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Abstract

We demonstrate that a multiple delayed feedback is a powerful tool to control coherence properties of autonomous self-sustained oscillators.
We derive the equation for the phase dynamics in presence of noise and delay, and analyze it analytically. In Gaussian approximation a closed set
of equations for the frequency and the diffusion constant is obtained. Solutions of these equations are in good agreement with direct numerical
simulations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A delayed feedback is a general tool to control dynam-
ics. It is used to suppress chaos (the famous Pyragas method
[1], see also a review [2]) and synchronization [3,4]. For self-
sustained oscillators the crucial characteristics of the dynamics
is coherence, or constancy of oscillation frequency, determin-
ing their quality as clocks. As has been demonstrated in [5],
the coherence of noisy self-oscillating systems changes under
the influence of a single delayed feedback; for an attempt of
experimental realization of such a coherence control see [6].
Based on a phase description, Goldobin et al. [5] reported both
numerically and analytically on the possibility to control the co-
herence of the noisy Van der Pol oscillator by means of varying
the feedback strength and the delay time. The main difficulty
encountered in Ref. [5] was that the delay renders the oscillator
dynamics non-Markovian, which makes it practically impossi-
ble to apply such well-established tools like the Fokker–Planck-
formalism as in the Markovian case. Therefore, they had to
develop ad hoc statistical methods (Gaussian approximation).
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In this Letter we investigate the Van der Pol oscillator in the
presence of noise and a multiple delayed feedback, thereby in-
troducing a new control parameter in addition to the feedback
strength and delay time, which enlarges the possibilities of the
coherence control. Moreover, as has been demonstrated for the
chaos suppression [7,8], multiple delayed feedback can signif-
icantly improve the quality of the control. As we will demon-
strate below, this applies to the coherence control as well.

The Letter is structured as follows. In Section 2 we introduce
our basic model. Then, in Section 3 we discuss a possibility
of frequency multistability due to feedback. In Section 4 we
employ the Gaussian approximation to study the diffusive prop-
erties of the model system analytically. We will find that control
using a multiple delayed feedback can be superior to one with
a single delayed feedback. In Section 5 we validate our results
through direct numerical simulations of the model equation. Fi-
nally, we conclude with an outlook.

2. Basic model

The basic model we study is given by the noisy (term ∼ ζ )
Van der Pol oscillator with a multiple delayed feedback with
strength k,
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ẍ − μ
(
1 − x2)ẋ + ω2

0x

= k

∞∑
ν=0

Rν
[
ẋ
(
t − (ν + 1)τ

) − ẋ(t − ντ)
] + ζ(t),

(1)
〈
ζ(t)ζ(t ′)

〉 = 2d2
vdPδ(t − t ′).

A similar feedback has been suggested by Socolar et al. [7] in
the context of chaos control. Despite the infinite sum of delays,
it can be quite easily realized in experiments [8] (roughly speak-
ing, one has to send the signal ẋ(t) to a Fabry–Perot resonator
with reflection coefficient at the ‘mirrors’ R). For convergence
reasons we confine R to the range (−1,1). Noteworthy, that set-
ting R = 0 we recover the model with just one feedback term
studied in [5].

For further considerations it is convenient to employ the
so-called phase description, which is valid for small noise
and feedback. For small nonlinearity μ and vanishing exter-
nal force the Van der Pol oscillator has the limit cycle solu-
tion x0 ≈ 2 cosΦ , ẋ0 ≈ −2ω0 sinΦ , with a uniformly grow-
ing phase Φ(t) ≈ ω0t + Φ0. Under the influence of noise, but
still in the absence of delayed feedback, the phase diffuses ac-
cording to 〈(Φ(t) − 〈Φ(t)〉)2〉 = D0t . Hereby, the uncontrolled
diffusion constant D0 is proportional to the intensity of the
noise d2

vdP.
In the presence in Eq. (1) of small noise and weak delayed

feedback, one can apply a standard procedure to derive the
equation for the phase (see, e.g., [5,9,10]):

(2)

Φ̇ =ω0 + k

2

∞∑
ν=0

Rν
{
sin[Φ(ν+1)τ −Φ]− sin[Φντ −Φ]}+ ξ(t),

with the effective noise ξ(t) satisfying 〈ξ(t)ξ(t ′)〉 = d2δ(t − t ′)
and d2 ≡ d2

vdP/(4ω2
0). Here and in the following for time-

delayed variables we use notations like Φντ ≡ Φ(t − ντ).
Our main goal is to investigate the diffusion properties of

the phase. To this end we separate the phase into an average
growth and fluctuations, Φ(t) = Ωt +Ψ (t). We then obtain for
the fluctuating instantaneous frequency Ψ̇ by substitution into
Eq. (2) the following equation

Ψ̇ = ω0 − Ω + ξ

+ k

2

∞∑
ν=0

Rν
{
cos

[
Ω(ν + 1)τ

]
sin[Ψ(ν+1)τ − Ψ ]

− cos[Ωντ ] sin[Ψντ − Ψ ]
− sin

[
Ω(ν + 1)τ

]
cos[Ψ(ν+1)τ − Ψ ]

(3)+ sin[Ωντ ] cos[Ψντ − Ψ ]}.
3. Noise-free case and delay-induced multistability

Without noise, ξ = Ψ = Ψ̇ = 0, Eq. (3) simplifies to

(4)0 = ω0 − Ω − k

2

∞∑
ν=0

Rν
{
sin

[
Ω(ν + 1)τ

] − sin[Ωντ ]}.
Fig. 1. Domains of absence of multistability on the plane of parameters R–|kτ |.

The main effect is that the delayed feedback changes the fre-
quency of the oscillator. Furthermore, the implicit Eq. (4) pro-
vides either a unique or multiple solutions for Ω . The latter
case, which we call delay-induced multistability, is especially
difficult to analyze, it will be considered elsewhere. Here we
choose the model parameters in the domain where no multista-
bility occurs. The condition for Eq. (4) to have a unique solution
is given by the implicit function theorem,

(5)

∂

∂Ω

[
ω0 − Ω − k

2

∞∑
ν=0

Rν
{
sin

[
Ω(ν + 1)τ

] − sin[Ωντ ]}
]


= 0.

Evaluating condition (5) yields the following relations the para-
meters k, τ and R must obey to avoid multistability independent
of ω0:

kτ <
2(1 + R)2

1 − R
for k > 0 and −1 < R < 2 − √

3,

kτ <
16(1 − R)R(1 + R)2

(1 + R2)2
for k > 0 and 2 − √

3 � R < 1,

|kτ | < 16(R − 1)R(1 + R)2

(1 + R2)2

for k < 0 and −1 < R < −2 + √
3,

|kτ | < 2(1 − R) for k < 0 and −2 + √
3 � R < 1.

We visualize the above relations in Fig. 1. Observe that a
nonzero value of R can relax the restriction on the product |kτ |
in comparison to the case of a single delayed feedback (R = 0).

4. Statistical analysis

Our main assumption allowing to perform statistical analysis
of the basic model analytically is that the phase fluctuations Ψ

are Gaussian. However, we do not a priori confine the Gaussian
noise ξ to be white. After averaging Eq. (3) over the fluctuations
of Ψ̇ (which are Gaussian distributed, too), we obtain for the
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mean frequency Ω :

Ω = ω0 + k

2

∞∑
ν=0

Rν
{
sin[Ωντ ]e−〈η2

ν 〉/2

(6)− sin
[
Ω(ν + 1)τ

]
e−〈η2

ν+1〉/2}.
Here we have used the fact that the phase difference ην ≡
Ψ (t − ντ) − Ψ (t) has Gaussian distribution with zero mean
and therefore 〈cosην〉 = exp[−〈η2

ν〉/2] and 〈sinην〉 = 0. With
ην = − ∫ t

t−ντ
Ψ̇ (s)ds we obtain for the variance of ην

(7)
〈
η2

ν

〉 = 2

ντ∫
0

(ντ − u)CΨ̇ (u)du ≡ 2Tν,

where CΨ̇ (u) ≡ 〈Ψ̇ (t)Ψ̇ (t + u)〉 is the auto-correlation of the
fluctuating part of the frequency. In order to obtain equa-
tions for CΨ̇ (u), we introduce the auto-correlation of the noise
Cξ (u) ≡ 〈ξ(t)ξ(t + u)〉 and the cross-correlation CξΨ̇ (u) ≡
〈ξ(t)Ψ̇ (t + u)〉. After multiplying Eq. (3) with Ψ̇ (t + u) or
ξ(t + u) and averaging, which is described in detail in Appen-
dix A, we obtain

(8)

CΨ̇ (u) = CξΨ̇ (u) + k

2

∞∑
ν=0

Rν

{
cos[Ωντ ]e−Tν

ντ∫
0

CΨ̇ (s + u)ds

− cos
[
Ω(ν + 1)τ

]
e−Tν+1

(ν+1)τ∫
0

CΨ̇ (s + u)ds

}
,

(9)

CξΨ̇ (u) = Cξ (u) + k

2

∞∑
ν=0

Rν

{
cos[Ωντ ]e−Tν

ντ∫
0

CξΨ̇ (u − s)ds

− cos
[
Ω(ν + 1)τ

]
e−Tν+1

(ν+1)τ∫
0

CξΨ̇ (u − s)ds

}
.

Together with the definition of Tν (7), Eqs. (6), (8) and (9) con-
stitute a closed system. To exclude the cross-correlations, we
look at the power spectra SΨ̇ (ω) = 1

2π

∫ ∞
−∞ CΨ̇ (u)e−iωu du and

similar expressions for Sξ and SξΨ̇ . This leads to

SΨ̇ (ω) = SξΨ̇ (ω) + k

2

∞∑
ν=0

Rν

{
cos[Ωντ ]e−Tν SΨ̇ (ω)

eiωντ − 1

iω

− cos
[
Ω(ν + 1)τ

]
e−Tν+1SΨ̇ (ω)

eiω(ν+1)τ − 1

iω

}
,

SξΨ̇ (ω) = Sξ (ω)+ k

2

∞∑
ν=0

Rν

{
cos[Ωντ ]e−Tν SξΨ̇ (ω)

1− e−iωντ

iω

− cos
[
Ω(ν + 1)τ

]
e−Tν+1SξΨ̇ (ω)

1 − e−iω(ν+1)τ

iω

}
.

This system of equations can be solved for SΨ̇ :
SΨ̇ (ω) = Sξ (ω)

[
1 − k

2iω

∞∑
ν=0

RνSν

]−1

(10)×
[

1 + k

2iω

∞∑
ν=0

RνS∗
ν

]−1

.

Here, the star denotes complex conjugation and

Sν ≡ cos[Ωντ ]e−Tν
(
1 − e−iωντ

)
− cos

[
Ω(ν + 1)τ

]
e−Tν+1

(
1 − e−iω(ν+1)τ

)
.

The spectral form of Eq. (7) reads

(11)Tν =
∞∫

−∞
SΨ̇ (ω)

1 − cos[ωντ ]
ω2

dω.

Now we make one further approximation: we assume that the
spectrum of fluctuations of frequency Ψ̇ is very broad, almost
white, and replace in (11) the spectrum SΨ̇ (ω) by its value at
zero frequency:

(12)Tν ≈
∞∫

−∞
SΨ̇ (0)

1 − cos[ωντ ]
ω2

dω = ντD

2
.

In writing the last term we use the Green–Kubo formula D =
2πSΨ̇ (0), which relates the diffusion constant D of the phase
with the power spectrum of the frequency fluctuations at zero
frequency. Thus, finally from Eq. (10) we obtain the equation
for the diffusion constant

(13)D = D0
4(1 + R2E2 − 2RE cos[Ωτ ])4

A2(Ω, τ, k,R,E)
.

Here D0 = 2πSξ (0) and E ≡ e−τD/2, and

A(Ω,τ, k,R,E)

≡ E
(
1 + R2E2)(8R + k(R − 1)τ

)
cos[Ωτ ]

− 2
(
1 + 4R2E2 + R4E4 + k(R − 1)RE2τ

+ 2R2E2 cos[2Ωτ ]).
We also substitute (12) in Eq. (6) which after summation yields

(14)Ω = ω0 + k

2

E sinΩτ(R − 1)

1 − 2RE cosΩτ + R2E2
.

Eqs. (13) and (14) constitute a closed system for the simulta-
neous determination of the mean frequency and diffusion, and
are the main result of our analysis. In the next section we com-
pare numerical solutions of these implicit equations with direct
numerical simulations.

5. Numerical simulation

The validity of the analysis above, including that of Gaussian
approximation, is now checked by direct simulations of the
phase equation (2) assuming the noise ξ(t) to be Gaussian.
Clearly, one has to approximate the infinite sum of delay terms.
Instead of just truncating this sum at some fixed ν < ∞, we
rather mimic the behavior of real physical systems, starting
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Fig. 2. Diffusion constant D and mean frequency Ω for small noise
d2 = 2 × 10−3 and ω0 = 2π and k = −0.2.

at t = t0 with given initial condition Φ(t) ≡ Φ0(t) for t ∈
[t0 − τ, t0) by observing the equality

∞∑
ν=0

Rν
{
sin[Φ(ν+1)τ − Φ] − sin[Φντ − Φ]}

= (1 − R)(X cosΦ − Y sinΦ),

where

X(t) ≡
∞∑

ν=1

Rν−1 sinΦ(t − ντ) = sinΦ(t − τ) + RX(t − τ),

Y (t) ≡
∞∑

ν=1

Rν−1 cosΦ(t − ντ) = cosΦ(t − τ) + RY(t − τ).

Note that in order to compute the infinite sum in Eq. (2) now
it is only necessary to store the phase and related quantities
X, Y over a duration of just one delay period. This successive
construction of the infinite sum is completely analogous to the
behavior of a signal in a Fabry–Perot interferometer.

In Figs. 2 and 3 we compare the results of the numerical sim-
ulations with the analytical predictions according to Eqs. (13)
and (14). The correspondence between the numerics and ana-
lytical results is very good in the case of small noise (Fig. 2),
but less good for stronger noise and high values of |R| and τ

(Fig. 3). Clearly, in comparison to the single delayed feedback
scheme of Ref. [5], the introduction of the multiple delayed
feedback parameter R can lead to a larger variety of phase dy-
namics and hence of the system behavior. E.g., for the same
value of the feedback strength k, with increasing R the sup-
pression of diffusion is stronger.

6. Conclusion

In this Letter we have demonstrated that a multiple de-
lay feedback is an effective tool to control coherence of au-
tonomous oscillators. First, such a control scheme enlarges the
domain of control parameters where the oscillation frequency
remains stable. Analytical calculations of the phase diffusion
Fig. 3. Diffusion constant D and mean frequency Ω for large noise d2 = 2.0
and ω0 = 2π and k = −0.2.

constant have furthermore shown that the range of possible dif-
fusion constant variations is larger for multiple delay scheme
compared to the single delay.

The main unresolved question that remains is—what are the
properties of the phase dynamics for strong feedback, where
several stable oscillation frequencies are possible. Our prelim-
inary numerical calculations show that a transition to multista-
bility is marked by a strong increase of diffusion. A theoretical
explanation of this is a subject of future investigations.

Appendix A

To obtain an equation for CΨ̇ , we multiply Eq. (3) by
Ψ̇ (t + u) and average:

CΨ̇ = CξΨ̇ + k

2

∞∑
ν=0

Rν

{
cos

[
Ω(ν + 1)τ

]

×
〈
Ψ̇ (t + u) sin

( t−(ν+1)τ∫
t

Ψ̇ (s)ds

)〉

− sin
[
Ω(ν + 1)τ

]〈
Ψ̇ (t + u) cos

( t−(ν+1)τ∫
t

Ψ̇ (s)ds

)〉

− cos[Ωντ ]
〈
Ψ̇ (t + u) sin

( t−ντ∫
t

Ψ̇ (s)ds

)〉

+ sin[Ωντ ]
〈
Ψ̇ (t + u) cos

( t−ντ∫
t

Ψ̇ (s)ds

)〉}
.

The averages can be calculated using the Furutsu–Novikov for-
mula [11,12] 〈xF(y)〉 = 〈 ∂F

∂y
〉〈xy〉, which is valid for Gaussian

random variables x, y with zero mean. Then only terms of the
type 〈x siny〉 do not vanish:〈
Ψ̇ (t + u) sin

( t−ντ∫
Ψ̇ (s)ds

)〉
= e−Tν

−ντ∫
CΨ̇ (s − u)ds,
t 0



A.H. Pawlik, A. Pikovsky / Physics Letters A 358 (2006) 181–185 185
〈
Ψ̇ (t + u) sin

( t−(ν+1)τ∫
t

Ψ̇ (s)ds

)〉

= e−Tν+1

−(ν+1)τ∫
0

CΨ̇ (s − u)ds.

With these expressions one immediately arrives at Eq. (8). The
equation for CξΨ̇ can be obtained in a very similar way by mul-
tiplying Eq. (3) by ξ(t + u).
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