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Abstract

In this review article we discuss e�ects of phase synchronization of nonlinear

self-sustained oscillators. Starting with a classical theory of phase locking,

we extend the notion of phase to autonoumous continuous-time chaotic
systems. Using as examples the well-known Lorenz and R�ossler oscillators,

we describe the phase synchronization of chaotic oscillators by periodic ex-

ternal force. Both statistical and topological aspects of this phenomenon are

discussed. Then we proceed to more complex cases and discuss phase syn-

chronization in coupled systems, lattices, large globally coupled ensembles,

and of space-time chaos. Finally, we demonstrate how the synchronization

e�ects can be detected from observations of real data.

1. Introduction

Synchronization, a basic nonlinear phenomenon, discovered at the begin-

ning of the modern age of science by Huygens [27], is widely encountered in

various �elds of science, often observed in living nature [25, 24] and �nds a

lot of engineering applications [7, 8]. In the classical sense, synchronization

means adjustment of frequencies of self-sustained oscillators due to a weak

interaction [49].

The history of synchronization goes back to the 17th century when

the famous Dutch scientist Christiaan Huygens [27] reported on his ob-

servation of synchronization of two pendulum clocks. Systematic study

of this phenomenon, experimental as well as theoretical, was started by

Edward Appleton [3] and Balthasar van der Pol [70]. They showed that

the frequency of a triode generator can be entrained, or synchronized, by a
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weak external signal with slightly di�erent frequency. These studies were of

high practical importance because such generators became basic elements

of radio communication systems.

Next impact to the development of the theory of synchronization was

given by the representatives of the Russian school. Andronov and Vitt [2, 1]

further developed methods of van der Pol and generalized his results. The

case of n : m external synchronization was studied by Mandelshtam and

Papaleksi [40]. Mutual synchronization of two weakly nonlinear oscillators

was analytically treated by Mayer [41] and Gaponov [23]; relaxation oscil-

lators were studied by Bremsen and Feinberg [9] and Teodorchik [68]. An

important step was done by Stratonovich [64, 65] who developed a theory

of external synchronization of a weakly nonlinear oscillator in the presence

of random noise.

Development of rigorous mathematical tools of the synchronization the-

ory started with Denjoy works on circle map [19] and with treatment of

forced relaxation oscillators by Cartwright and Littlewood [11, 12]. Recent

development has been highly inuenced by Arnold [4] and by Kuramoto

[34].

In the context of interacting chaotic oscillators, several e�ects are usu-
ally referred to as\synchronization" [49, 47, 35]. Due to a strong interaction

of two (or a large number) of identical chaotic systems, their states can coin-

cide, while the dynamics in time remains chaotic [22, 51]. This e�ect is called

\complete synchronization" of chaotic oscillators. It can be generalized to

the case of non-identical systems [51, 38, 39], or that of the interacting

subsystems [46, 31]. Another well-studied e�ect is the \chaos{destroying"

synchronization, when a periodic external force acting on a chaotic system

destroys chaos and a periodic regime appears [36], or, in the case of an

irregular forcing, the driven system follows the behavior of the force [32].

This e�ect occurs for a relatively strong forcing as well. A characteristic

feature of these phenomena is the existence of a threshold coupling value

depending on the Lyapunov exponents of individual systems [22, 51, 6, 20].

In this article we concentrate on the recently described e�ect of phase
synchronization of chaotic systems, which generalizes the classical notion

of phase locking. Indeed, for periodic oscillators only the relation between

phases is important, while no restriction on the amplitudes is imposed.

Thus, we de�ne phase synchronization of chaotic system as an appearance

of a certain relation between the phases of interacting systems or between

the phase of a system and that of an external force, while the amplitudes can

remain chaotic and are, in general, non-correlated. This type of synchroniza-

tion has been observed in experiments with electronic chaotic oscillators [52,

45], plasma discharge [69], and electrochemical oscillators [28].
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2. Synchronization of periodic oscillators

2.1. PHASE LOCKING

In this section we remind basic facts on the synchronization of periodic

oscillations (see, e.g., [43]). Stable periodic oscillations are represented by a

stable limit cycle in the phase space. The motion of the phase point along

the cycle can be parametrized by the phase �(t), it's dynamics obeys

d�

dt
= !0; (1)

where !0 = 2�=T0, and T0 is the period of the oscillation. It is impor-

tant that starting from any monotonically growing variable � on the limit

cycle (so that at one rotation � increases by �), one can introduce the

phase satisfying Eq. (1). Indeed, an arbitrary � obeys _� = (�) with a

periodic \instantaneous frequency" (� + �) = (�): The change of vari-

ables � = !0
R
�

0
[(�)]�1d� gives the correct phase, with the frequency !0

being de�ned from the condition 2� = !0
R �
0
[�(�)]�1d�: A similar approach

leads to correct angle-action variables in Hamiltonian mechanics. We have

performed this simple consideration to underline the fact that the notions

of the phase and of the phase synchronization are universally applicable to

any self-sustained periodic behavior independently on the form of the limit

cycle.

From (1) it is evident that the phase corresponds to the zero Lyapunov

exponent, while negative exponents correspond to the amplitude variables.

Note that we do not consider the equations for the amplitudes, as they are

not universal.

When a small external periodic force with frequency � is acting on this

periodic oscillator, the amplitude is relatively robust, so that in the �rst

approximation one can neglect variations of the amplitude to obtain for the

phase of the oscillator � and the phase of the external force  the equations

d�

dt
= !0 + "G(�;  ) ;

d 

dt
= � ; (2)

where G(�; �) is 2�-periodic in both arguments and " measures the strength

of the forcing. For a general method of derivation of Eq. (2) see [34]. The

system (2) describes a motion on a 2-dimensional torus that appears from

the limit cycle under periodic perturbation (see Fig. 1a,b). If we pick up

the phase of oscillations � stroboscopically at times tn = n2�
�
, we get a

circle map

�n+1 = �n + "g(�n) ; (3)
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Figure 1. Quasiperiodic (a) and periodic ow (b) on the torus; a stable periodic orbit is

shown by the bold line. (c): The typical picture of Arnold tongues (with winding numbers

atop) for the circle map.

where the 2�-periodic function g(�) is de�ned via the solutions of the

system (2). According to the theory of circle maps (cf. [43]), the dynamics

can be characterized by the winding (rotation) number

� = lim
n!1

�n � �0

2�n
;

which is independent on the initial point �0 and can take rational and

irrational values. If it is irrational, then the motion is quasiperiodic and

the trajectories are dense on the circle. Otherwise, if � = p=q, there exists

a stable orbit with period q such that �q = �0 + 2�p. The latter regime

is called phase locking or synchronization. In terms of the continuous-time

system (2), the winding number is the ratio between the mean derivative

of the phase � and the forcing frequency �

� =

D
d�

dt

E
�

=
!

�
: (4)

For � irrational and rational one has, respectively, a quasiperiodic dense

orbit and a resonant stable periodic orbit on the torus (Fig. 1a,b).

The main synchronization region where ! = � corresponds to the wind-

ing number 1 (or, equivalently, 0 if we apply (mod 2�) operation to the

phase; for frequencies this means that we consider the di�erence ! � �),

other synchronization regions are usually much more narrow. A typical

picture of synchronization regions, called also \Arnold tongues", for the

circle map (3) is shown in Fig. 1c.

The concept of phase synchronization can be applied only to autonomous
continuous-time systems. Indeed, if the system is discrete (i.e. a mapping),
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its period is an integer, and this integer cannot be adjusted to some other

integer in a continuous way. The same is true for forced continuous-time

oscillations (e.g., for the forced DuÆng oscillator): here the frequency of

oscillations is completely determined by that of the forcing and cannot be

adjusted to some other value. We can formulate this also as follows: in

discrete or forced systems there is no zero Lyapunov exponent, so there is

no corresponding marginally stable variable (the phase) that can be a�ected

by small external perturbations.

The synchronization condition (4) does not mean that the di�erence

between the phase � of an oscillator and that of the external force  (or

between phases of two oscillators) must be a constant, as is sometimes

assumed (see, e.g. [66]). Indeed, (2) implies, that to enable ��  = const,

the function G should depend not on separate phases but only on their

di�erence: G(�;  ) = G(�� ). Denoting this phase di�erence as ' = �� 
we can rewrite Eq. (2) as

d'

dt
= !0 � � + "q(') : (5)

In the synchronous state this equation should have (at least one) stable

point. This happens if the frequency mismatch (detuning) is small enough,

"qmin < ��!0 < "qmax, and this condition determines the synchronization

(phase-locking, mode-locking) region on the (!; ") plane. Within this region,

the phase di�erence remains constant,  = Æ, and the value of this constant

depends on the detuning, Æ = q�1[(� � !0)="] (here the stable branch of

the inverse function should be chosen). Generally, the coupling function

G(�;  ) cannot be reduced to a function of the phase di�erence '. Then,

even in a synchronous regime ' is not constant but uctuates, although

these uctuations are bounded. Thus, we can de�ne phase locking according

to relation

j�(t)�  (t) � Æj < const ; (6)

from which the condition of frequency locking h _�i = � naturally follows.

The latter de�nition of phase locking will be used in the treatment of chaotic

oscillations below, but even for periodic regimes it has an advantage when

the forced oscillations are not close to the original limit cycle.

The winding number is a continuous function of system parameters;

typically it looks like a devil's staircase. Take the main phase-locking region.

Continuity means that near the de-synchronization transition the mean

oscillation frequency is close to the external one. As the external frequency

� is varied, the de-synchronization transition appears as saddle-node bifur-

cation, where a stable p=q - periodic orbit collides with the corresponding

unstable one, and both disappear. Near this bifurcation point, similarly to

the type-I intermittency [5], a trajectory of the system spends a large time
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Figure 2. Phase as a particle in an inclined potential, inside and outside of the

synchronization region.

in the vicinity of the just disappeared periodic orbits; in the course of time

evolution the long epochs when the phases are locked according to (6), are

interrupted with relatively short time intervals where a phase slip (at which

the phase di�erence gains 2�) occurs.

2.2. EFFECT OF NOISE

The most simple way to model a noisy environment is to add a noisy term

to the �rst of Eqs. (2), or, to have the simplest possible situation, to Eq. (5):

d'

dt
= !0 � � + "q(') + �(t) : (7)

The dynamics of the phase can be treated as the dynamics of an over-

damped particle in a potential

V (') = (� � !0)'� "

Z
'

q(x) dx :

The average slope of the potential is determined by the mismatch of fre-

quencies of the autonomous oscillator and external force; the depth of the

minima (if they exist) is determined by the amplitude of the forcing, see

Fig. 2. Without noise, the particle would either rest in a minimum, or

slide downwards along the potential, if there are no local minima; this

corresponds to a synchronous and non-synchronous states, respectively.

Suppose �rst that the noise is small and bounded, then its inuence

results in uctuations of the particle around a stable equilibrium, i.e. in

uctuations of the phase di�erence around some constant value. We thus

have a situation of phase locking in the sense of relation (6); here the

observed frequency coincides with that of the external force.

Contrary to this, if the noise is unbounded (e.g., Gaussian), there is

always a probability for the particle to overcome a potential barrier �V

and to hop in a neighboring minimum of the potential. The time series looks
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Figure 3. Fluctuation of the phase di�erence in a noisy oscillator (a). Without forcing,

the behavior of ' is di�usive: it performs a motion that reminds a random walk (upper

curve); the distribution of ' mod 2� is shown in (b), it is practically uniform. External

forcing with non-zero detuning suppresses the di�usion, the phase of the oscillator is

nearly locked (middle curve), but sometimes phase slips occur; the respective distribution

(c) becomes rather narrow and unimodal. Stronger noise (bottom curve) causes more

phase slips, so that there are only rather short epochs where ' oscillates around a constant

level; the distribution of ' mod 2� remains nevertheless unimodal (d).

as a sequence of these phase slips (see Fig. 3) and relation (6) does not hold.

Nevertheless, at least for small noise, the phase synchronization is de�nitely

detectable, although it is not perfect: between slips we observe epochs of

phase locking. Averaged locally over such an epoch, the frequency of the

oscillator coincides with that of the external force. The observed frequency

that is computed via averaging over a large period of time di�ers from that

of the external force, but this di�erence is small if the slips are rare.

Phase locking in noisy systems can be also understood in a statis-

tical sense, as an existence of a preferred value of the phase di�erence

' mod 2�. Indeed, the particle spends most of the time around a position

of stable equilibrium, then rather quickly it jumps to a neighboring equi-

librium, where the phase di�erence di�ers by a multiple of 2�. This can

be reected by distribution of ' mod 2�: a non-synchronous state would

have a broad distribution, whereas synchronization would correspond to a

unimodal distribution (Fig. 3).

The synchronization transition in noisy oscillators appears as a contin-

uous decrease of characteristic time intervals between slips, and is smeared:
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Figure 4. Projection of the phase potrait of the R�ossler system (a). The horizontal line

shows the Poincar�e section that is used for computation of the amplitude mapping (b)

and dependence of the return time (rotation period) on the amplitude (c).

we cannot unambiguously determine the border of this transition.

3. Phase and frequency of a chaotic oscillator

3.1. DEFINITION OF THE PHASE

The �rst problem in extending the basic notions from periodic to chaotic

oscillations is to de�ne properly a phase. There seems to be no unambiguous

and general de�nition of phase applicable to an arbitrary chaotic process.

Roughly speaking, we want to de�ne phase as a variable which is related to

the zero Lyapunov exponent of a continuous-time dynamical system with

chaotic behavior. Moreover, we want this phase to correspond to the phase

of periodic oscillations satisfying (1).

To be not too abstract, we illustrate a general approach below on the

well-known R�ossler system. A projection of the phase portrait of this au-

tonomous 3-dimensional system of ODEs (see Eqs. (17) below) is shown in

Fig. 4.

Suppose we can de�ne a Poincar�e map for our autonomous continuous-

time system. Then, for each piece of a trajectory between two cross-sections

with the Poincar�e surface we de�ne the phase just proportional to time, so
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that the phase increment is 2� at each rotation:

�(t) = 2�
t� tn

tn+1 � tn
+ 2�n; tn � t < tn+1: (8)

Here tn is the time of the n-th crossing of the secant surface. Note that for

periodic oscillations corresponding to a �xed point of the Poincar�e map,

this de�nition gives the correct phase satisfying Eq. (1). For periodic orbits

having many rotations (i.e. corresponding to periodic points of the map)

we get a piecewise-linear function of time, moreover, the phase grows by

a multiple of 2� during the period. The second property is in fact useful,

as it represents in a proper way the organization of periodic orbits inside

the chaos. The �rst property demonstrates that the phase of a chaotic

system cannot be de�ned as unambiguously as for periodic oscillations.

In particular, the phase crucially depends on the choice of the Poincar�e

surface.

Nevertheless, de�ned in this way, the phase has a physically important

property: its perturbations neither grow nor decay in time, so it does corre-

spond to the direction with the zero Lyapunov exponent in the phase space.

We note also, that this de�nition of the phase directly corresponds to the

special ow construction which is used in the ergodic theory to describe

autonomous continuous-time systems [15].

For the R�ossler system (Fig. 4(a)) a proper choice of the Poincar�e surface

may be the halfplane y = 0; x < 0. For the amplitude mapping xn ! xn+1

we get a unimodal map (Fig. 4(b), the map is essentially one-dimensional,

because the coordinate z for the R�ossler attractor is nearly constant on

the chosen Poincar�e surface). In this and in some other cases the phase

portrait looks like rotations around a point that can be taken as the origin,

so we can also estimate the phase as the angle between the projection of

the phase point on the plane and a given direction on the plane (see also

[48, 26]):

�P = arctan(y=x) : (9)

Note that although the phase � and its estimate �P do not coincide mi-

croscopically, i.e on a time scale less than the average period of oscillation,

they have equal average growth rates. In other words, the mean frequency

de�ned as the average of d�P =dt over large period of time coincides with

a straightforward de�nition of the mean frequency via the average number

of crossings of the Poincar�e surface per unit time.

3.2. LOCKING-BASED DEFINITION OF FREQUENCY FOR SYSTEMS

WITH ILL-DEFINED PHASE

Phase can be straightforwardly introduced if one can �nd a two-dimensional

projection of the attractor in which all trajectories revolve around some
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origin. This is typically the case for systems exhibiting a transition to

chaos via a cascade of period doubling bifurcations; e.g., for the R�ossler

oscillator. For such projections one can de�ne phase according to Eq. (8),

or estimate it according to Eq. (9) or using the Hilbert transform (see

section 8 below). Sometimes, a proper projection can be achieved with

a coordinate transformation (e.g., using the symmetry properties of the

attractor, as in the Lorenz system) [50, 49]. Estimation of the average

frequency of individual oscillators h _�i then allows one to characterize the

degree of synchronization. Contrary to these cases of well-de�ned phase,

chaotic oscillators with \wild", non-revolving trajectories are often termed

as those with ill-de�ned phase. Here only indirect indications for phase

synchronization exist (based, e.g., on the ensemble averages [48, 50]), but

no direct calculation of the phase and the frequency can be performed.

Nere we describe a method [59], based on the use of auxiliary limit
cycle oscillators, that allows one to estimate the average frequency of the

observed signals for situations with ill-de�ned phase. To introduce the

method let us consider an ensemble of uncoupled limit cycle oscillators

with natural frequencies !k distributed in an interval [!min; !max]. Let

each oscillator of this ensemble be driven by a common periodic force of

a frequency � 2 [!min; !max]. It is well-known that the force synchronizes

those elements of the ensemble which have frequencies close to �. This

can be demonstrated by plotting the frequencies of the driven limit cycle

oscillators 
k, called hereafter the observed frequencies, vs. the natural

frequencies !k: the synchronization manifests itself in the appearance of a

horizontal plateau (more precisely, one expects to observe a devil's staircase

structure with in�nitely many plateaus), where the frequency of entrained

elements is equal to �. Hence, an unknown frequency of the drive can be

revealed by the analysis of the 
k vs. !k plot. The idea of our approach

is to use the ensemble of auxiliary oscillators as a device for measuring the
frequency of complex signals.

A simple implementation of the method is to drive the array of Poincar�e

oscillators with a signal X(t), which frequency we would like to determine

_Ak = (1 + i!k)Ak � jAkj2Ak + "X(t) : (10)

Separating the real amplitude R and the phase � from the complex am-

plitude A = Rei� we obtain for the phase _�k = !k � R�1
k
"X(t) sin�k.

Noting that for small " the amplitude R is close to unity, and neglecting its

uctuations, we can write equations for our measuring oscillators as pure

phase equations:
_�k = !k � "X(t) sin�k; (11)

and the observed frequencies are 
k = h _�ki. Note that Eqs. (11) become

exact if one writes a higher order nonlinearity jAjpA in (10) and considers
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the limit p ! 1. In calculations below we normalize the signal X(t) to

have zero mean and unit variance so that the coupling constant " is the

only parameter of the method (the mean value can slightly inuence the

result).

To show how the method works we consider a model quasiharmonic

process with mean frequency !0 and slowly varying amplitude and phase:

X(t) = 2(1 + a(t)) cos(!0t� �(t)). Substituting this in (11) and averaging

over the period of fast oscillations 2�=!0, we obtain for the slowly varying

phase di�erence  = �� !0t+ � the equation

_ = ! � !0 + _�(t)� "(1 + a(t)) sin ;

for a harmonic signal ( _� = a = 0) it has for " � j! � !0j the synchronized
solution  0 = arcsin ((! � !0)="). For weak modulation we can linearize

around this state and obtain for the deviations Æ :

d(Æ )

dt
= _� � a(t)(! � !0)�

p
"2 � (! � !0)2Æ :

Assuming that � and a are independent random processes, we can express

the power spectrum of the phase uctuations through the spectra of these

processes:

SÆ (�) =
�2S�(�) + (! � !0)

2Sa(�)

"2 � (! � !0)2 + �2
:

One can see that the uctuations are small only in the middle of the

synchronization region (for ! � !0); here only the phase uctuations S�
contribute. Modeling S� by the Lorentz-like spectrum

S� =
2�V�

(�2 +�2)�
;

where V� and � are the variance and the characteristic maximal frequency

of uctuations of �, we obtain

VÆ =

Z
1

0

SÆ (�)d� = V��("+�)�1 :

This �nal formula shows that good synchronization (i.e. small variance of

Æ ) can be achieved if " is suÆciently larger than �, i.e. if the coupling

constant is larger than the characteristic frequency of phase uctuations.

From the other side, in the limit " ! 1 the dependence of the observed

frequency 
 on the natural one disappears, and the measured frequency is

the Rice frequency of the process X(t).
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Figure 5. (a) Funnel attractor in the R�ossler system (12). (b) Power spectrum of x(t).

The arrow shows the characteristic frequency as determined according to Fig. 6.
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Figure 6. Output of the frequency measuring "device" (11) as a function of the natural

frequencies !k for the R�ossler oscillator (12). The height of the plateau determines the

characteristic frequency of this chaotic drive 
(p) = 0:94.

To illustrate the approach we consider the R�ossler system with a funnel

attractor (Fig. 5a):

_x = �y � z ;

_y = x+ 0:4y ;

_z = 0:25 + z(x� 8:5) :
(12)

Clearly we cannot �nd an origin around which all trajectories revolve. The

power spectrum for the variable x (Fig. 5b) is broad; it does not contain

a dominating maximum. Due to these properties, there is no direct way to

introduce the phase for this system and to characterize its synchronization

[50]. In our method, we use the (normalized) signal x(t) to drive system

(11) with " = 0:5. The frequencies of the oscillators in the measuring device

driven by X(t) = x(t) are shown in Fig. 6. The resulting plateau in the 
k
vs. !k plot gives 


p � 0:94 where \p" stands for \plateau". Practically, the
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middle point of the plateau 

p

k
was determined from the minimum of the

running variance
P

k+L
j=k�L(
j � �
k)

2, where �
k = (2L + 1)�1
P

k+L
j=k�L
j.

Variation of L from 3 to 10 gave no essential di�erence. This method

provides also a smoothening of the 
k vs. !k curve. One can see that this

characteristic frequency cannot be directly associated with a peak in the

power spectrum (Fig. 5b). We also see that Fig. 6 does not show the devil's

staircase structure, but only one, smeared plateau. This is due to the chaotic

nature of the process x(t), so that, similar to the case of narrow-band noisy

signals, the high-order phase-locked regions are not observed [37, 49].

3.3. DYNAMICS OF THE PHASE OF CHAOTIC OSCILLATIONS

In contrast to the dynamics of the phase of periodic oscillations, the growth

of the phase in the chaotic case cannot generally be expected to be uniform.

Instead, the instantaneous frequency depends in general on the amplitude.

Let us hold to the phase de�nition based on the Poincar�e map, so one can

represent the dynamics as (cf. [52])

An+1 =M(An) ; (13)

d�

dt
= !(An) � !0 + F (An) : (14)

As the amplitude A we take the set of coordinates for the point on the

secant surface; it does not change during the growth of the phase from

0 to 2� and can be considered as a discrete variable; the transformation

M de�nes the Poincar�e map. The phase evolves according to (14), where

the \instantaneous" frequency ! = 2�=(tn+1 � tn) depends in general on

the amplitude. Assuming the chaotic behavior of the amplitudes, we can

consider the term !(An) as a sum of the averaged frequency !0 and of

some e�ective noise F (A); in exceptional cases F (A) may vanish. For the

R�ossler attractor the \period" of the rotations (i.e. the function 2�=!(An))

is shown in Fig. 4(c). This period is not constant, so the function F (A)

does not vanish, but the variations of the period are relatively small.

Hence, the Eq. (14) is similar to the equation describing the evolution

of phase of periodic oscillator in the presence of external noise. Thus, the

dynamics of the phase is generally di�usive: for large t one expects

h(�(t) � �(0)� !0t)
2i / Dpt ;

where the di�usion constant Dp determines the phase coherence of the

chaotic oscillations. Roughly speaking, the di�usion constant is propor-

tional to the width of the spectral peak calculated for the chaotic observable

[21].
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Generalizing Eq. (14) in the spirit of the theory of periodic oscillations

to the case of periodic external force, we can write for the phase

d�

dt
= !0 + "G(�;  ) + F (An) ;

d 

dt
= � : (15)

Here we assume that the force is small (of order of ") so that it a�ects only

the phase, and the amplitude obeys therefore the unperturbed mappingM .

This equation is similar to Eq. (7), with the amplitude-depending part of

the instantaneous frequency playing the role of noise. Thus, we expect that

in general the synchronization phenomena for periodically forced chaotic

system are similar to those in noisy driven periodic oscillations. One should

be aware, however, that the \noisy" term F (A) can be hardly calculated

explicitly, and for sure cannot be considered as a Gaussian Æ-correlated

noise as is commonly assumed in the statistical approaches [65, 55].

4. Phase synchronization by external force

4.1. SYNCHRONIZATION REGION

We describe here the e�ect of phase synchronization of chaotic oscillations

by periodic external force, taking as examples two prototypic models of

nonlinear dynamics: the Lorenz

_x = 10(y � x);

_y = 28x� y � xz;

_z = �8=3 � z + xy +E cos �t:

(16)

and the R�ossler
_x = �y � z +E cos �t ;

_y = x+ 0:15y ;

_z = 0:4 + z(x� 8:5) :
(17)

oscillators. In the absence of forcing, both are 3-dimensional dissipative

systems which admit a straightforward construction of the Poincar�e maps.

Moreover, we can simply use the phase de�nition (9), taking the original

variables (x; y) for the R�ossler system and the variables (
p
x2 + y2�u0; z�

z0) for the Lorenz system (where u0 = 12
p
2 and z0 = 27 are the coordi-

nates of the equilibrium point, the \center of rotation"). The mean rotation

frequency can be thus calculated as


 = lim
t!1

2�
Nt

t
(18)

where Nt is the number of crossings of the Poincar�e section during observa-

tion time t. This method can be straightforwardly applied to the observed
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time series, in the simplest case one can, e.g., take for Nt the number of

maxima (of x(t) for the R�ossler system and of z(t) for the Lorenz one).

Dependence of the frequency 
 obtained in this way on the amplitude

and frequency of the external force is shown in Fig. 7. Synchronization here

corresponds to the plateau 
 = �. One can see that the synchronization

properties of these two systems di�er essentially. For the R�ossler system

there exists a well-expressed region where the systems are perfectly locked.

Moreover, there seems to be no amplitude threshold of synchronization

(cf. Fig. 1c, where the phase-locking regions start at " = 0). It appears

that the phase locking properties of the R�ossler system are practically the

same as for a periodic oscillator. On the contrary, for the Lorenz system

we observe the frequency locking only as a tendency seen at relatively large

forcing amplitudes, as this should be expected for oscillators subject to

a rather strong noise. In this respect, the di�erence between R�ossler and

Lorenz systems can be described in terms of phase di�usion properties (see

Sect. 3.3). Indeed, the phase di�usion coeÆcient for autonomous R�ossler

system is extremely small Dp < 10�4, whereas for the Lorenz system it

is several oder of magnitude larger, Dp � 0:2 [50]. This di�erence in the

coherence of the phase of autonomous oscillations implies di�erent response

to periodic forcing.

In the following sections we discuss the phase synchronization of chaotic

oscillations from the statistical and the topological viewpoints.

4.2. STATISTICAL APPROACH

We de�ne the phase of an autonomous chaotic system as a variable that

corresponds to the zero Lyapunov exponent, i.e. to the invariance with

respect to time shifts. Therefore, the invariant probability distribution as a

function of the phase is nearly uniform. This follows from the ergodicity of

the system: the probability is proportional to the time a trajectory is spend-

ing in a region of the phase space, and according to the de�nition (8) the

phase motion is (piecewise) uniform. With external forcing, the invariant

measure depends explicitly on time. In the synchronization region we expect

that the phase of oscillations nearly follows the phase of the force, while

without synchronization there is no de�nite relation between them. Let

us observe the oscillator stroboscopically, at the moments corresponding to

some phase  0 of the external force. In the synchronous state the probability

distribution of the oscillator phase will be localized near some preferable

value (which of course depends on the choice of  0). In the non-synchronous

state the phase is spread along the attractor. We illustrate this behavior of

the probability density in Fig. 8. One can say that synchronization means

localization of the probability density near some preferable time-periodic

state. In other words, this means appearance of the long-range correlation
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(a) (b)

Figure 8. Distribution inside (a) and outside (b) the synchronization region for the

R�ossler system, shown with black dots. The autonomous R�ossler attractor is shown with

gray.

in time and of the signi�cant discrete component in the power spectrum of

oscillations.

Let us consider now the ensemble interpretation of the probability. Sup-

pose we take a large ensemble of identical copies of the chaotic oscillator

which di�er only by their initial states, and let them evolve under the

same periodic forcing. After the transient, the projections of the phase

state of each oscillator onto the plane x; y form the cloud that exactly

corresponds to the probability density. Let us now consider the ensemble

average of some observable. Without synchronization the cloud is spread

over the projection of the attractor (Fig. 8b), and the average is small: no

signi�cant average �eld is observed. In the synchronous state the probability

is localized (Fig. 8a), so the average is close to some middle point of the

cloud; this point rotates with the frequency � and one observes large regular

oscillations of the average �eld. Hence, the synchronization can be easily

indicated through the appearance of a large (macroscopic) mean �eld in the

ensemble. Physically, this e�ect is rather clear: unforced chaotic oscillators

are not coherent due to internal chaos, thus the summation of their �elds

yields a small quantity. Being synchronized, the oscillators become coher-

ent with the external force and thereby with each other, so the coherent

summation of their �elds produces a large mean �eld.

We can look on the probability also from the ergodic point of view,

where instead of taking an ensemble one takes separated in time states

of one system. The described above coherence that appears due to phase

synchronization is now coherence in time. It can be revealed by calculating

the autocorrelation function or the power spectrum. Synchronization means

that correlations in time are large and a signi�cant discrete peak appears

in the spectrum of oscillations.
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An important consequence of the statistical approach described above

is that the phase synchronization can be characterized without explicit

computation of the phase and/or the mean frequency: it can be indicated

implicitly by the appearance of a macroscopic mean �eld in the ensemble

of oscillators, or by the appearance of the large discrete component in

the spectrum. Although there may be other mechanisms leading to the

appearance of macroscopic order, the phase synchronization appears to be

one of the most common ones.

5. Phase synchronization in coupled systems

Now we demonstrate the e�ects of phase synchronization in coupled chaotic

oscillators. We start with the simplest case of two interacting systems,

and then briey discuss oscillator lattices, globally coupled systems, and

space-time chaos.

5.1. SYNCHRONIZATION OF TWO INTERACTING OSCILLATORS

We consider here two non-identical coupled R�ossler systems

_x1;2 = �!1;2y1;2 � z1;2 + "(x2;1 � x1;2);

_y1;2 = !1;2x1;2 + ay1;2;

_z1;2 = f + z1;2(x1;2 � c);

(19)

where a = 0:165, f = 0:2, c = 10. The parameters !1;2 = !0 � �!

and " determine the mismatch of natural frequencies and the coupling,

respectively.

Again, like in the case of periodic forcing, we can de�ne the mean fre-

quencies 
1;2 of oscillations of each system, and study the dependence of the

frequency mismatch 
2 �
1 on the parameters �!; ". This dependence is

shown in Fig. 9 and demonstrates a large region of synchronization between

two oscillators.

It is instructive to characterize the synchronization transition by means

of the Lyapunov exponents (LE). The 6-order dynamical system (19) has

6 LEs (see Fig. 10). For zero coupling we have a degenerate situation of

two independent systems, each of them has one positive, one zero, and

one negative exponent. The two zero exponents correspond to the two

independent phases. With coupling, the phases become dependent and the

degeneracy must be removed: only one LE should remain exactly zero. We

observe, however, that for small coupling also the second zero Lyapunov

exponent remains extremely small (in fact, numerically indistinguishable

from zero). Only at relatively stronger coupling, when the synchronization

sets on, the second LE becomes negative: now the phases are dependent
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!0 = 0:97, �! = 0:02. Transition to the phase ("p) and to the lag synchronization ("l)

are marked.

and a relation between them is stable. Note that the two positive expo-

nents remain positive which means that the amplitudes remain chaotic and

independent: the coupled system remains in the state of hyperchaos.

With the increase of coupling one of the positive LE becomes smaller.

Physically this means that not only the phases are locked, but the di�erence

between the amplitudes is suppressed by coupling as well. At a certain

coupling only one LE remains positive, so one can expect synchronization
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both in phases and amplitudes. As the systems are not identical (due to

the frequency mismatch), their states cannot be identical: x1(t) 6= x2(t).

However, almost perfect correspondence between the time-shifted states of

the systems can be observed: x1(t) � x2(t��t). This phenomenon is called

\lag synchronization" [58]. With further increase of the coupling " the lag

�t decreases and the states of two systems become nearly identical, like in

case of complete synchronization.

5.2. SYNCHRONIZATION IN A POPULATION OF GLOBALLY COUPLED

CHAOTIC OSCILLATORS

A number of physical, chemical and biological systems can be viewed at as

large populations of weakly interacting non-identical oscillators [34]. One of

the most popular models here is an ensemble of globally coupled nonlinear

oscillators (often called \mean-�eld coupling"). A nontrivial transition to

self-synchronization in a population of periodic oscillators with di�erent

natural frequencies coupled through a mean �eld has been described by

Kuramoto [34, 33]. In this system, as the coupling parameter increases,

a sharp transition is observed for which the mean �eld intensity serves

as an order parameter. This transition owes to a mutual synchronization

of the periodic oscillators, so that their �elds become coherent (i.e. their

phases are locked), thus producing a macroscopic mean �eld. In its turn,

this �eld acts on the individual oscillators, locking their phases, so that the

synchronous state is self-sustained. Di�erent aspects of this transition have

been studied in [61, 17, 18], where also an analogy with the second{order

phase transition has been exploited.

A similar e�ect can be observed in a population of non-identical chaotic
systems, e.g. the R�ossler oscillators

_xi = �!iyi � zi + "X;

_yi = !ixi + ayi;

_zi = 0:4 + zi(xi � 8:5);

(20)

coupled via the mean �eld X = N�1
P

N

1 xi. Here N is the number of ele-

ments in the ensemble, " is the coupling constant, a and !i are parameters

of the R�ossler oscillators. The parameter !i governs the natural frequency of

an individual system. We take a set of frequencies !i which are Gaussian-

distributed around the mean value !0 with variance (�!)2. The R�ossler

system typically shows windows of periodic behavior as the parameter ! is

changed; therefore we usually choose a mean frequency !0 in a way that

we avoid large periodic windows. In our computer simulations we solve

numerically Eqs. (20) for rather large ensembles N = 3000 � 5000.

With an increase of the coupling strength ", the appearance of a non-

zero macroscopic mean �eld X is observed [48], as is shown in Fig. 11. This
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Figure 11. Projections of the phase portraits of the R�ossler oscillators (left column)

and of the mean �elds X = hxii; Y = hyii in ensemble of N = 5000 oscillators. (a):

Phase-coherent R�ossler attractor, !0 = 1; a = 0:15. (b): Mean �eld in the ensemble of

oscillators (a) with Gaussian distribution of frequencies �! = 0:02 and coupling " = 0:1.

(c) Funnel attractor !0 = 0:97; a = 0:25. (d): Mean �eld in the ensemble of oscillators

(c) with Gaussian distribution of frequencies �! = 0:02 and coupling " = 0:15.

indicates the phase synchronization of the R�ossler oscillators that arises due

to their interaction via mean �eld. This mean �eld is large, if the attractors

of individual systems are phase-coherent (parameter a = 0:15) and the

phase is well-de�ned. On the contrary, in the case of the funnel attractor

a = 0:25, when the oscillations look wild and the imaging point makes large

and small loops around the origin, there seems to be no way to choose the

Poincar�e section unambiguously; in this case the mean �eld is rather small.

Nevertheless, in both cases synchronization transition is clearly indicated by

the onset of the mean �eld, without computation of the phases themselves.

Finally, we note that phase synchronization in a globally coupled ensemble

of chaotic oscillators have been observed experimentally in [30, 29].

6. Lattice of chaotic oscillators

If chaotic oscillators are ordered in space and form a lattice, usually it

is assumed that only the nearest neighbors interact. Such a situation is

relevant for chemical systems, where homogeneous oscillations are chaotic,

and the di�usive coupling can be modeled with dissipative nearest neighbors
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Figure 12. (a): Nearly homogeneous phase pro�le for the lattice of identical

phase-coherent R�ossler oscillators. (b) In a lattice of identical funnel R�ossler oscillators

a = 0:23, " = 0:05 an inhomogeneous phase pro�le with numerous defects is observed.

The defects are clearly seen in the right panel as large values of the gradient

interaction [10, 26]. In a lattice, one can expect complex spatio-temporal

synchronization structures to be observed.

Consider as a model a 1-dimensional lattice of R�ossler oscillators with

local dissipative coupling:

_xj = �!jyj � zj ;

_yj = !jxj + ayj + "(yj+1 � 2yj + yj�1);

_zj = 0:4 + (xj � 8:5)zj :

(21)

Here the index j = 1; : : : ; N counts the oscillators in the lattice and " is

the coupling coeÆcient. In a homogeneous lattice (i.e. for equal natural

frequencies !j) the observed regime signi�cantly depends on the coherence

properties of a single chaotic oscillator. If the R�ossler oscillator is phase-

coherent, all the phases nearly synchronize and a regular phase pattern (in

fact, a nearly homogeneous phase distribution) is observed (Fig. 12a). In

the case of funnel R�ossler oscillator the phase at a individual element can

\spontaneously" change by �, this prevents synchronization in the lattice

(Fig. 12b).
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To study synchronization in a lattice of non-identical oscillators, we

introduce a linear distribution of natural frequencies !j

!j = !1 + Æ(j � 1) (22)

where Æ is the frequency mismatch between neighboring sites. Depending

on the values of Æ we observed two scenarios of transition to synchronization

[42]. For small Æ, the transition occurs smoothly, i.e. all the elements along

the chain gradually adjust their frequencies. If the frequency mismatch

is larger, clustering is observed: the oscillators build phase-synchronized

groups having di�erent mean frequencies (Fig. 13). At the borders between

clusters phase slips occur; this can be considered as appearance of defects

in the spatio-temporal representation. Both regular and irregular patterns

of defects can be seen in Fig. 13.

7. Synchronization of space-time chaos

The idea of phase synchronization can be also applied to space-time chaos.

For example, in the famous complex Ginzburg-Landau equation (CGLE) [16,

13, 63]

@ta = (1 + i!0)a� (1 + i�)jaj2a+ (1 + i�)@2t a ; (23)

there are regimes where the complex amplitude a rotates with some mean

frequency, but these rotations are not regular: the phase deviates irregu-

larly in space and time (this regime is called \phase turbulence"). Another

regime, where the complex amplitude a not always rotates but experiences

space-time defects (the places where the absolute value of the amplitude

vanishes whereas the phase is not de�ned); this regime is analogous to

oscillations with ill-de�ned phase like in the funnel R�ossler oscillator.

Let us now add periodic in time spatially homogeneous forcing of am-

plitude B and frequency !e. Transition into a reference frame rotating with

this external forcing (a! A � a exp(�i!et)) reduces Eq. (23) to

@tA = (1 + i�)A� (1 + i�)jAj2A+ (1 + i�)@2tA+B ; (24)

where � = !0 � !e is the frequency mismatch between the frequency of

the external force and the frequency of small oscillations. An analysis of

di�erent regimes in the system (24) has been recently performed [14]. As

one can expect, a very strong force suppresses turbulence and the spatially

homogeneous periodic in time synchronous oscillations are observed, while

a small force has no signi�cant inuence on the turbulent state. A nontrivial

regime is observed for intermediate forcing: in some parameter range the

irregular uctuations of the phase are not completely suppressed but are

bounded: the whole system oscillates \in phase" with the external force
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Figure 14. Synchronization of defect turbulence (� = �2, � = 2): (a) Average frequency

as a function of the amplitude B and the frequency � of the external force. The contour

lines are drawn at levels �0:5, �0:01, 0:01, 0:5. (b) Density of defects (arbitrary units).

The contour line shows the border of the defect-free region. (c) The largest Lyapunov

exponent. The contour line shows the border of the turbulent region.

and is highly coherent, although some small chaotic variations persist. In

Figs. 14,15 we show how the forcing acts on the regimes with defect and

phase turbulence in the CGLE. One can see that the forcing can supress

defects while not supressing completely the space-time chaos; this regime

is analogous to phase synchronization of individual oscillators. In the case

of phase turbulence there is a range of parameters where defects are ob-

served, they appear due to a speci�c for the forced CGLE instability of

special solutions { kinks { connecting two spatially homogeneous regions of

complete synchronization, the phases in these regions di�er by �2�. These
kinks can disappear through a defect, but from this defect two new kinks

appear, leading to kink-breeding process (Fig. 16).
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Figure 15. Synchronization of phase turbulence (� = �0:75, � = 2). (a) The average

frequency 
 as a function of the amplitude B and the frequency � of the external force.

The contour line shows the border of the synchronization region. (b) The density of

defects (arbitrary units). (c) The largest Lyapunov exponent. The contour lines show the

borders between the regions of positive, zero, and negative exponents.

8. Detecting synchronization in data

The analysis of relation between the phases of two systems, naturally arising

in the context of synchronization, can be used to approach a general prob-

lem in time series analysis. Indeed, bivariate data are often encountered in

the study of real systems, and the usual aim of the analysis of such data is

to �nd out whether two signals are dependent or not. As experimental data

are very often non-stationary, the traditional techniques, such as cross{

spectrum and cross{correlation analysis [44], or non{linear characteristics

like generalized mutual information [53] or maximal correlation [71] have

their limitations. From the other side, sometimes it is reasonable to assume

that the observed signals originate from two weakly interacting systems.

The presence of this interaction can be found by means of the analysis

of instantaneous phases of these signals. These phases can be unambigu-
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ously obtained with the help of the analytic signal concept based on the

Hilbert transform (for an introduction see [44, 50]). It goes as follows: for

an arbitrary scalar signal s(t) one can construct a complex function of time

(analytic signal) �(t) = s(t) + i~s(t) = A(t)ei�H (t) where ~s(t) is the Hilbert

transform of s(t),

~s(t) = ��1P.V.

Z
1

�1

s(�)

t� �
d� ; (25)

andA(t) and �H(t) are the instantaneous amplitude and phase (P.V. means

that the integral is taken in the sense of the Cauchy principal value). Alter-

natively, one can use a wavelet transform with a complex Gabor wavelet,

see [54].

As has been recently shown in [56, 50], the phase estimated by this

method from an appropriately chosen oscillatory observable practically

coincides with the phase of an oscillator computed according to one of

the de�nitions given in Sec. 3. Therefore, the analysis of the relationship

between these Hilbert phases appears to be an appropriate tool to de-
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tect synchronous epochs from experimental data and to check for a weak

interaction between systems under study. It is very important that the

Hilbert transform does not require stationarity of the data, so we can trace

synchronization transitions even from nonstationary data.

We recall again the above mentioned similarity of phase dynamics in

noisy and chaotic oscillators (see Sect. 3.3). A very important consequence

of this fact is that, using the synchronization approach to data analysis,

we can avoid the hardly solvable dilemma \noise vs chaos": irrespectively

of the origin of the observed signals, the approach and techniques of the

analysis are unique. Quanti�cation of synchronization from noisy data is

considered in [67].

Application of these ideas allowed us to �nd phase locking in the data

characterizing mechanisms of posture control in humans while quiet stand-

ing [60, 57]. Namely, the small deviations of the body center of gravity in

anterior{posterior and lateral directions were analyzed. In healthy subjects,

the regulation of posture in these two directions can be considered as

independent processes, and the occurrence of some interrelation possibly

indicates a pathology. It is noteworthy that in several records conventional

methods of time series analysis, i.e. the cross{spectrum analysis and the

generalized mutual information failed to detect any signi�cant dependence

between the signals, whereas calculation of the instantaneous phases clearly

showed phase locking.

Complex synchronous patterns have been found recently in the analysis

of interaction of human cardiovascular and respiratory systems [62]. This

�nding possibly indicates the existence of a previously unknown type of

neural coupling between these systems.

Analysis of synchronization between brain and muscle activity of a

Parkinsonian patient [67] is relevant for a fundamental problem of neu-

roscience: can one consider the synchronization between di�erent areas of

the motor cortex as a necessary condition for establishing of the coordi-

nated muscle activity? It was shown [67] that the temporal evolution of

the coordinated pathologic tremor activity directly reects the evolution of

the strength of synchronization within a neural network involving cortical

motor areas. Additionally, the brain areas with the tremor-related activity

were localized from noninvasive measurements.

9. Conclusions

The main idea of this paper is to demonstrate that synchronization phenom-

ena in periodic, noisy and chaotic oscillators can be understood within a

uni�ed framework. This is achieved by extending the notion of phase to the

case of continuous-time chaotic systems. Because the phase is introduced as
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a variable corresponding to the zero Lyapunov exponent, this notion should

be applicable to any autonomous chaotic oscillator. Although we are not

able to propose a unique and rigorous approach to determine the phase,

we have shown that it can be introduced in a reasonable and consistent

way for basic models of chaotic dynamics. Moreover, we have shown that

even in the case when the phases are not well-de�ned, i.e. they cannot be

unambiguously computed explicitly, the presence of phase synchronization

can be demonstrated indirectly by observations of the mean �eld and the

spectrum, i.e. independently of any particular de�nition of the phase.

In a rather general framework, any type of synchronization can be con-

sidered as appearance of some additional order inside the dynamics. For

chaotic systems, e.g., the complete synchronization means that the dynam-

ics in the phase space is restricted to a symmetrical submanifold. Thus, from

the point of view of topological properties of chaos, the synchronization

transition usually means the simpli�cation of the structure of the strange

attractor. In discussing the topological properties of phase synchronization,

we have shown that the transition to phase synchronization corresponds

to splitting of the complex invariant chaotic set into distinctive attractor

and repeller. Analogously to the complete synchronization, which appears

through the pitchfork bifurcation of the strange attractor, one can say that

the phase synchronization appears through tangent bifurcation of strange

sets.

Because of the similarity in the phase dynamics, one may expect that

many, if not all, synchronization features known for periodic oscillators can

be observed for chaotic systems as well. Indeed, here we have described

e�ects of phase and frequency entrainment by periodic external driving,

both for simple and space-distributed chaotic systems. Further, we have

described synchronization due to interaction of two chaotic oscillators, as

well as self-synchronization in globally coupled large ensembles.

As an application of the developed framework we have discussed a

problem in data analysis, namely detection of weak interaction between

systems from bivariate data. The three described examples of the analysis

of physiological data demonstrate a possibility to detect and characterize

synchronization even from nonstationary and noisy data.

Finally, we would like to stress that contrary to other types of chaotic

synchronization, the phase synchronization phenomena can happen already

for very weak coupling, which o�ers an easy way of chaos regulation.
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