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Characterizing direction of coupling from experimental observations
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We demonstrate that the direction of coupling of two interacting self-sustained electronic oscillators
can be determined from the realizations of their signals. In our experiments, two electronic
generators, operating in a periodic or a chaotic state, were subject to symmetrical or unidirectional
coupling. In data processing, first the phases have been extracted from the observed signals and then
the directionality of coupling was quantitatively estimated from the analysis of mutual dependence
of the phase dynamics. @003 American Institute of Physic§DOI: 10.1063/1.1518425

Traditional methods of bivariate data analysis like com-  under various conditions. The paper is organized as follows.
putation of cross-spectra, cross-correlation, or mutual in-  In Sec. Il we describe the method of the analysis of bivariate
formation provide symmetric measures of interrelation  data. In Sec. Il the experimental setup is described. The
between the signals and do not allow one to address the main results of the paper—detection of the direction of cou-
guestion of causality in the interaction. Recently, several pling from the experimentally observed data—are presented
approaches to this problem have been suggested, based in Sec. IV. We conclude with a discussion of the limitations
either on the notion of generalized synchronizatioh™ or  and the drawbacks of the method.
on the information theory and Granger's concept of
causality®® Here we discuss a method that is based on Il. DESCRIPTION OF THE METHOD
the coupled oscillators theory; it is aimed to quantify the
degree of asymmetry in interaction. This method is de-
signed for the data generated by two weakly coupled self-
sustained oscillators. This limitation is compensated by
the simplicity of the method and the absence of param-
eters. In the paper the method is applied to experimental
data from coupled periodic and chaotic electronic cir- b1= w1+ €f (b, do)+ E4(1),
cuits. . (1)
$2= wat €xfo(da, 1) + Eo(1).

Here, random terms, , describe noisy perturbations that are
always present in real-world systems, small parametgss
Coupled oscillators are ubiquitous in science, nature, en<w, , characterize the strength of the coupling. Equatin
gineering, and social life. Examples include pendulumalso describes the phase dynamics of coupled continuous-
clocks, firing neurons, lasers, singing crickets,%eté.Quite  time chaotic systems; in this cagg, are irregular terms that
often the degree of coupling can be directly controlled in arreflect the chaotic nature of amplitudésThe fact that the
experiment, allowing one to characterize coupling-dependerntegular component of the phase dynamics is two-
effects, such as synchronization, oscillation death, beats, etdimensional, essentially simplifies detection of the asymme-
The inverse problem, i.e., the determination of the level andry in the interaction.
the direction of coupling from the observations of coupled  Functionsf,, are 2r-periodic in both arguments and
systems, is much less trivial. For example, from the obsereombine the description of the phase dynamics of autono-
vation of a synchronous motion one can hardly detect thenous(uncoupled systems and the coupling between them. If
direction of coupling, because both symmetri¢bldirec- the coupling is bidirectionalf, and f, depend on bothp,
tional) and unidirectional coupling can yield synchronizationand ¢,. In the case of a unidirectional driving, say from

The main idea of Ref. 14 is to use a general property that
a weak coupling affects the phases of interacting oscillators,
whereas the amplitudes remain practically unchartgéd.
Hence, the dynamics of weakly coupled oscillators can be
reduced to those of two phasés ,:

I. INTRODUCTION

of oscillators. system 1 to system Z,="1,(¢;), whereasf,=f,(¢1,¢,)
In this paper we present an experimental realization of as the function of two arguments.
recently suggested methidd® for determining the direction In order to estimate the dependencies of the functions

of coupling from the signals coming from interacting oscil- f, , it is convenient to go from a continuous-time description
lating systems. In our setup we use two electronic generatorsf the process to a time-discrete one. Two methods have been
operating in a periodic or a chaotic state. Moreover, in theproposed in the literaturé;*® hereafter we use the so-called
experiment it is possible to perturb the systems by externdlinstantaneous period approach” described in Ref. 15. In
noise and in this way to test the applicability of the methodthis method one first obtains the phases as functions of con-
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tinuous time:¢4(t), ¢,(t). For good oscillators the phase oscillator 1

grows monotonically in time, thus for each instanbne can

define two time intervalsT,(k) and T,(k) at which the L | |1 1

phasesp, and ¢, gain 2, respectively: |7 2 L[]3 L
1(tt Ta(k)) = da(ty) + 2,

Dot To(K)) = po(ty) + 27 )
These time intervals depend, in general, on both phases; alg  oscillator 2

the noisy pariterms », ;) may be present:
I g g, ]
1

T1(K)=01(p1(K), do(K)) + 74, T

To(k)=0,(po(K), p1(K)) + 7. )

If the functions®, , are known(or estimated from the ob-
ferv_ed ,fjath we can characterize the dependence of the IOCalllG. 1. Scheme of the experimental setup. Each generator consists of non-
period” T, ,on the other phase via the mean square of th@inear elementl), first-order filter(2), second-order filtef3), and summator

partial derivative: amplifier (3). The feedback'shown by the bold lineis implemented via
connection of the output of the summafbrto the input of the filter(2).
2 &@1 2 2 07@2 2 Symmetric coupling is provided by the resis®r unidirectional coupling
C1= Tﬁz y Co= T% . (4) (dashed linesis implemented via additional amplifieks.

Finally, thedirectionality indexis introduced as
(4) From the approximated functior; , one calculates

[ C2—Cy 5) the cross-dependencies, according to Eq(4). Finally, the
Cr,+Cq’ directionality index(5) is obtained.

In the case of unidirectional coupling==*1, while for

nearly symmetrical coupling is close to zero. Note that the Ill. EXPERIMENTAL SETUP

notion “symmetrical” is not well-defined: terms of the same In the experiment we use two electronic self-sustained
order in the original equations of motion may lead to differ- o4 qtic oscillators, which are coupled either bidirectionally
ent contributions to the phase dynamics, due to difference i, nigirectionally. Each oscillator is constructed as a ring
the periods, amplitudes, forms of oscillations, etc. Nevertheéonsisting of a low pass RC filter, resonant RLC filter, non-
less, small values af indicate that the coupling is effectively linear element, and a summator-amplifigig. 1). The non-

bidirectional. linear element is the multiplier, whose output signgl, is

We note that the method is explicitly based on the 8Stelated to the input signab;, as vgy= —mv%. Here m

sumption that one deals with weakly interacting self-_q 1 v/-1 gndl is the external voltage governing the non-
sustained oscillators. Recently, other methods for evaluatioﬁnearity level in the circuit and serving as the main bifurca-
of causality in interrelation .of bivariate data have beeq SUGfion parameter. Depending on this parameter, the oscillator
gested, where no assumptions on the systems under investly, jemonstrate periodic or chaotic oscillations; the transi-
gation are required. One approach, based on the |nfo_rmat|o[ribn to chaos happens via a period-doubling cascBit 2).
theory, uses entropy measufésA second approach, arising Additionally, there is a possibility to add noise to the circuit;

from studies of generalized synchronization, exploits thethis is implemented by adding a signal from the noise gen-
idea of mutual predictability: it quantifies the ability to pre- erator to the summator-amplifier.

dict the state of the first system from the knowledge of the Coupling of two generators is accomplished in two

-5
second oné: ways. To implement a nearly symmetrical coupling, the

According to the above-described method, the algorithny, g ot the input of the nonlinear elements in two circuits
for detecting the directionality of coupling can be outlined as; .o ~gnnected via a resistadenoted aR in Fig. 1). The

follows. _ _ coupling is thus inversely proportional to the resistance. To
(1) One obtains the phases, o(t) of the signals from

the two oscillators. This task may be nontrivial, although the
corresponding methodss well as possible difficultigsare
well documented in the literaturésee, e.g., Ref. 11, and
references therejn Usually, a preprocessing is needed de-
pending on the structure of the signals under consideration.

(2) For a set of time instant one obtains the instanta-
neous “periods” according to Eq2). These periods are con-
sidered as unknown functions of the phases at time

(3) One estimates the functior®; { ¢;,,¢,1) (3), us-

ing some fit with time _Ser_iegl,z an(_j ¢1_,2-_ Be‘fause the FiG. 2. Bifurcation diagram of the first oscillatoh is the voltage on the
functions®, , are 2r-periodic, a Fourier fit is suitable. output of the amplifier| is the parameter of nonlinearity.
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TABLE |. Results of the estimation of the quantitiég5) from experimental data. “Bidirectional” coupling
means coupling via the resistBr(values are given in®); “unidirectional” means coupling via the amplifier
(positive K means that it is directed from circuit 1 to circuif; 2bidirectional and unidirectional” means a
combination of these couplings. Parameters of nonlinearity of both genergj@nse given in volts. The details
of preprocessing are described in the text.

Coupling Preprocessing (o Cy r
Cycle—cycle
Bidirectional (,=3,1,=1.4, R=6) 0.12 0.27 0.39
Unidirectional (,=3,1,=1.4, K=0.1) 0.01 0.35 0.95
Unidirectional, with noise Filter 51 points 0.05 0.52 0.82
Unidirectional, with noise Filter 25 points 0.25 0.58 0.40
Double revolution cycles
Unidirectional (,=6, 1,=4, K=0.1) 0.11 0.35 0.51
Unidirectional Running average removed 0.02 0.06 0.74
Bidirectional (,=5.8, |,=4, R=16) 0.98 1.10 0.06
Bidirectional Running average removed 0.16 0.18 0.08
Bi- and unidirectional 0.40 0.50 0.12
(1,=6,1,=4.8, R=15, K=0.1)
Bi- and unidirectional Running average removed 0.06 0.07 0.08
Chaos-chaos
Bidirectional (,=7.6,1,=6.4, R=33) Running average removed 0.13 0.15 0.06
Bidirectional (almost synchrony Running average removed 22.71 18.58 —-0.1
(1,=7.6,1,=6.4,R=32)
Bi- and unidirectionalalmost synchrony ~ Running average removed 2.22 3.44 0.22
(1,=7.6,1,=6.4, R=33,K=0.1)
Unidirectional from 2 to 1 Bandpass filter 0.08 0.01 -0.78

(1,=8.5,1,=6.2, K=—0.2)

implement a unidirectional coupling, a signal from the outputwhere x is the original signalx;, is its Hilbert transform

of the summator in one circuit is added to the input of the(HT), and the constant* is chosen via visual inspection of
summator in the other circuit via the amplifir these con-  thex,, vs x plots, to ensure rotation of all trajectories around
nections are marked by dashed lines in Fig. 1. The level ofhe origin on the planex—x*,x;). In almost all cases, the
this unidirectional coupling can be regulated by the addi-yata are filtered prior to the application of the HT. This is a
tional amplifierK. Combination of two couplings provides ¢y cia| point of data analysis that strongly influences the per-

asymmetric interaction between two generators. formance of the phase estimation. The choice of a proper

: We have not made special effo_rts to make the generatorg, depends on the data, we illustrate this by description of
identical, thus their mean frequencigsound 14 kHg differ .
)partlcular examples.

by ~10%. Time series were recorded into computer memor
using an analog-to-digital converter. Sampling frequency 50@\. Cycle—cycle
kHz is 20—30 times greater than the characteristic frequency

of the oscillator. The length of each signal was 100 000 We start W.'th a case when bOth osmllatgrg, .beflng un-
points; on the following plots the signals are shown in arbi_coupled and without noisy perturbations, exhibit limit cycle

trary units. oscillations. The results are summarized in Table I. In the
noise-free case we obtair 0.39 for the case of the bidirec-
tional andr=0.95 for the unidirectional coupling. For the
bidirectional coupling the value of the directionality index is
In this section we present the results of application of theessentially different from zero due to two reasons: different
method described in Sec. Il to the data obtained in experifrequencies and wave forms of signals. We recall here that
ments with coupled electronic generatdsge Sec. ). As  for nonidentical systems the definition of symmetric cou-
each oscillator can operate in different dynamical regimespling is ambiguous.
we can explore the performance of the analysis technique in  Next, we consider systems perturbed by ndisethis
various situationge.g., cycle—cycle, cycle—chaos, ¢tdn  experiment noise was added to the first circuis the noise-
the following we describe the characteristic cases. free generators are close to the period doubling point, pertur-
The first step in the analysis is the estimation of instany4iion results in a rather complex form of the signals, see
taneous phas(t) from each time series. For this goal We r, “5 jore noise reduction is needed, thus the data have
exploit the Hilbert transforn{for description and technical . ' e
details see Ref. A1and compute the phase as been smoothed by the Savnzky—Gol(qulyn(.)mla.b fl|f[el’ of
fourth order. We have found that the directionality index de-
pends strongly on the filter characteristics. In particular, for
unidirectional coupling and the filter length 51 points the

IV. CHARACTERIZING DIRECTION OF COUPLING

b= arctaré W) : (6)
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result isr =0.82, while if a shorter filtef25 pointg is used, moreover, a common noise can synchronize tliemRefs.
the result isr=0.4. 11, 18, and 19 Thus, here we encounter a case when the
We attribute this rather unexpected result—detection ofletection of the directionality of coupling is spoiled by the

bidirectional coupling in a situation when only unidirectional correlations in the signals, appearing not due to mutual in-
coupling has been imposed—to the appearance of correlaeraction, but due to a common driving. These correlations
tions in the systems due to noise. Indeed, as one can see framay be removed by filtering, thus explaining the sensitivity
the scheme Fig. 1, through the coupling elements the noisef the directionality index to the filtering procedure.

acts on the oscillator 2 as well, so in fact we have here a An important question is how the presence of the com-
situation where two oscillators are driven by the commonmon force can be detected just from the signals, if the struc-
noisy force. This causes correlations in the oscillationsture of coupling is unknown. The answer can be obtained by

N
~—
N
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% dicates correlation between the signals
; in a wide range of spectral frequen-
&» cies. Autospectra of two generators are
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_ B. Double revolution cycles

Next we consider the regime when both generators have
. undergone the period doubling bifurcatidiig. 5 and the
A wave forms are complex. As our approach is based on the
| phases, and the period-doubling results mainly in the ampli-
tude modulation, we apply the method without any changes.
Alternatively, we remove running average over 25 points,
which makes the amplitude of two loops nearly the same.
The results are presented in Table I. One can see that the

-1.0 — —t— method works reasonably well: the symmetric coupling gives
-05 00 05 1.0 15 the least index, the unidirectional coupling the largest one,
X and the mixed coupling gives the intermediate index. How-

ever, for the unidirectional coupling the index is not close to
one. Also in this case the quantities, c, are relatively
small, which means that the interaction can be hardly de-

) ) ) tected, which results in the relatively large error of the index
performing the cross-spectral analysis of the signals andg;imation.

computation of the coherence function

YA(F) =[Sy ()IPIUSLE)]-IS(F)]), C. Chaos—chaos

whereS, andS, are power spectra of signat¢t) andy(t), Next we consider a more complicated situation of two
andsS,, is their cross-spectrum. Consider first the noise-freechaotic systemgTable )). Signals are rather complex so that
case. As each generator in autonomous regime is periodic, itke phase cannot be estimated without preprocessing, be-
power spectrum contains several sharp peaks, correspondicguse many trajectories in the,k,) plane do not revolve

to the main frequency and harmonics. If the generator ishe origin. Well-defined phases can be obtained by removing
driven by the other one, then in the power spectrum we cathe running average over 15 poir(see Fig. 6. In one case

alo see the peaks corresponding to the frequency of thaunidirectional couplingthis does not help; in order to ob-
driver, as well as combination of these frequencies. Natutain well-defined phases, bandpass filteria@—30 kH2z was

rally, the coherence functiog? is high at the common fre- performed.

guencies, but it is practically zero at other frequencies. This The phases obtained from the preprocessed signals al-
picture changes drastically in the presence of a wide-bantbwed us to obtain values of the directionality index that
common noise: in this case coherence is high in the widagree with the configuration of the setup. In two cases of
band as wellFig. 4). The same is true for the narrow-band chaos—chaos interaction we encountered another difficulty in
common drive, see Ref. 15. The considered example demoike application of the method: the oscillations are close to
strates that if the structure of the system is unknawgriori synchrony. For periodic oscillators in synchrony our method
then traditional cross-spectrum analysis should be performefails, because in this case the phases are functionally related
in addition to directionality estimates. and one cannot obtain estimations of partial derivatigs

FIG. 5. Double revolution cycléfor the driven system
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(the fitting procedure is singularFor chaotic oscillations 0.01 as the threshold valudf this is the case, the data set
near synchrony the method still works, because in this casshould be discarded. By means of cross-spectral analysis one
the phases are not perfectly lockétt. corresponds to two can also exclude the case when the dependence between the
stripes in thep, mod 27 vs ¢, mod 2 presentation, cf. Fig. signals is due to the common forcing and not due to the
6(d).] However, the higher the degree of synchrony the lesgoupling of interacting systemsee also Ref. 15

reliable are the results. As a rule of thumb, we suggest com-
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