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We consider the effect of external noise on the dynamics of limit cycle oscillators. The Lyapunov exponent
becomes negative under influence of small white noise, what means synchronization of two or more identical
systems subject to common noise. We analytically study the effect of small nonidentities in the oscillators and
in the noise, and derive statistical characteristics of deviations from the perfect synchrony. Large white noise
can lead to desynchronization of oscillators, provided they are nonisochronous. This is demonstrated for the
Van der Pol-Duffing system.
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Synchronization of oscillators by periodic signals is a[12], where only variations of the phase are considered. With

quite understood phenomenon. It can be easily detected hy stochastic force the equation for the phase reads
looking on whether the oscillations follow the forcirig.g., .
they attain the same frequenayr not. Much less evident is ¢ =w+ef(@)&t), 1
the I(_affect of synchrom?altllon by extefrr?lal norl]se. H_erefalso Svheree is a small noise amplitude arfde) is normalized:
nonlinear system can follow or not follow the noisy force. =(2m)[2"(¢)de=1. Here we assume for simplicity
Although this effect can be hardly seen for one system, it can ) . S

at the noisy force is one compondgtalar noise in terms

be unveiled by taking two or several identical systems drive . S
by the same noise. In such a setup one easily detects syff [11])- The Lyapunov exponent for the noisy dynamics is

chrony (asynchrony through identity(nonidentity of driven  defined as\=(d¢/de)=(ef’(¢)¢). Below we consider the
systemg1-6)]. There are several fields where this effect hascase of white Gaussian noigg(t)é(t+t'))=24(t') which al-
been observed, although under different names. In neurdews us to apply the Fokker-Planck theory. Here, as it has
physiology one describes identical responses of a neuron tolzeen recently discussed 110,11, the LE is negativex
repeated noisy driving as “reliability{7]. In recent experi- =-¢%(f")2<0. Physically, this means that two or many os-
ments with noise-driven ND:YAG lasef$] this synchroni-  cillators driven by the same noise will be synchronized and
zation was called “consistency.” When the driving is notattain the same randomly varying in time phases. The syn-
noisy but chaotic, one speaks on generalized synchronizatiaghronization will be not perfect if the oscillators in the en-
[9]. The criterion for the synchronization is the negative larg-semple are slightly different and/or if the noise driving them
est Lyapunov exponenLE) in the driven system. In many s not exactly the same. Below we develop a quantitative
cases one can estimate thg sign of LE .from the nmseleqﬁeory of these effects.
limit; in particular for experiments described [7,8] the The evolution o slightly different limit cycle oscillators
r}0|seless system Is s'tabl'e, therefore one egpects also N€Y3in be described by the following generalizationDf
tive LE and synchronization for small noise; in the case of
generalized synchronization the driven system is often cho- pj=w+oj+ef(e)ét), j=1,2,...N, (2
sen to be chaotic, here for small driving the LE is positive.

A nontrivial dependence on the noise intensity is observe
for limit-cycle oscillators that have zero LE for vanishing
forcing. Calculations of the LE for different types of noise can be neglected due to smal_lnes&oWe expect the states
(see[1-3.10,11) have demonstrated that small noise pIaysOf the oscillators to be close if th_e _mlsmatch.|s smqll com-
an ordering role, shifting the LE to negative values and thu?ared to the LEl¢j|< |)\|<_1,_t[1e3 itis approprl_ate to mt_ro-
synchronizing the oscillators. In the present paper we extenauce new variables =N "3.,¢; and 6=¢j=¢, |
the theory based on the phase approximation of the dynam_—l’z’ - N=1. Then systeng2) for small ¢ can be written
ics, recently discussed ii10,11], to the nonideal situations
of two types: slightly nonidentical oscillators and slightly o=w+ef(p)&t), (3)
nonidentical noise. Furthermore, we present a numerical
study of a realistic Van der Pol-Duffing model and show that oo ,
the results of the phase approximation are of limited validity. 6= o;+ &' (@) GE(V). “
Although in this approximation the LE is negative, in the full Noting that the deviations; with differentj are independent,
system there is a range of noise intensities where the LE iwe can study the evolution of each deviatighseparately
positive. This means the existence of noise-induced desyrand drop indey. Thus the evolution of and 6 is the same
chronization. as for two slightly different oscillators.

A self-sustained oscillator with a small external force can The following from the(3),(4) Fokker-Plank equation for
be adequately described within the phase approximatiothe probability density distributiolV(¢, 8,t) reads

avhere o; are deviations of frequencies from the mean fre-
quency,Eszlajzo. Note that the differences in functiorfis
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MW W W e, 7.0 ' 1.0 '
—+owo—+0o—-¢ Q W=0, (5)

ot dp a0
A a35) 1 05} .
whereQg= (d/ dp)(f(¢)g) + (3! d0)[ f' (¢) 8g]. Performing ex- J L J {

pansion of the stationary solution in powers &3f[we can 0.0 bl o dlal L 0.0 ke L I..MJL L.

here consider as of the same order a$, due to a possi- 2000 7000 12000 2000 7000 12000

bility to renormalize@ in (5)] we obtain in the zeroth order fime time

Wo=w(#) and in the first order FIG. 1. The time dependencies of the differend

= /(X —X)?+ (X1 —%»)? between two Van der Pol-Duffing oscilla-
w&_Wl + Uﬂv _ sZQZW: 0 (6) tors (17). Left panel: common white noise acts on oscillators with
do a6 ' small mismatcHEQ. (18) with o=10"*]. Right panel: two identical

. oscillators are driven by slightly different nois¢gq. (19) with
Substituting for Q°w(6) and integrating Eq.6) over ¢  y/e=2-10%]. Parametersu=0.2,b=1, £=0.2.
e[0,2m), we obtain(due to 27 periodicity of W; in ¢)

Pw  dw 0=t () 0£(t) + yg(@) 7(b), (12)
4 +40— 2w> (7

For 0=0 the solution of7) is a § function. Wheno # 0, this
equation can be rewritten as AW

. Moo pio Y pw=0. 13

(;Xz+(4x 1)—+2w 0, (8) A de
The stationary distribution can be found with the same ap-
wherex= &?f'25719=|\|o"20. Solving this differential equa- proximative method as that of E¢p). Instead of(7) we now
tion by virtue of the substitutiom(x)=h(x)/x? and account- obtain
ing for the normalization conditioff™>w(6)dé=(2m7)"%, we

find dw o LW dw )-
yz + f(02d02+40 +2w| =0, (14)

dw
o— = 82f’2( F—
do where we omitted index. In this case the relevant Fokker-

Plank equation takes the form

g
w(6) = 277|)\|02ex _Wg> 76>0; (9) where due to the COI’IdItIOIg =1 the dependence on the

0 o0<0. furjitlon g disappears. With rescalingx=ey” N
' =V|\|y t6the last equation can be rewritten as
This function is infinitely smooth at=0. Noteworthy, for
any pair of oscillators driven by the same noise, the phase of
the faster oscillator never lags behind that of the slower one.
One can also evaluate the moments

d? d
(P + 1)£+4xd—\;v+2W:O, (15)

and solved by virtue of the same substitutigfx) =h(x)/x.

161 :<| |) T(1-K), (10) Accounting for the normalization condition, we find the so-
I\ lution
and the most probable valug,,=o/(2|\|). From this for- -1
p Y Al
mula we see again that the phase differefide small pro- w(6) = 22NN 1 +?92 (16)

vided |o| < |\|. Formula(10) gives finite moments fok<1
only. Higher moments diverge due to the power-law distri-
bution of ¢; to obtain finite moments one has to go beyond
the linear in@ approximation even for small mismatches

Quite oftenN identical systems that are driven by a com-
mon external noisé&(t) experience also influences of differ-
ent independente.g., thermal noises7;(t). The phase dy-
namics in this case is given by

in the form of the Cauchy distribution. Similar t8) it has a
power-law tail that indicates large fluctuations even for small
values ofy. In both cases of small mismatch and small non-
identity of noise these fluctuations have a form of intermit-
tent bursts(see Fig. 1, cf[10]), similar to other cases of
imperfect synchronizatiofS].

In the thermodynamical limiN — « one can also evaluate
the ensemble averages for moments of differences for

#;= o+ ef(@)E(0) + %ig;(e) 7(0), (11) slightly nonidentical oscillators
wherej=1,2,... N, the functionsf andg; are normalized
2:51-2:1, e and v are the noise amplitudes, arf(t)&(t (o _Td-k |0'|kF(0')d0
+))=28(t"), () p(t+t))=28,8(t"), and (&) 7(t+t') R N A ’
=0. Similar to the case of mismatch, we can introduce a
phaseg satisfying(3) and obtain for small deviationg, and for oscillators driven by different noises
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FIG. 2. For the Van der Pol-Duffing oscillatét7) driven by FIG. 4. The dependencieg,;(¢) are plotted foru=0.2 and
white Gaussian noise, the dependencies of the LE on the nois® €=0.01 for the pair of identical Van der Pol-Duffing oscillators
amplitudee are plotted foru=0.2 and different values df. driven by different white Gaussian noisg®). The values ob are
marked as in Fig. 2.
1 +o
(6% ene= W—J YG(y)dy. that atb=0.5 (of course, this critical value depends on
I\ cogmk/2) J o positive LEs appear in a certain range of while the

asymptotic law lim_o\/e?=const 0 is valid for allb. The
region of positive LEs extends for larde

To characterize the synchronization-desynchronization
ransition in systengl17) quantitatively, we have performed a
Sumerical simulation of two weakly nonidentical Van der
r]:"oI—Duffing oscillators under common white Gaussian noise

Here F(0) andG(y) are the distributions of; and y;, cor-
respondingly.

Although a small noise in all considered cases synchrof
nizes the self-sustained oscillators, a desynchronization i
possible for large noise intensities. This has been demo
strated in[1,2] for a noise in the form of a sequence of
ra_mdom_ pulses_. Ih10] a positi\_/e LE has been reported for a g .- p(1 _Xiz))'(lsz, (Lt o)X+ bxizz e&t), (18)
discontinuous integrate-and-fire neural model. Here we dem-
onstrate that a desynchronization by noise is possible foand of two identical Van der Pol-Duffing oscillators driven
white Gaussian noise source and a smooth oscillator, pravith slightly different noisy forces
vided the latter has a sufficient degree of nonisochronicity. . .

As a model we use a standard 3an der Pol-Duffing os)c/il- %27 (1 =X )X 2+ X1 2% DX 5= ££(0) £ y(D). (19)

lator The quality of synchronization have been measured by the

%= (1= xXDX + X + b = £ (1), (17) average Qiﬁerencylzz((xl-—xz)%(%(1—5<2)2>. In dgpendgnce

on the noise amplitude, this quantity has a maximum in the

where &(t) is normalized white Gaussian noise. Hexrede-  region of positive values of LEsee Figs. 3 and)4
scribes closeness to the Hopf bifurcation point and the “Duf- We have also performed simulations with a large en-
fung parameterb describes nonisochronicity of oscillations. semble of slightly different oscillators driven by the same
In Fig. 2 we show the dependencies of the LE on the noiséoise. Here the distribution of the systems states on the plane
amplitudee for u=0.2 and different values df. One can see

2

10

— 10° FIG. 5. The snapshots of the ensemble of 10 000 Van der Pol-
€ Duffing oscillators with homogeneous distribution of within
[-0.01;0.01 under common white Gaussian noise are presented at
FIG. 3. The dependencies ,(e) are plotted foru=0.2 ando ©=0.2 andb=1. The three chosen values of noise amplitude
=0.002 for the pair of nonidentical Van der Pol-Duffing oscillators correspond to negatife =0.2, the states in the vicinity of the point
under common white Gaussian noi€E8). The values ofb are (1.82;-2.07; and £=2.5, the states in the vicinity of the point

marked as in Fig. 2. (1.76;-3.29] and positive(e=1) LEs.

10

045201-3



D. S. GOLDOBIN AND A. PIKOVSKY PHYSICAL REVIEW E71, 045201R) (2005

(x,x) at a certain moment of time is concentrated for a negaNumerical analysis of the basic Van der Pol-Duffing model
tive LE and is extended for a positive L(Eee Fig. 5. These driven by Gaussian white noise has shown that for large
distributions correspond to different types of snapshot attracronisochronicity of oscillators for moderate noise levels the
tors in system(17) (see[13]). LE is positive. This means desynchronization of oscillations
Summarizing, in this paper we have studied synchrony oby a moderate noise.
populations of limit cycle oscillators subject to common  One of possible applications of the theory above is to the
white noise. In the limit of small noise, where the phasereliability of neural oscillators. Neurons in a regime of peri-
approximation is valid, the LE is negative, which means syn-odic spiking can be considered as limit-cycle oscillators;
chronization of oscillators by noise. In this case we havehere a small noise will synchronize them according to the
performed an analytical treatment of nonideal situations ofeneral theory valid in the phase approximation. However, a
two types: nonidentical oscillators and nonidentical noise. Iarge noise may lead to nonreliability, similar to what has
both cases the distribution of the phase difference betwee€en shown above for the Van der Pol-Duffing system. This
the systems has a power-law tail, which indicates on &roblem is currently under investigation.
strongly intermittent character of the synchronous state, D. G. acknowledges support of the DAAD trilateral
where synchronous epochs and asynchronous bursts intgjroject “Germany-France-Russia,” of the “Dynasty” founda-
mingle tion, and of the Moscow International Center for Fundamen-
For a large noise one has to go beyond the phase approxal Physics. The work has been supported by DESFB
mation; here analytical treatment of the LE is not possible555).
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