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We consider the effect of external noise on the dynamics of limit cycle oscillators. The Lyapunov exponent
becomes negative under influence of small white noise, what means synchronization of two or more identical
systems subject to common noise. We analytically study the effect of small nonidentities in the oscillators and
in the noise, and derive statistical characteristics of deviations from the perfect synchrony. Large white noise
can lead to desynchronization of oscillators, provided they are nonisochronous. This is demonstrated for the
Van der Pol–Duffing system.
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Synchronization of oscillators by periodic signals is a
quite understood phenomenon. It can be easily detected by
looking on whether the oscillations follow the forcingse.g.,
they attain the same frequencyd or not. Much less evident is
the effect of synchronization by external noise. Here also a
nonlinear system can follow or not follow the noisy force.
Although this effect can be hardly seen for one system, it can
be unveiled by taking two or several identical systems driven
by the same noise. In such a setup one easily detects syn-
chronysasynchronyd through identitysnonidentityd of driven
systemsf1–6g. There are several fields where this effect has
been observed, although under different names. In neuro-
physiology one describes identical responses of a neuron to a
repeated noisy driving as “reliability”f7g. In recent experi-
ments with noise-driven ND:YAG lasersf8g this synchroni-
zation was called “consistency.” When the driving is not
noisy but chaotic, one speaks on generalized synchronization
f9g. The criterion for the synchronization is the negative larg-
est Lyapunov exponentsLEd in the driven system. In many
cases one can estimate the sign of LE from the noiseless
limit; in particular for experiments described inf7,8g the
noiseless system is stable, therefore one expects also nega-
tive LE and synchronization for small noise; in the case of
generalized synchronization the driven system is often cho-
sen to be chaotic, here for small driving the LE is positive.

A nontrivial dependence on the noise intensity is observed
for limit-cycle oscillators that have zero LE for vanishing
forcing. Calculations of the LE for different types of noise
sseef1–3,10,11gd have demonstrated that small noise plays
an ordering role, shifting the LE to negative values and thus
synchronizing the oscillators. In the present paper we extend
the theory based on the phase approximation of the dynam-
ics, recently discussed inf10,11g, to the nonideal situations
of two types: slightly nonidentical oscillators and slightly
nonidentical noise. Furthermore, we present a numerical
study of a realistic Van der Pol–Duffing model and show that
the results of the phase approximation are of limited validity.
Although in this approximation the LE is negative, in the full
system there is a range of noise intensities where the LE is
positive. This means the existence of noise-induced desyn-
chronization.

A self-sustained oscillator with a small external force can
be adequately described within the phase approximation

f12g, where only variations of the phase are considered. With
a stochastic force the equation for the phase reads

ẇ = v + «fswdjstd, s1d

where« is a small noise amplitude andfswd is normalized:
f2=s2pd−1e0

2pf2swddw=1. Here we assume for simplicity
that the noisy force is one componentsscalar noise in terms
of f11gd. The Lyapunov exponent for the noisy dynamics is
defined asl=kdẇ /dwl=k«f8swdjl. Below we consider the
case of white Gaussian noisekjstdjst+ t8dl=2dst8d which al-
lows us to apply the Fokker-Planck theory. Here, as it has
been recently discussed inf10,11g, the LE is negativel
=−«2sf8d2,0. Physically, this means that two or many os-
cillators driven by the same noise will be synchronized and
attain the same randomly varying in time phases. The syn-
chronization will be not perfect if the oscillators in the en-
semble are slightly different and/or if the noise driving them
is not exactly the same. Below we develop a quantitative
theory of these effects.

The evolution ofN slightly different limit cycle oscillators
can be described by the following generalization ofs1d

ẇ j = v + s j + «fsw jdjstd, j = 1,2, . . . ,N, s2d

where s j are deviations of frequencies from the mean fre-
quency,o j=1

N s j =0. Note that the differences in functionsf
can be neglected due to smallness of«. We expect the states
of the oscillators to be close if the mismatch is small com-
pared to the LEus ju! ulu!1, then it is appropriate to intro-
duce new variables w=N−1o j=1

N w j and u j =w j −w, j
=1,2, . . . ,N−1. Then systems2d for small u j can be written
as

ẇ = v + «fswdjstd, s3d

u̇ j = s j + «f8swdu jjstd. s4d

Noting that the deviationsu j with different j are independent,
we can study the evolution of each deviationu j separately
and drop indexj . Thus the evolution ofw andu is the same
as for two slightly different oscillators.

The following from thes3d,s4d Fokker-Plank equation for
the probability density distributionWsw ,u ,td reads
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]W

]t
+ v

]W

]w
+ s

]W

]u
− «2Q̂2W= 0, s5d

whereQ̂g;s] /]wdsfswdgd+s] /]udff8swdugg. Performing ex-
pansion of the stationary solution in powers of«2 fwe can
here considers as of the same order as«2, due to a possi-
bility to renormalizeu in s5dg we obtain in the zeroth order
W0=wsud and in the first order

v
]W1

]w
+ s

]w

]u
− «2Q̂2w = 0. s6d

Substituting for Q̂2wsud and integrating Eq.s6d over w
P f0,2pd, we obtainsdue to 2p periodicity of W1 in wd

s
dw

du
= «2f82Su2d2w

du2 + 4u
dw

du
+ 2wD . s7d

For s=0 the solution ofs7d is ad function. WhensÞ0, this
equation can be rewritten as

x2d2w

dx2 + s4x − 1d
dw

dx
+ 2w = 0, s8d

wherex;«2f82s−1u= ulus−1u. Solving this differential equa-
tion by virtue of the substitutionwsxd=hsxd /x2 and account-
ing for the normalization conditione−`

+`wsuddu=s2pd−1, we
find

wsud = 5 usu
2puluu2 expS−

s

uluuD , su . 0;

0, su ø 0.
6 s9d

This function is infinitely smooth atu=0. Noteworthy, for
any pair of oscillators driven by the same noise, the phase of
the faster oscillator never lags behind that of the slower one.

One can also evaluate the moments

kuuukl = S usu
ulu D

k

Gs1 − kd, s10d

and the most probable valueump=s / s2ulud. From this for-
mula we see again that the phase differenceu is small pro-
vided usu! ulu. Formulas10d gives finite moments fork,1
only. Higher moments diverge due to the power-law distri-
bution of u; to obtain finite moments one has to go beyond
the linear inu approximation even for small mismatchess.

Quite oftenN identical systems that are driven by a com-
mon external noisejstd experience also influences of differ-
ent independentse.g., thermald noisesh jstd. The phase dy-
namics in this case is given by

ẇ j = v + «fsw jdjstd + g jgjsw jdh jstd, s11d

where j =1,2, . . . ,N, the functionsf and gj are normalized
f2=gj

2=1, « and g j are the noise amplitudes, andkjstdjst
+ t8dl=2dst8d, kh jstdhkst+ t8dl=2d jkdst8d, and kjstdh jst+ t8dl
=0. Similar to the case of mismatch, we can introduce a
phasew satisfyings3d and obtain for small deviationsu j

u̇ = «f8swdujstd + ggswdhstd, s12d

where we omitted indexj . In this case the relevant Fokker-
Plank equation takes the form

]W

]t
+ v

]W

]w
− g2g2swd

]2W

]u2 − «2Q̂2W= 0. s13d

The stationary distribution can be found with the same ap-
proximative method as that of Eq.s5d. Instead ofs7d we now
obtain

g2d2w

du2 + «2f82Su2d2w

du2 + 4u
dw

du
+ 2wD = 0, s14d

where due to the conditiong2=1 the dependence on the
function g disappears. With rescalingx;«g−1Îf82u
=Îulug−1uthe last equation can be rewritten as

sx2 + 1d
d2w

dx2 + 4x
dw

dx
+ 2w = 0, s15d

and solved by virtue of the same substitutionwsxd=hsxd /x2.
Accounting for the normalization condition, we find the so-
lution

wsud =
g

2p2Îulu
F1 +

ulu
g2 u2G−1

s16d

in the form of the Cauchy distribution. Similar tos9d it has a
power-law tail that indicates large fluctuations even for small
values ofg. In both cases of small mismatch and small non-
identity of noise these fluctuations have a form of intermit-
tent burstsssee Fig. 1, cf.f10gd, similar to other cases of
imperfect synchronizationf3g.

In the thermodynamical limitN→` one can also evaluate
the ensemble averages for moments of differences for
slightly nonidentical oscillators

kuuuklens=
Gs1 − kd

uluk E
−`

+`

usukFssdds,

and for oscillators driven by different noises

FIG. 1. The time dependencies of the differenceD
;Îsx1−x2d2+sẋ1− ẋ2d2 between two Van der Pol–Duffing oscilla-
tors s17d. Left panel: common white noise acts on oscillators with
small mismatchfEq. s18d with s=10−4g. Right panel: two identical
oscillators are driven by slightly different noisesfEq. s19d with
g /«=2·10−4g. Parameters:m=0.2, b=1, «=0.2.
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kuuuklens=
1

uluk/2 cosspk/2dE0

+`

gkGsgddg.

HereFssd andGsgd are the distributions ofs j and g j, cor-
respondingly.

Although a small noise in all considered cases synchro-
nizes the self-sustained oscillators, a desynchronization is
possible for large noise intensities. This has been demon-
strated inf1,2g for a noise in the form of a sequence of
random pulses. Inf10g a positive LE has been reported for a
discontinuous integrate-and-fire neural model. Here we dem-
onstrate that a desynchronization by noise is possible for
white Gaussian noise source and a smooth oscillator, pro-
vided the latter has a sufficient degree of nonisochronicity.

As a model we use a standard Van der Pol–Duffing oscil-
lator

ẍ − ms1 − x2dẋ + x + bx3 = «jstd, s17d

wherejstd is normalized white Gaussian noise. Herem de-
scribes closeness to the Hopf bifurcation point and the “Duf-
fung parameter”b describes nonisochronicity of oscillations.
In Fig. 2 we show the dependencies of the LE on the noise
amplitude« for m=0.2 and different values ofb. One can see

that atb*0.5 sof course, this critical value depends onmd
positive LEs appear in a certain range of«, while the
asymptotic law lim«→0l /«2=const,0 is valid for all b. The
region of positive LEs extends for largeb.

To characterize the synchronization-desynchronization
transition in systems17d quantitatively, we have performed a
numerical simulation of two weakly nonidentical Van der
Pol–Duffing oscillators under common white Gaussian noise

ẍ1,2− ms1 − x1,2
2 dẋ1,2+ s1 ± sdx1,2+ bx1,2

3 = «jstd, s18d

and of two identical Van der Pol–Duffing oscillators driven
with slightly different noisy forces

ẍ1,2− ms1 − x1,2
2 dẋ1,2+ x1,2+ bx1,2

3 = «jstd ± ghstd. s19d

The quality of synchronization have been measured by the
average differenceV12=ksx1−x2d2+sẋ1− ẋ2d2l. In dependence
on the noise amplitude«, this quantity has a maximum in the
region of positive values of LEssee Figs. 3 and 4d.

We have also performed simulations with a large en-
semble of slightly different oscillators driven by the same
noise. Here the distribution of the systems states on the plane

FIG. 3. The dependenciesV12s«d are plotted form=0.2 ands
=0.002 for the pair of nonidentical Van der Pol–Duffing oscillators
under common white Gaussian noises18d. The values ofb are
marked as in Fig. 2.

FIG. 4. The dependenciesV12s«d are plotted form=0.2 and
g /«=0.01 for the pair of identical Van der Pol–Duffing oscillators
driven by different white Gaussian noisess19d. The values ofb are
marked as in Fig. 2.

FIG. 5. The snapshots of the ensemble of 10 000 Van der Pol–
Duffing oscillators with homogeneous distribution ofs j within
f−0.01;0.01g under common white Gaussian noise are presented at
m=0.2 andb=1. The three chosen values of noise amplitude«
correspond to negativef«=0.2, the states in the vicinity of the point
s1.82;−2.07d; and «=2.5, the states in the vicinity of the point
s1.76;−3.29dg and positives«=1d LEs.

FIG. 2. For the Van der Pol–Duffing oscillators17d driven by
white Gaussian noise, the dependencies of the LE on the noise
amplitude« are plotted form=0.2 and different values ofb.
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sx, ẋd at a certain moment of time is concentrated for a nega-
tive LE and is extended for a positive LEssee Fig. 5d. These
distributions correspond to different types of snapshot attrac-
tors in systems17d sseef13gd.

Summarizing, in this paper we have studied synchrony of
populations of limit cycle oscillators subject to common
white noise. In the limit of small noise, where the phase
approximation is valid, the LE is negative, which means syn-
chronization of oscillators by noise. In this case we have
performed an analytical treatment of nonideal situations of
two types: nonidentical oscillators and nonidentical noise. In
both cases the distribution of the phase difference between
the systems has a power-law tail, which indicates on a
strongly intermittent character of the synchronous state,
where synchronous epochs and asynchronous bursts inter-
mingle

For a large noise one has to go beyond the phase approxi-
mation; here analytical treatment of the LE is not possible.

Numerical analysis of the basic Van der Pol–Duffing model
driven by Gaussian white noise has shown that for large
nonisochronicity of oscillators for moderate noise levels the
LE is positive. This means desynchronization of oscillations
by a moderate noise.

One of possible applications of the theory above is to the
reliability of neural oscillators. Neurons in a regime of peri-
odic spiking can be considered as limit-cycle oscillators;
here a small noise will synchronize them according to the
general theory valid in the phase approximation. However, a
large noise may lead to nonreliability, similar to what has
been shown above for the Van der Pol–Duffing system. This
problem is currently under investigation.
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