4.1)

where

v1 =
∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ)α1(ω′)

(
ε0 + εfeiΩT

)
ei(θ−Ωt0) + cc

= iπ
(
ε0 + εfeiΩT

)
A1e

i(ϕ−Ωt0) + cc, (4.2)

and we have introduced Aj ≡ ∫ +∞
−∞ αj(ω)g(ω) dω. Note that from (3.8) it follows

that

α1(ω) =
ε + εfe−λT

2(λ + D + iω)
A1 . (4.3)

This gives the “driving term” in (4.1):

∂

∂ϕ
(ρ1v1) =

∂

∂ϕ

(
iπ

(
ε0 + εfeiΩT

)
α1(ω)A1e

i2(ϕ−Ωt0) + cc + ...
)

= −2π
(
ε0 + εfeiΩT

)
α1(ω)A1e

i2(ϕ−Ωt0) + cc.

Searching for solution of Eq. (4.1) in the form ρ2 = α2(ω, t2, t4, ...)ei2(ϕ−Ωt0) + cc, we
obtain, using (4.3),

α2(ω) =
2π

(
ε0 + εfeiΩT

)
A1 α1(ω)

−i2Ω + i2ω + 4D
=

π
(
ε0 + εfeiΩT

)2
A2

1

2(D + i(ω − Ω))(2D + i(ω − Ω))
. (4.4)

In the order κ3 of Eq. (3.2), secular terms appear:

∂ρ3

∂t
+

∂ρ1

∂t2
+ ρ0

∂v3

∂ϕ
+

∂

∂ϕ
(ρ1v2 + ρ2v1) + v0

∂ρ3

∂ϕ
− D

∂2ρ3

∂ϕ2
= 0. (4.5)

Note that v2 = 0 because
∫ 2π
0 eiϕρ2(ω, ϕ, t) dϕ = 0. Calculation of other secular

terms yields

v3 = vρ3 + ε2

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ)ρ1(ω′, θ, t)

+ εf

∫ 2π

0
dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ)

(
(−T )

∂α1(ω′, t2, ...)
∂t2

ei(θ−Ω(t−T )) + cc

)

= vρ3 +
(

iπ

(
ε2A1 − εfeiΩT T

∂A1

∂t2

)
ei(ϕ−Ωt0) + cc

)
,
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where vρ3 =
∫ 2π
0 dθ

∫ +∞
−∞ dω′g(ω′) sin(θ − ϕ) (ε0ρ3(ω′, θ, t) + εfρ3(ω′, θ, t − T )) and

∂

∂ϕ
(ρ2v1) =

∂

∂ϕ

(
−iπ

(
ε0 + εfe−iΩT

)
A∗

1α2(ω)ei(ϕ−Ωt0) + cc + ...
)

= π
(
ε0 + εfe−iΩT

)
A∗

1α2(ω)ei(ϕ−Ωt0) + cc + ... .

(Here “...” denotes non-secular terms.) Collecting all secular terms, we can write
them as[

∂α1(ω)
∂t2

− ε2

2
A1 +

εfeiΩT

2
T

∂A1

∂t2
+ π

(
ε0 + εfe−iΩT

)
A∗

1α2(ω)
]

ei(ϕ−Ωt0) + cc .

(4.6)
Now we have to write out the condition of orthogonality of these terms to the solu-
tions of the conjugated problem, i.e. the condition that the secular part of “driving”
vanishes. As soon as the scalar product of τ -time-periodic fields s(ω, ϕ, t) and
c(ω, ϕ, t) is defined by

〈s, c〉 ≡
∫ +∞

−∞
dω g(ω)

∫ 2π

0

dϕ

2π

∫ τ

0

dt

τ
s∗(ω, ϕ, t) c(ω, ϕ, t), (4.7)

the conjugated problem reads(
− ∂

∂t
− ikω + Dk2

)
ck(ω) =

ε0 + εfe−λT

2
(δk, 1 + δk,−1)

∫ +∞

−∞
g(ω′)ck(ω′) dω′ (4.8)

and has a solution
ei(ϕ−Ωt)

D − i(ω − Ω)
. (4.9)

Finally, the orthogonality condition, i.e. the vanishing of the scalar product of
(4.9) and (4.6), yields the weakly nonlinear amplitude equation:∫ +∞

−∞

g(ω) dω

D + i(ω − Ω)

[
∂α1(ω)

∂t2
− ε2

2
A1 +

εfeiΩT

2
T

∂A1

∂t2
+ π

(
ε0 + εfe−iΩT

)
A∗

1α2(ω)
]

= 0.

Substituting here for αj and introducing a function G(z) = i
2π

∫ +∞
−∞

g(ω) dω
ω−z we obtain

Ȧ1 = λ2(ε0, Ω)A1 − P (ε0, Ω)A1 |A1|2 , (4.10)

where λ2 is the linear growth rate

λ2(ε, Ω) =
ε − ε0

iπ (ε + εfeiΩT )2 G′(Ω + iD) + εfTeiΩT
(4.11)

and

P (ε, Ω) =
π2

∣∣ε + εfeiΩT
∣∣2 (iDG′(Ω + iD) − G(Ω + i2D) + G(Ω + iD))

D
(
iDG′(Ω + iD) + π−1DεfeiΩT T (ε + εfeiΩT )−2

) . (4.12)
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Equation (4.10) and the expressions (4.11), (4.12) are the main result of our
analysis. They give a full description of the effect of the delayed global feedback on
the synchronization transition in the ensemble of oscillators. The linear part (4.11)
has already been discussed in 6), and the expression (4.12) completes the description
of the synchronization transition. Having determined the amplitude A1 from (4.10),
one can find the establishing probability distribution

ρ(ω, ϕ, t) =
1
2π

[
1 +

π
(
ε0 + εfeiΩT

)
D + i(ω − Ω)

A1(t)ei(ϕ−Ωt) + cc

+
π2

(
ε0 + εfeiΩT

)2

(D + i(ω − Ω))(2D + i(ω − Ω))
A2

1(t)e
i2(ϕ−Ωt) + cc + O(A3

1)

]
,

(4.13)

and the order parameter

R(t) = 2πA∗
1e

iΩt + O(A3
1).

§5. An example: Lorentz distribution of natural frequencies

The general expressions (4.11) and (4.12) above can be considerably simplified
for the Lorentzian distribution

g(ω) =
γ

π ((ω − ω0)2 + γ2)
, (5.1)

where γ is a characteristic width of the distribution and ω0 is the mean frequency.
In this case

G(z) =
i

2π

∫ +∞

−∞

g(ω) dω

ω − z
=

i

2π

1
ω0 − iγ − z

,

where 
z is assumed to be positive (this holds for D > 0).
First we obtain explicit expressions for spectrum of the linear problem. Equa-

tion (3.9) takes the form

1 +
i
(
ε + εfe−βT+iΩT

)
2(ω0 − Ω − i(γ + D + β))

= 0 ,

where we have substituted λ = β − iΩ, β and Ω being the real growth rate and the
frequency. Separating real and imaginary parts, one can find

Ω = ω0 − εf

2
e−βT sinΩT, ε = 2(γ + D + β) − εfe−βT cosΩT. (5.2)

The threshold value ε0 is determined by β = 0. Substituting the expressions above
in (4.11) and (4.12) we obtain

λ2(ε0, Ω) =
ε2

2 + εfTeiΩT
, (5.3)

P (ε0, Ω) =
4

(ε0 + εfeiΩT + 2D)(2 + εfTeiΩT )
. (5.4)



Effects of Delayed Feedback on Kuramoto Transition 49

-0.1

-0.05

 0

 0.05

 0.1
 0

 1
 2

 3
 4

 5
 6

 7
 8

 0.1

 1

 10

T

εf

|R|
|R0|
|R|
|R0|

Fig. 1. Effect of delayed feedback on the order parameter for ω0 = 1, γ = D = 0.01.

The stationary amplitude A1 is calculated according to (4.10) |A1|2 = �λ2
�P . To

demonstrate, how the delayed feedback affects the amplitude, we present in Fig. 1
the ratio |R|

|R0| where R0 is the order parameter in the absence of delayed feedback
for the same closeness to the transition point ε2.

§6. Nonlinear delayed feedback

In this section we consider a purely nonlinear delayed feedback in the ensemble
of oscillators. We set εf = 0 in Eq. (2.3) and write the basic model as

ϕ̇i = ωi +
ε

N

N∑
j=1

sin (ϕj(t) − ϕi(t))

+εof |R|2(t − T )|R|(t) sin (2θ(t − T ) − θ(t) − ϕi(t) + ν) + ξi(t) . (6.1)

Similarly to the previous case, in the thermodynamical limit N → ∞ one can write

∂ρ

∂t
+

∂

∂ϕ
(ρ v) − D

∂2ρ

∂ϕ2
= 0, (6.2)

where

v(ω) = ω + ε

∫ 2π

0
dϕ′

∫ +∞

−∞
dω′g(ω′) sin(ϕ′ − ϕ)ρ(ω′, ϕ′, t)

+εof |R|2(t − T )|R|(t) sin (2θ(t − T ) − θ(t) − ϕ + ν) . (6.3)
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The linear problem is the same as in the previous case where one sets εf = 0.
Therefore as soon as g(ω0 +∆ω) = g(ω0−∆ω), critical perturbations either have the
frequency ω0 or are degenerate: they appear in pairs ω0−∆ω, ω0+∆ω (see discussion
by Crawford1)). We restrict ourselves to non-degenerate case only. Considering
nearly critical behavior of small perturbation ρ1 = α1(ω, t2, t4, ...)ei(ϕ−Ωt0) + cc, one
can write down from Eq. (6.2) in the order κ2 (there is no secular terms in this order)
Eq. (4.1) with

v1 = iπε0A1e
i(ϕ−Ωt0) + cc. (6.4)

Now from Eq. (3.8), α1(ω) =
ε0 A1

2(D + i(ω − Ω))
. Therefore

∂

∂ϕ
(ρ1v1) = −πε2

0

[
A2

1e
i2(ϕ−Ωt0)

D + i(ω − Ω)
+ cc

]
.

Searching for ρ2 in the form ρ2 = α2(ω, t2, t4, ...)ei2(ϕ−Ωt0) + cc we find

α2(ω) =
πε2

0A
2
1

2(D + i(ω − Ω))(2D + i(ω − Ω))
.

In the order κ3 Eq. (4.5) with v2 = 0 and

v3 = iπ (ε0A3 + ε2A1) ei(ϕ−Ωt0) + cc

+εof |R|2(t − T )|R|(t) sin (2θ(t − T ) − θ(t) − ϕ + ν)

= iπ (ε0A3 + ε2A1) ei(ϕ−Ωt0) + cc + εof

(
R2(t − T )R∗(t)eν−ϕ

)
is valid. Substituting R1 = 2πA∗

1e
iΩt we get

R2
1(t − T )R∗

1(t) = 8π3A∗2
1 ei2Ω(t−T )A1e

−iΩt = 8π3|A1|2A∗
1e

iΩ(t−2T ).

Therefore
v3 = ... − 8π3εof |A1|2


[
A1e

i(ϕ−Ωt−ν+2ΩT )
]

and

ρ0
∂v3

∂ϕ
= ... − 4π2εof |A1|2�

[
A1e

i(ϕ−Ωt−ν+2ΩT )
]
,

where “...” denotes the terms which do not contribute to the secular part of the
equation. The term ∂

∂ϕ(ρ2v1) can be taken from §4, and its contribution to P (ε, Ω)
is given by the formula (4.12) with εf = 0. Summing up these results, one can find
that Eq. (4.10) holds with

λ2(ε, Ω) =
ε2

iπε2 G′(Ω + iD)
, (6.5)

P (ε, Ω) =
π2ε2

D

[
1 +

G(Ω + iD) − G(Ω + 2iD)
iDG′(Ω + iD)

]
+

i4πεofei(2ΩT−ν)

εG′(Ω + iD)
. (6.6)
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The resulting probability density reads

ρ(ω, ϕ, t) =
1
2π

[
1 +

πε0 A1(t)
D + i(ω − Ω)

ei(ϕ−Ωt) + cc

+
π2ε2

0 A2
1(t)

(D + i(ω − Ω))(2D + i(ω − Ω))
ei2(ϕ−Ωt) + cc + O(A3

1)
]

(6.7)

and the order parameter is R(t) = 2πA∗
1e

iΩt + O(A3
1).

As a particular example we consider, like in §2, the Lorentzian distribution of
natural frequencies (5.1). The characteristic equation Λ(λ) = 0 takes the form

ε − 2(γ + D) = 2(λ − iω0) (6.8)

and has only one root. The bifurcation of the non-synchronous state is a Hopf one
at ε0 = 2(γ + D) with the frequency Ω = ω0 (see discussion by Crawford1)). Setting
Ω = ω0 in (6.5) and (6.6), we find

λ2(ε0, ω0) =
ε2

2
, P (ε0, ω0) =

1
2D + γ

− 4π2εofe−iν(γ + D). (6.9)

The real part of P determines, according to (4.10), the amplitude of the establishing
collective mode |A1|2 = λ2(�P )−1, with

�P (ε0, ω0) =
1

2D + γ
− 4π2εof (γ + D) cos(ν) .

One can see that depending on the value of ν, the amplitude decreases or increases
due to additional nonlinear feedback. Moreover, for strong enough feedback �P can
become negative, what means a subcritical Kuramoto transition. Also, a nonlinear
shift of the rotation frequency of R in the counterclockwise direction appears

ω2 = 
(P ) |A1|2 =
ε2
(P )
2�(P )

=
ε2

2
tan ν

[4π2εof (2D − γ)(D + γ) cos ν]−1 − 1
. (6.10)

§7. Conclusion

In this paper we have developed a weakly nonlinear analysis of the effect of
delayed feedback on the Kuramoto transition. We have restricted our attention to
the most general case of Hopf bifurcation and have not considered other types of
transition that occur under certain symmetries. The analysis is, of course, restricted
to a vicinity of the transition point, moreover, the basic phase-coupling model as-
sumes that all types of coupling are weak. A strong coupling case should be studied
numerically.

Acknowledgements

We would like to thank M. Rosenblum, O. Popovych and P. Tass for useful
discussions.



52 D. S. Goldobin and A. Pikovsky

References

1) J. D. Crawford, J. Stat. Phys. 74 (1994), 1047.
2) D. Golomb, D. Hansel and G. Mato, Neuro-informatics and Neural Modeling, Handbook of

Biological Physics, Vol. 4, ed. F. Moss and S. Gielen (Elsevier, Amsterdam, 2001), p. 887.
3) Y. Kuramoto, Lecture Notes in Phys. 39, ed. H. Araki (Springer, New York, 1975), p. 420.
4) Epilepsy as a Dynamic Disease, ed. J. Milton and P. Jung (Springer, Berlin, 2003).
5) O. Popovych, Ch. Hauptmann and P. A. Tass, Phys. Rev. Lett. 94 (2005), 164102.
6) M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. Lett. 92 (2004), 114102.
7) M. Rosenblum and A. Pikovsky, Phys. Rev. E. 70 (2004), 041904.
8) P. A. Tass, Phase Resetting in Medicine and Biology, Stochastic Modelling and Data Analy-

sis (Springer-Verlag, Berlin, 1999).


