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We consider a simple reentrant model of a manufacturing process, consisting of one machine at
which two different types of items have to be processed. The model is completely deterministic:
all delivery and processing times are fixed, and are generally incommensurate. Dependent on the
arrival and processing times, a queue of waiting items grows, remains constant or disappears. We
demonstrate that the dynamics of the system crucially depends on the queue type. Complexity
is most observed for the case of growing queue. We characterize this dynamics between order
and chaos with the T-entropy and the autocorrelation function.
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1. Introduction

In the queue theory one describes the operation
of production systems supposing that the input
orders are random in time (e.g. Poissonian pro-
cesses) [Nelson, 1995; Gross & Harris, 1985]. Thus,
the queue theory is often considered as a part of
the theory of stochastic processes. Recently, purely
deterministic models of production systems have
attracted a growing interest. In these models no
external stochasticity is assumed, i.e. the times at
which the orders appear are deterministic (in the
simplest case periodic), see, e.g. [Bunimovich, 2001].
If the production process is also deterministic, one
can assume that prediction and controlling of such
a production system is relatively simple. However,
theoretical [Chase et al., 1993] as well as empirical
[Beaumariage & Kempf, 1994] studies have shown
that completely deterministic production systems
can demonstrate complex behavior. This is not very
surprising, because chaos is one of the possible
types of dynamical behavior. The production sys-
tems have, however, some specific properties that
make the appearance of chaos not so common as in

general dynamical systems. In particular, usually
one considers processing of discrete units (items),
and chaos can disappear in course of discretiza-
tion. One such example has been recently described
in [Katzorke & Pikovsky, 2000], where it has been
shown that chaos in a continuous-state production
system reduces to a complex but nonchaotic behav-
ior if one considers processing of discrete items.

A particular interest in the studies of determin-
istic queue models have attracted so-called reen-
trant systems (see e.g. [Hanson et al., 1999]). A
reentrant system models a manufacturing process,
where the items to be processed have to pass one
machine (or a group of machines) more than one
time. In [Diaz-Rivera et al., 2000] an example of
such a reentrant model, consisting of two machines
with different scheduling policies for each machine,
has been investigated. It has been demonstrated
that depending on the ratio of the work velocities,
either the periodic dynamics or a behavior between
chaos and periodicity is observed.

In this paper we investigate a simple reentrant
model where only one machine processes different
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types of items twice. The main parameters here are
the arrival and the processing times, which are in
general different. It turns out, that the observed be-
havior in this model strongly depends on the kind
of the queue of waiting items and, in some cases, on
the initial conditions.

This paper is organized as follows. In Sec. 2
the model is formulated. We describe the main rel-
evant parameters and introduce the balance con-
dition important for the dynamical properties. In
Secs. 3 and 4 we study stationarity, ergodicity, and
sensitivity to the initial conditions. In Secs. 5 and
6 complexity of the dynamics is characterized via
autocorrelations and T-entropy. Some generaliza-
tions are discussed in the conclusion. In particular,
we consider there an analogy of the model under
consideration with traffic models.

2. Basic Model

2.1. Reentrant model

In this section we describe a simple reentrant model
that we will investigate in this paper. In general,
reentrance means that there is a single machine or
a group of machines, which items have to pass the
system for more than one time. A typical case of
such organization one finds in the microelectronic
chip production. In our simplest model there is just
one machine, symbolized with a box in Fig. 1. Two
different kinds of workpieces A and B arrive at this
machine, and these items have to pass it twice. We
denote the items after first processing as A′ and B′,
respectively. All the items that have to enter the
machine are organized in a queue according to the
FIFO (first in–first out) rule (in the case when two

B"

A

B

A’

B’

A"

Fig. 1. A scheme of the item flow for the model described
in text. Two different kinds of workpieces A and B have to
pass the machine twice until they leave it as A′′ and B′′.

items arrive simultaneously, the priority according
to the ordering A > B > A′ > B′ is used). This
means that at the input of the machine we have a
series of four symbols A, B, A′, B′ which is trans-
formed at the output to the corresponding series of
A′, B′, A′′, B′′. We assume that the items A and B
are entering at deterministic periodic time intervals
tA and tB , respectively. Other relevant parameters
are the processing times, i.e. the times needed for
processing the items A, B, A′, B′. We denote these
times as TA, TB , TA′ , TB′ , respectively. We assume
that these times are constants, i.e. they are inde-
pendent of the length of the queue, the order of the
items in the queue, etc.

For the dynamics of the system it is essential,
that the times tA,B, TA,B,A′,B′ are arbitrary real
numbers. Thus, in general they are incommensurate
(not in a rational relation). This makes the whole
process at least as complex as quasiperiodic. We will
see that in certain situations this quasiperiodicity of
input is reproduced in the queue and in the output,
while in other cases the complexity grows and the
output is more complex than quasiperiodic.

Two types of output observables are possible.
One can either observe the times at which the con-
sequent pieces of work are accomplished, or one can
observe the sequence of outcoming symbols. In this
paper we will mainly use the second, symbolic char-
acterization of the process. It allows us to apply
different measures of complexity with the most ef-
ficiency. We note also, that the output sequence is
equivalent to the sequence of symbols at the input
of the machine.

2.2. The balance condition

Depending on its productivity (capacity), the ma-
chine will be able to accomplish all the incoming
pieces of work, or not. In terms of the parame-
ters of the system, i.e. of the times tA,B, TA,B,A′,B′ ,
this can be formulated as follows. Let us consider a
large time interval T . During this time NA = T/tA
items of type A and NB = T/tB items of type B
are delivered. The total processing time for these
items is NA(TA + TA′) + NB(TB + TB′). This time
should be compared with the time interval T . Thus,
the critical processing capacity is described by the
parameter τ :

τ =
TA + TA′

tA
+

TB + TB′

tB
(1)

The following kinds of systems can be distinguished
according to the value of τ :
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• τ < 1: the underbalanced system, here the
incoming item flow is less than the capacity;

• τ = 1: the balanced system, here the incoming
flow fits exactly the processing capacity;

• τ > 1: the overbalanced system; here the pro-
cessing capacity is insufficient to process all the
incoming units.

According to this classification, the queue will dis-
appear, remain, or grow depending on the value
of τ .

2.3. The reentrant model as a

dynamical system

In this subsection we represent the reentrant model
described above as a dynamical system. This
dynamical system is rather unusual, because it has
two types of the variables. The state of the queue
is described by a symbolic sequence of symbols
A, B, A′, B′. The current state of the machine is
described by a continuous variable x which can be
viewed as the processing phase. The phase x grows
linearly in time:

dx

dt
=

1

TS

(2)

where S stands for the item which is in process-
ing. As x reaches the value 1, the processing of the
item ends, and the queue is rearranged: the first-in
item enters the machine, and, in the case S = A or
S = B, the corresponding item (A′ or B′) is added
to the queue. Additionally, every time step tA and
tB the items A and B are added to the queue, this
latter operation can be considered as a quasiperi-
odic (in the general case of incommensurate tA and
tB) forcing of the system.

The dynamical system is completely described
by the above rules. Its time-continuous part is the
trivial linear equation (2). However, complex dy-
namics is not excluded. On one hand, complexity
can appear due to “boundary conditions” to (2), as
is the case for strange billiards [Chase et al., 1993;
Schürmann & Hoffmann, 1995]. On the other hand,
the system is driven quasiperiodically, which means
that the minimal possible complexity is that of a
quasiperiodic process.

The parameters governing the dynamics are the
times tA, tB , TA, TB , TA′ , TB′ . We have performed
simulations with different sets of these parameters.
Below, if the opposite is not explicitly stated, we use
the following parameters: tA = 1, tB = 1+

√
5, TA =

TA′ = (2
√

2)−1, TB = TB′ = c−1(2−
√

2)(
√

5−1)−1.

Here the parameter c governs the balance condition.
From (1) one easily obtains τ = c−1(1+(c−1)/

√
2).

As the main observable providing us the
information on the systems’ dynamics we use the
symbolic sequence of the machine input queue. For
calculation of the correlation function we assign
the numerical values to the symbols as follows:
A → 1, B → 2, A′ → 3, B′ → 4. As a result, a
time series zi, 1 ≤ z ≤ 4 is produced.

3. Sensitivity to Initial Conditions

One of the main characterizations of the nonlinear
dynamics is the sensitivity to initial conditions. In
smooth dynamical systems one calculates the max-
imal Lyapunov exponent, which allows one to dis-
tinguish unstable (positive LE), neutral (zero LE)
and stable (negative LE) dynamics. In our case
of the hybrid phase space where a part of vari-
ables is symbolic, we cannot define the Lyapunov
exponent, because an infinitesimal perturbation of
the symbolic variable is not possible. Instead, we
perform the following numerical experiment: we
perturb slightly the dynamics governed by Eq. (2)
and observe the changes in our symbolic observable
— the queue.

The first observation is that any changes in the
symbolic sequence appear first with a delay δt1 af-
ter the perturbation is imposed. We can roughly
estimate δt1 ∼ ∆−1, where ∆ is the perturbation
strength. This is valid for all types of the system
(overbalanced, balanced and underbalanced), and
correspond to a simple observation that a small shift
of the times of arrival of items A′ and B′ to the
queue leads to a change in the symbolic sequence
only when one of these arrival times is very close to
the arrival time of one of the items A, B. Due to
incommensurate relation between the characteristic
times this always happens, and due to ergodicity of
the incoming quasiperiodic sequence one has to wait
for approximately ∆−1 until this happens.

In the case of a balanced and overbalanced sys-
tems the produced change in the symbolic sequence
never disappears, because the queue is never empty
and the nondisturbed arrival times cannot be re-
stored. On the other hand, in the underbalanced
case the queue is from time to time empty. In these
periods the perturbation of the shifted arrival times
disappears, and the unperturbed symbolic sequence
is restored. Thus, the effect of perturbation on the
underbalanced dynamics is temporary: it exists only
during the time interval δt1 < t < δt2 after the
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Fig. 2. The sensitivity of the symbolic sequences: the differ-
ence of the symbols of the perturbed (at timestep 4) and the
unperturbed sequences. (a) Underbalanced system c = 1.1,
(b) balanced system c = 1, (c) overbalanced system c = 0.9.
The perturbation is cp = c · 1.001 in all cases.

perturbation is imposed. Here δt2 is the time at
which the sum of all empty queue states exceeds
the perturbation. Clearly, δt2 is inversely propor-
tional to (1 − τ). We illustrate the dynamics of the
perturbation in Fig. 2.

4. Ergodicity and Stationarity

In this section we focus on two features of the dy-
namics, which allow us to characterize the observed
time series with suitable methods of the theory of
stochastic processes. The first property means that
the characteristics do not depend on initial condi-
tions, i.e. some sort of “ergodicity” is valid. The sec-
ond property — stationarity — means that there is
no trend in statistical properties of the time series,

which allows us to apply characteristics suitable for
stationary signals.

4.1. Ergodicity

To check the ergodicity we looked at how the
observed transition probabilities in a time series
(i.e. probabilities to find pairs of symbols, like AB ′)
depend on initial state. For c 6= 1 we have found
that the transition probabilities do not depend on
initial state, while for c = 1 such a dependence is
observed (Fig. 3). This means that in the case of
perfect balance the dynamics is not ergodic and has
at least one “integral of motion”, while nonbalanced
systems do not have such an integral.

Qualitatively, such a dependence on the bal-
ance condition can be understood as follows. In
the underbalanced case the dynamics, as we have
shown above, is not sensitive to the initial condi-
tions, and is fully determined by the quasiperiodic
drive (input flow of items). Therefore, the system is
ergodic. In the overbalanced case, the queue grows,
thus any perturbation in the dynamics increases be-
cause it affects more and more items in the queue.
As a result, effective “averaging” over all initial per-
turbations occurs resulting in ergodic behavior. In
the balanced case a perturbation in the initial con-
ditions remains roughly constant in time course,
because the queue length is constant. Thus, differ-
ent initial conditions do not “mix” and the statis-
tics can be dependent on them, thus breaking the
ergodicity.

4.2. Stationarity

A stationarity of the observed symbolic time series
is ensured in the underbalanced case, where the
dynamics is essentially driven by the quasiperi-
odic input, and thus follows the stationarity of
the quasiperiodic process. For other conditions this
argument does not work. In particular, for the
overbalanced case the stationarity may be doubted
because the queue grows and this may lead to a
trend in the statistical properties. Therefore we
have tested the stationarity numerically. For this
end we have produced a long symbolic time series
(up to 700.000), divided it into several parts, and
compared statistical characteristics of the sequence
in these parts. Particularly, we estimated the prob-
abilities of combinations of symbols (there are 16
possible combinations of two and 64 combinations
of three symbols), and used the χ2-criterion to judge
whether the hypothesis that these probabilities are
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Fig. 3. The probability to find (a) a pair (A, B) or (b) a pair (A, A′) in the queue is shown for the balanced (solid line,
filled circles), the overbalanced (dotted line, filled squares) and for the underbalanced (dashed line, filled triangles) systems
depending on the initial conditions xA. Note that only the balanced system demonstrates dependence on initial conditions.

the same in different parts of the time series can be
approved or should be rejected [Press et al., 1989].
For the values of the parameter c not very close to 1
we could always confirm the stationarity hypothesis
(Fig. 4). If c is close to 1 (e.g. c ≈ 0.995), we have
difficulties in applying the test because the statis-
tical properties appear to have very slow modula-
tions, thus requiring averaging over extremely long
time intervals. This will be also seen in characteri-
zation of the correlations in the next section.

5. Correlations

For the calculations of the normalized autocorrela-
tion function we use the integer time series zi as
defined above:

C(k) =
〈zi+kzi〉 − 〈z〉2
〈z2〉 − 〈z〉2 .

In the underbalanced case the autocorrela-
tion function demonstrates a typical for quasiperi-
odic dynamics pattern, returning nearly to 1 at
a relatively regular rate (Fig. 5). This supports

the conclusion above that in this case the behav-
ior of the system is completely determined by the
quasiperiodic driving.

In the case of perfect balance (τ = c = 1)
the dynamical behavior depends on initial condi-
tions, so the autocorrelation function depends on
them as well. We show two examples in Fig. 6. In
all observed situations for some large time shifts k
the correlations are close to 1, thus indicating the
quasiperiodicity. We note that in some cases the cor-
relations for small k are not close to one, this means
that on a small time scale the process is more com-
plex than quasiperiodic.

The largest complexity is achieved in the over-
balanced case. Here the autocorrelations do not
return to 1 even for large time shifts k. Several ex-
amples of the autocorrelation function for 0.98 ≤
c ≤ 0.999 are presented in Fig. 7. This function
looks on a small scale like a quasiperiodic one, but
with a slowly varying envelope that is smaller than
1. This envelope is shown in Fig. 7 for different
values of parameter c, i.e. for different levels of
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Fig. 4. Results of the application of the χ2-test to the sta-
tionarity of symbolic sequences. Large values of p correspond
to the acceptance of the stationarity hypothesis. Combina-
tions consisting of two symbols (solid line, filled circles) and
of three symbols (dashed line, triangles) have been analyzed.

violation of the balance condition. One can see that
for larger deviations of c from 1 the correlations de-
cay faster, and to a lower level.

Because the correlations do not achieve level
1, the process is more complex than quasiperiodic.
We conjecture that the spectrum of the process
has a singular continuous component [Queffélec,
1987]. Such spectra have been studied recently for
complex nonchaotic systems like strange nonchaotic
attractors [Pikovsky & Feudel, 1994], substitution
sequences [Zaks et al., 1998], fluid flows [Zaks, 2001],
etc. Unfortunately, in the present case it is hardly
possible to extract the singular continuous compo-
nent from the spectrum, because it has also very
strong discrete components.

6. Complexity

From the general point of view of the theory of
complexity [Badii & Politi, 1997] we face a prob-
lem of characterizing a complexity of a symbolic
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Fig. 5. Correlation function of underbalanced system
c = 1.2.

series of four symbols A, B, A′, B′. Here we use
a recently suggested method by Titchener [1994,
1998, 2001].

This method consists in the recursive determi-
nation of single words or combinations of letters.
The algorithm works as follows: First the last letter
k1 of the sequence has to be found, and how many
times this symbol (the letter or sign) is found in
the sequence is counted, starting from the end. If
the next symbol kn is different from the previous
symbol kn−1, the number of identical stings at the
step n will be one and n increases by one. Then the
counting of the identical strings is repeated with
the string consisting of the last two symbols of the
sequence, then with the last three symbols and so
forth. Thus the number kn increases by more than
one only, if there are some repetitions of patterns,
like A → B → A → B → A → B . . . . The number
of repetitions is identical to the number of kn. If
the repetitions end, a new group of symbols will be
used, as described above for the estimation of the
next kn+1. The new string starts at the end of the
previous string (in this case the repetition) and will
be built backwards, that means from the symbols z
to z − i.
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Fig. 6. Dependence of the correlation functions of the balanced system on the initial conditions of the start position of the
items (two panels correspond to two different initial conditions). In both cases the correlation functions come close to one.

(a)

0 1000 2000
0

1

m
ax

(c
or

r(
tim

e)
)

time

(b)

Fig. 7. (a) Correlation function of an overbalanced system c = 0.98. (b) The envelope drawn through the peaks of the
correlation function. Used parameters: c = 0.98 (dashed line), c = 0.99 (dotted–dashed line) and c = 0.995 (solid line). For all
cases the correlation function neither decreases to zero nor returns to one.
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Fig. 8. Estimated T-entropy (normalized by log(4)) of
different symbolic sequences. From top to bottom: random
distributed sequence, c = 0.98, c = 1.01 and balanced system.
The sequence consists of four types of symbols and 100 000
signs are used.

This method of estimation of the different kn

will be repeated until the sequence is identical with
the string. With the number of steps n and the
estimated kn, the T-complexity CT (x(n)) of the se-
quence for the string x(n) is determined as follows:

CT (x(n)) =
∑

n

logN (kn + 1) ,

where N is the number of used symbols.
As was shown in [Ebeling et al., 2001], a

proper normalization of the T-complexity is needed
according to

IT (x(n)) = li−1

(

CT (x(n))

lnN

)

(3)

where li−1 is the inverse logarithmic integral and
the scaling constant is lnN . The quantity IT (x(n))
is the T-entropy of the sequence x(n) [Ebeling
et al., 2001]. For different sequences the T-entropy
is shown in Fig. 8. Because four symbols are used
in the investigated sequences, the T-entropy is nor-
malized by log(4). The T-Entropy of the analyzed
sequence has values between the T-Entropy of the

quasiperiodic and the random distributed sequence.
This confirms the results of the preceding section
that the overbalanced system demonstrates behav-
ior more complex than the quasiperiodic one, but
nevertheless is not chaotic.

7. Conclusion

In this paper we have investigated a simple reen-
trant model with one machine and two basic types
of items to be processed. The main parameter
governing the dynamics is the relation between the
processing capacity and the delivery times. If the
processing capacity is large, the system is underbal-
anced, and has the properties of a quasiperiodically
driven dissipative dynamical system. One can re-
late this to the fact that for large production rates
a queue disappears and the idle time intervals damp
out the perturbations. The dissipativity is no more
present when the system is balanced: here the queue
is never empty and the perturbations do not decay.
Moreover, the dynamics depend on the initial state,
which can be related to the fact that the perturba-
tions do not grow as well. In the third possible case,
when the production capacity is so small that the
queue grows continuously, the dynamics becomes
more complex than the quasiperiodic one. One can
understand this as an effect of the growing queue,
which leads to the effective growth of the pertur-
bations. This growth is, however, not fast enough
to yield chaos. The correlations in the overbalanced
case neither return to one nor decay to zero. A com-
plexity of the queue, characterized with help of the
T-entropy, also lies between that of order and noise.

In the paper we have presented the results for
one particular set of parameters and the model
setup. We have checked also other parameters
(e.g. different delivery times and production rates),
as well as organization of the queue according to
different rules (e.g. when instead of the FIFO rule
we gave the top priority to the item A, setting it
always to the top position in the queue when such
an item arrives). In all these situations the qualita-
tive picture was the same as described above, with
a maximal complexity in the overbalanced case.

Finally we would like to mention an analogy
of the model considered with the models of traf-
fic dynamics [Helbing, 2001]. Consider a situation
where two traffic lanes, where cars are driving with
different velocities and distances between, have to
merge to only one lane (or, in general, the number
of lanes is reduced). The merging point represents
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a bottleneck where a traffic jam (in our language a
queue) can appear (cf. [Chowdhury & Schadschnei-
der, 1999; Barlovic et al., 2001; Huisinga et al.,
2001]). The underbalanced, balanced, and the over-
balanced cases above correspond to a decaying, con-
stant and increasing jam, correspondingly. Contrary
to the production dynamics, it is however rather
unrealistic to suggest that the cars enter the same
bottleneck twice (although in numerical simulations
one often takes periodic boundary conditions, so
that the outgoing cars simply reenter the queue).
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