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Abstract

We study the stability of self-sustained oscillations under the influence of external noise. For
small-noise amplitude a phase approximation for the Langevin dynamics is valid. A stationary
distribution of the phase is used for an analytic calculation of the maximal Lyapunov
exponent. We demonstrate that for small noise the exponent is negative, which corresponds to
synchronization of oscillators.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The main effect of noise on periodic self-sustained oscillations is phase diffusion:
the oscillations are no more periodic but possess finite correlations [1,2]. However,
noise can play also an ordering role, e.g., it can lead to a synchronization. If two
identical (or slightly different) systems are driven by the same noise, then their states
can be synchronized by this action. This effect depends on the sign of the largest
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Lyapunov exponent that measures stability of the motion. For deterministic periodic
self-sustained oscillations the largest Lyapunov exponent is zero, it corresponds to a
perturbation along the trajectory in the phase space. In driven systems the largest
Lyapunov exponent may become negative, what would lead to a synchronization:
both systems driven by the same noise forget their initial conditions and eventually
evolve to a same state. This problem was first formulated in Refs. [3,4], where the
Lyapunov exponent has been calculated for a self-sustained quasiharmonic oscillator
driven by a random sequence of pulses. In this paper, we consider general dynamical
systems driven by Gaussian white noise. We note that the effect considered is a
particular case of synchronization in noisy systems, for more general aspects of this
phenomenon see Refs. [5,6].

Our approach is based on the reduction of the dynamics to a phase equation. This
is valid if the action of noise on the oscillation amplitude is small. We will derive
the Langevin equation for the phase and will find a stationary distribution of it. The
Lyapunov exponent is represented via an integral of this distribution. We will
demonstrate that for small noise the exponent is negative, i.e., small noise always
leads to synchrony.

2. Basic model

We start with general stochastic equations for the dynamics of an N-dimensional
oscillatory system x;, j=1,...,N, in the presence of uncorrelated forces &(f),
k=1,..., M<N:

dy, S
FRY/ORD SNCEICE @

If in the noiseless system there exists a limit cycle x° = x°(¢ + 2n/wy), it can be
parameterized by the phase variable ¢(x°) [7], which grows linearly in time: ¢ = w,.
For a stable limit cycle the phase, satisfying the same equation, can be introduced
also in its vicinity. In the presence of noise the evolution of the phase in a small
vicinity of the cycle is governed by equations

0
0t Z Z oe) ~ 0,0

The deviations from the cycle are small in two cases: (i) if the noise intensity is small,
or (i) if the leading negative Lyapunov exponent is large whereas the noise is
moderate. Below we normalize time in such a way that the frequency of the limit
cycle is one. A particular form of the stochastic equation for the phase depends on
how the noise enters the original system (1). If there is a single noise source, i.e., only
for one k &, #0, then

do

4 = @)X, )

k(1) . )

x=x(¢)
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where £(¢) is a -correlated Gaussian noise with (£(7)) = 0 and (E(8)E(7 + 1)) = 20(¢),
parameter ¢ describes the noise intensity (as a result of time normalization
&~ wo ) f() is a normalized periodic function of the phase: f(¢) = f(¢ + 2n),

0 " f2(¢)de = 2n. A more complex equation appears if there are several noise
sources in the original system (we call this multi-component case):

de

M
=t /; e i@k (D),  (EOE(! + 1) = 20(1)o - “4)

Our goal is the analytical analysis of stability of solutions of stochastic equations
(3) and (4) [8]. For this we consider the linearized Eq. (3) for a small deviation a:

o,
T = (). ©)

The Lyapunov exponent measuring the average exponential growth rate of o can be
obtained by averaging the corresponding velocity

d ’
i=(ginn) = 6. ©
For the multi-component noise the corresponding expression reads
M
= (e 1 (@) (D)) - @)
k=1

Note that the Lyapunov exponent determines the asymptotic behavior of small
perturbations, and in our case describes whether close initial points diverge or
converge in course of the evolution. This process must not be monotonous, i.e., close
trajectories can diverge at some time intervals while demonstrating asymptotic
convergence, and vice versa.

3. Fokker—Planck equation and its stationary solution

The Fokker—Planck equation for the stochastic equation (3), interpreted in
Stratonovich sense, reads [9,10]

W(e,1)

—ar tao (W(w, 1) — &f (<p)—(f (@)W (o, z))) —0. ®)
¢

In a stationary state the probability flux S is constant:

d
W(p) — &/ (o) P (f@)W(p) =S. )

This allows us to express the solution for periodic boundary conditions as

o [T Ay _1vdo
W("’)‘C/q, 7o S exp( sz/w f2(9>>’ (10
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where C is determined by the normalization condition:

o o on(i )
/ d"’/ fofw) (1

The probability flux reads

= (1 - exp( 1 /Mfd(H@)))C' (12

The analogous expression for the multi-component noise is

oW (e, 1) M .
ot +@ W(p,t) — ; 5kfk(§0) (fk(@) W(p, 1)) (13)
Remarkably, this formula is equivalent to the single-component one (8), if one sets
M
&
fz((p) M &2 = Z'g/zc . a9
Zk 1 k k=1

Thus, the stationary solution presented above is valid in this case as well.

4. Lyapunov exponent

For the calculation of the Lyapunov exponent (6), (7) we have to find averages of
the type (F(¢)E&(1)). Such expressions for stochastic equations (3) and (4) with delta-
correlated noise can be calculated using the Novikov—Furutsu formula:

(F(@)S(0) = e(F (@) (9)) - (15)

Writing the average as the integral over the stationary phase distribution we obtain
for the single-component case

, 2n o+2n af(‘/’ 1 W do
i=2 oon = [ dq)/ ( = 2). (16)

f (lﬁ) &Jo [2(0)
The corresponding result for the multi-component noise reads
M 2n
d
i=> £l L0 o) W10 (a7
k=1

Prior to the analysis of the obtained expressions we mention that in the limit of
small noise the Lyapunov exponent is always negative: in the leading order in ¢

M 2 2n 2
& df (@)
I — § : —k k d ) 18

k=1 2n 0 ( d(p ¢<0 ( )

(M can be equal to 1, what corresponds to a single-component noise.)
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4.1. Example: linearly polarized homogeneous noise

If in the original system the noise is additive and forces only one variable of the
system, and the limit cycle is nearly a circle with nearly constant phase velocity on it,
then one obtains a single-component stochastic phase equation with f(¢) =
V2 sin ¢. In this case

o+2n dl// L do _— exp(coll/l;cot(p)
[ metalfa) =] e

where [- - -] denotes the integer part. For the chosen function f(¢) the distribution has
period = and for ¢ € [0, )

exp cotl//zg_cotzp)
=5 [ @

sin Y sin ¢

S=c= (/ d/drw_)

&2C [ ¥ exp (>3
—7/ dy/ dx ; (28)23/2. (19)
—00 —00 (1+x)2(1+y)

In the transformation to last expression, which makes the convergence of the
integrals clear, the ansatz (x, y) = (cotys, cot ¢) has been used. A further simplifica-
tion appears to be not possible, and formula (19) has been used for numerical
calculation. The obtained dependence of the Lyapunov exponent on the noise
intensity is presented in Fig. 1.
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Fig. 1. Linearly polarized noise. Dependence of the Lyapunov exponent (normalized by ¢?) on the noise
amplitude ¢. For small and large noises 4y quadratically depends on ¢, with different coefficients.
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4.2. Example: superposition of two independent linearly polarized noise terms

If we use the same conditions as above (nearly circular limit cycle with uniform
rotation on it) but consider the effect of two independent noisy forces acting on two
variables shifted in phase by 7/2, then naturally we get an equation with a multi-
component noise with (@) =+/2sin ¢ and f,(p)= /2 cos go. The effective
coupling function f(¢) = /T + A cos 2¢ and the noise intensity &> = &7 + &3, where
A= (5 —¢)/(e5+¢) (evidently 4 € [—1,1]) should be inserted in the stationary
distribution (10)—(12). From the expression for f(¢) follows the symmetry
(4, ) (=4, + n/2). In this case

ﬂ—é n[e}—arctan cot0 ﬂ
70 Vi—22\'I= 1—4))°

what gives the following expressions for the probability density, flux, and the
1 (n[%] — arctan (Cot 0 }_%))

normalization constant
(v )
¢p+n eXp|\ — 2 — 2
W(p)=C / dy eV ¥,
@ 1T+ A4 cos2¢+/1+ Acos2y

-1

v
. ot exp(— —+— (n[4] —arctan(cot 0,/1%4 )
o[+ ao 2B
0 ® 1T+ Acos2¢p /1 + Acos2y

)

The final expression for the Lyapunov exponent reads
("‘HT T+ Acos2¢
——ZSC/d(p/ +COS
1 + 4 cos 21#
X ex _ i Q arctan | cot0 1+4 '
P 24/1 — A2 T 1—4
®

The dependence on the noise intensity and the essential parameter 4 is shown
in Fig. 2.

(20)

5. Conclusion

In this paper we have demonstrated a possibility of synchronization of two
identical dynamical systems driven by the same white Gaussian noise, assuming
that the phase approximation is valid. The quantitative characteristics of the
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Fig. 2. Superposition of two independent linearly polarized noise terms. Dependence of the Lyapunov
exponent (normalized by ¢%) on the noise amplitude & and on the normalized ratio of noise intensities 4.

synchronization is the Lyapunov exponent. Analytical expressions for this quantity
have been found for a single-component and multi-component noisy forces. In all
considered cases the Lyapunov exponent is negative. We expect that it is a general
property for small noise. Numerical experiments with strong noise show that the
Lyapunov exponent can be positive, and these results will be reported elsewhere.
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