
Characterizing direction of coupling from experimental observations
Boris Bezruchko and Vladimir Ponomarenko
Institute of Radio-Engineering and Electronics, Russian Academy of Sciences, Zelyonaja 38,
410019 Saratov, Russia

Michael G. Rosenblum and Arkady S. Pikovsky
Department of Physics, University of Potsdam, Am Neuen Palais, PF 601553, D-14415, Potsdam, Germany

~Received 8 May 2002; accepted 9 September 2002; published 21 February 2003!

We demonstrate that the direction of coupling of two interacting self-sustained electronic oscillators
can be determined from the realizations of their signals. In our experiments, two electronic
generators, operating in a periodic or a chaotic state, were subject to symmetrical or unidirectional
coupling. In data processing, first the phases have been extracted from the observed signals and then
the directionality of coupling was quantitatively estimated from the analysis of mutual dependence
of the phase dynamics. ©2003 American Institute of Physics.@DOI: 10.1063/1.1518425#
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Traditional methods of bivariate data analysis like com-
putation of cross-spectra, cross-correlation, or mutual in-
formation provide symmetric measures of interrelation
between the signals and do not allow one to address th
question of causality in the interaction. Recently, several
approaches to this problem have been suggested, base
either on the notion of generalized synchronization1–5 or
on the information theory and Granger’s concept of
causality.6–8 Here we discuss a method that is based on
the coupled oscillators theory; it is aimed to quantify the
degree of asymmetry in interaction. This method is de-
signed for the data generated by two weakly coupled self
sustained oscillators. This limitation is compensated by
the simplicity of the method and the absence of param-
eters. In the paper the method is applied to experimental
data from coupled periodic and chaotic electronic cir-
cuits.

I. INTRODUCTION

Coupled oscillators are ubiquitous in science, nature,
gineering, and social life. Examples include pendulu
clocks, firing neurons, lasers, singing crickets, etc.9–13 Quite
often the degree of coupling can be directly controlled in
experiment, allowing one to characterize coupling-depend
effects, such as synchronization, oscillation death, beats,
The inverse problem, i.e., the determination of the level a
the direction of coupling from the observations of coupl
systems, is much less trivial. For example, from the obs
vation of a synchronous motion one can hardly detect
direction of coupling, because both symmetrical~bidirec-
tional! and unidirectional coupling can yield synchronizati
of oscillators.

In this paper we present an experimental realization o
recently suggested method14,15 for determining the direction
of coupling from the signals coming from interacting osc
lating systems. In our setup we use two electronic genera
operating in a periodic or a chaotic state. Moreover, in
experiment it is possible to perturb the systems by exte

noise and in this way to test the applicability of the method
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under various conditions. The paper is organized as follo
In Sec. II we describe the method of the analysis of bivari
data. In Sec. III the experimental setup is described. T
main results of the paper—detection of the direction of co
pling from the experimentally observed data—are presen
in Sec. IV. We conclude with a discussion of the limitatio
and the drawbacks of the method.

II. DESCRIPTION OF THE METHOD

The main idea of Ref. 14 is to use a general property t
a weak coupling affects the phases of interacting oscillat
whereas the amplitudes remain practically unchanged.11,16

Hence, the dynamics of weakly coupled oscillators can
reduced to those of two phasesf1,2:

ḟ15v11e1f 1~f1 ,f2!1j1~ t !,
~1!

ḟ25v21e2f 2~f2 ,f1!1j2~ t !.

Here, random termsj1,2 describe noisy perturbations that a
always present in real-world systems, small parameterse1,2

!v1,2 characterize the strength of the coupling. Equation~1!
also describes the phase dynamics of coupled continu
time chaotic systems; in this casej1,2 are irregular terms tha
reflect the chaotic nature of amplitudes.17 The fact that the
regular component of the phase dynamics is tw
dimensional, essentially simplifies detection of the asymm
try in the interaction.

Functions f 1,2 are 2p-periodic in both arguments an
combine the description of the phase dynamics of auto
mous~uncoupled! systems and the coupling between them
the coupling is bidirectional,f 1 and f 2 depend on bothf1

and f2 . In the case of a unidirectional driving, say fro
system 1 to system 2,f 15 f 1(f1), whereasf 25 f 2(f1 ,f2)
is the function of two arguments.

In order to estimate the dependencies of the functi
f 1,2 it is convenient to go from a continuous-time descripti
of the process to a time-discrete one. Two methods have b
proposed in the literature,14,15 hereafter we use the so-calle
‘‘instantaneous period approach’’ described in Ref. 15.

this method one first obtains the phases as functions of con-
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tinuous time:f1(t), f2(t). For good oscillators the phas
grows monotonically in time, thus for each instanttk one can
define two time intervalsT1(k) and T2(k) at which the
phasesf1 andf2 gain 2p, respectively:

f1~ tk1T1~k!!5f1~ tk!12p,

f2~ tk1T2~k!!5f2~ tk!12p. ~2!

These time intervals depend, in general, on both phases;
the noisy part~termsh1,2) may be present:

T1~k!5Q1~f1~k!,f2~k!!1h1 ,

T2~k!5Q2~f2~k!,f1~k!!1h2 . ~3!

If the functionsQ1,2 are known~or estimated from the ob
served data!, we can characterize the dependence of the lo
‘‘period’’ T1,2 on the other phase via the mean square of
partial derivative:

c1
25 K S ]Q1

]f2
D 2L , c2

25 K S ]Q2

]f1
D 2L . ~4!

Finally, thedirectionality indexis introduced as

r 5
c22c1

c21c1
. ~5!

In the case of unidirectional couplingr 561, while for
nearly symmetrical couplingr is close to zero. Note that th
notion ‘‘symmetrical’’ is not well-defined: terms of the sam
order in the original equations of motion may lead to diffe
ent contributions to the phase dynamics, due to differenc
the periods, amplitudes, forms of oscillations, etc. Nevert
less, small values ofr indicate that the coupling is effectivel
bidirectional.

We note that the method is explicitly based on the
sumption that one deals with weakly interacting se
sustained oscillators. Recently, other methods for evalua
of causality in interrelation of bivariate data have been s
gested, where no assumptions on the systems under inv
gation are required. One approach, based on the informa
theory, uses entropy measures.7,8 A second approach, arisin
from studies of generalized synchronization, exploits
idea of mutual predictability: it quantifies the ability to pr
dict the state of the first system from the knowledge of
second one.1–5

According to the above-described method, the algorit
for detecting the directionality of coupling can be outlined
follows.

~1! One obtains the phasesf1,2(t) of the signals from
the two oscillators. This task may be nontrivial, although
corresponding methods~as well as possible difficulties! are
well documented in the literature~see, e.g., Ref. 11, an
references therein!. Usually, a preprocessing is needed d
pending on the structure of the signals under considerat

~2! For a set of time instantstk one obtains the instanta
neous ‘‘periods’’ according to Eq.~2!. These periods are con
sidered as unknown functions of the phases at timetk .

~3! One estimates the functionsQ1,2(f1,2,f2,1) ~3!, us-
ing some fit with time seriesT and f . Because the

180 Chaos, Vol. 13, No. 1, 2003
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functionsQ1,2 are 2p-periodic, a Fourier fit is suitable.
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~4! From the approximated functionsQ1,2 one calculates
the cross-dependenciesc1,2 according to Eq.~4!. Finally, the
directionality index~5! is obtained.

III. EXPERIMENTAL SETUP

In the experiment we use two electronic self-sustain
chaotic oscillators, which are coupled either bidirectiona
or unidirectionally. Each oscillator is constructed as a ri
consisting of a low pass RC filter, resonant RLC filter, no
linear element, and a summator-amplifier~Fig. 1!. The non-
linear element is the multiplier, whose output signalvout is
related to the input signalv in as vout5 l 2mv in

2 . Here m
50.1 V21 and l is the external voltage governing the no
linearity level in the circuit and serving as the main bifurc
tion parameter. Depending on this parameter, the oscill
can demonstrate periodic or chaotic oscillations; the tra
tion to chaos happens via a period-doubling cascade~Fig. 2!.
Additionally, there is a possibility to add noise to the circu
this is implemented by adding a signal from the noise g
erator to the summator-amplifier.

Coupling of two generators is accomplished in tw
ways. To implement a nearly symmetrical coupling, t
points at the input of the nonlinear elements in two circu
are connected via a resistor~denoted asR in Fig. 1!. The
coupling is thus inversely proportional to the resistance.

FIG. 1. Scheme of the experimental setup. Each generator consists of
linear element~1!, first-order filter~2!, second-order filter~3!, and summator
amplifier ~S!. The feedback~shown by the bold line! is implemented via
connection of the output of the summatorS to the input of the filter~2!.
Symmetric coupling is provided by the resistorR; unidirectional coupling
~dashed lines! is implemented via additional amplifiersK.

Bezruchko et al.
FIG. 2. Bifurcation diagram of the first oscillator.A is the voltage on the
output of the amplifier,l is the parameter of nonlinearity.
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TABLE I. Results of the estimation of the quantities~4,5! from experimental data. ‘‘Bidirectional’’ coupling
means coupling via the resistorR ~values are given in kV!; ‘‘unidirectional’’ means coupling via the amplifier
~positive K means that it is directed from circuit 1 to circuit 2!; ‘‘bidirectional and unidirectional’’ means a
combination of these couplings. Parameters of nonlinearity of both generatorsl 1,2 are given in volts. The details
of preprocessing are described in the text.

Coupling Preprocessing c1 c2 r

Cycle–cycle
Bidirectional (l 153, l 251.4, R56) 0.12 0.27 0.39
Unidirectional (l 153, l 251.4, K50.1) 0.01 0.35 0.95
Unidirectional, with noise Filter 51 points 0.05 0.52 0.82
Unidirectional, with noise Filter 25 points 0.25 0.58 0.40

Double revolution cycles
Unidirectional (l 156, l 254, K50.1) 0.11 0.35 0.51
Unidirectional Running average removed 0.02 0.06 0.74
Bidirectional (l 155.8, l 254, R516) 0.98 1.10 0.06
Bidirectional Running average removed 0.16 0.18 0.08
Bi- and unidirectional
( l 156, l 254.8, R515, K50.1)

0.40 0.50 0.12

Bi- and unidirectional Running average removed 0.06 0.07 0.08

Chaos–chaos
Bidirectional (l 157.6, l 256.4, R533) Running average removed 0.13 0.15 0.06
Bidirectional ~almost synchrony!
( l 157.6, l 256.4, R532)

Running average removed 22.71 18.58 20.1

Bi- and unidirectional~almost synchrony!
( l 157.6, l 256.4, R533, K50.1)

Running average removed 2.22 3.44 0.22

Unidirectional from 2 to 1 Bandpass filter 0.08 0.01 20.78
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( l 158.5, l 256.2, K520.2)
implement a unidirectional coupling, a signal from the outp
of the summator in one circuit is added to the input of t
summator in the other circuit via the amplifierK; these con-
nections are marked by dashed lines in Fig. 1. The leve
this unidirectional coupling can be regulated by the ad
tional amplifierK. Combination of two couplings provide
asymmetric interaction between two generators.

We have not made special efforts to make the genera
identical, thus their mean frequencies~around 14 kHz! differ
by '10%. Time series were recorded into computer mem
using an analog-to-digital converter. Sampling frequency 5
kHz is 20–30 times greater than the characteristic freque
of the oscillator. The length of each signal was 100 0
points; on the following plots the signals are shown in ar
trary units.

IV. CHARACTERIZING DIRECTION OF COUPLING

In this section we present the results of application of
method described in Sec. II to the data obtained in exp
ments with coupled electronic generators~see Sec. III!. As
each oscillator can operate in different dynamical regim
we can explore the performance of the analysis techniqu
various situations~e.g., cycle–cycle, cycle–chaos, etc.!. In
the following we describe the characteristic cases.

The first step in the analysis is the estimation of inst
taneous phasef(t) from each time series. For this goal w
exploit the Hilbert transform~for description and technica
details see Ref. 11! and compute the phase as

xh
x* D , ~6!

r 2003 to 141.89.178.57. Redistribution subject to AIP
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where x is the original signal,xh is its Hilbert transform
~HT!, and the constantx* is chosen via visual inspection o
thexh vs x plots, to ensure rotation of all trajectories arou
the origin on the plane (x–x* ,xh). In almost all cases, the
data are filtered prior to the application of the HT. This is
crucial point of data analysis that strongly influences the p
formance of the phase estimation. The choice of a pro
filter depends on the data, we illustrate this by description
particular examples.

A. Cycle–cycle

We start with a case when both oscillators, being u
coupled and without noisy perturbations, exhibit limit cyc
oscillations. The results are summarized in Table I. In
noise-free case we obtainr 50.39 for the case of the bidirec
tional andr 50.95 for the unidirectional coupling. For th
bidirectional coupling the value of the directionality index
essentially different from zero due to two reasons: differ
frequencies and wave forms of signals. We recall here
for nonidentical systems the definition of symmetric co
pling is ambiguous.

Next, we consider systems perturbed by noise~in this
experiment noise was added to the first circuit!. As the noise-
free generators are close to the period doubling point, per
bation results in a rather complex form of the signals, s
Fig. 3. Here noise reduction is needed, thus the data h
been smoothed by the Savitzky–Golay~polynomial! filter of
fourth order. We have found that the directionality index d
pends strongly on the filter characteristics. In particular,

unidirectional coupling and the filter length 51 points the

 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



he

FIG. 3. ~a!, ~b! Original ~solid line! and filtered signals
from two generators. The bold line corresponds to t
Savitzky–Golay ~4,25! filter, the dashed line corre-
sponds to the~4,51! filter. ~c!, ~d! Phase portraits of
both oscillators in (xf ,xf H) coordinates @for the
Savitzky–Golay~4,25! filter#.
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result isr 50.82, while if a shorter filter~25 points! is used,
the result isr 50.4.

We attribute this rather unexpected result—detection
bidirectional coupling in a situation when only unidirection
coupling has been imposed—to the appearance of cor
tions in the systems due to noise. Indeed, as one can see
the scheme Fig. 1, through the coupling elements the n
acts on the oscillator 2 as well, so in fact we have her

situation where two oscillators are driven by the commo
noisy force. This causes correlations in the oscillations

Downloaded 03 Mar 2003 to 141.89.178.57. Redistribution subject to AIP
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moreover, a common noise can synchronize them~cf. Refs.
11, 18, and 19!. Thus, here we encounter a case when
detection of the directionality of coupling is spoiled by th
correlations in the signals, appearing not due to mutual
teraction, but due to a common driving. These correlatio
may be removed by filtering, thus explaining the sensitiv
of the directionality index to the filtering procedure.

An important question is how the presence of the co

n
,
mon force can be detected just from the signals, if the struc-
ture of coupling is unknown. The answer can be obtained by

ls
-
re
FIG. 4. ~a! Coherence functiong2 in-
dicates correlation between the signa
in a wide range of spectral frequen
cies. Autospectra of two generators a
shown in~b! and ~c!.
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performing the cross-spectral analysis of the signals
computation of the coherence function

g2~ f !5 uSxy~ f !u2/~ uSx~ f !u•uSy~ f !u!,

whereSx andSy are power spectra of signalsx(t) andy(t),
andSxy is their cross-spectrum. Consider first the noise-f
case. As each generator in autonomous regime is periodi
power spectrum contains several sharp peaks, correspon
to the main frequency and harmonics. If the generato
driven by the other one, then in the power spectrum we
alo see the peaks corresponding to the frequency of
driver, as well as combination of these frequencies. Na
rally, the coherence functiong2 is high at the common fre
quencies, but it is practically zero at other frequencies. T
picture changes drastically in the presence of a wide-b
common noise: in this case coherence is high in the w
band as well~Fig. 4!. The same is true for the narrow-ban
common drive, see Ref. 15. The considered example dem
strates that if the structure of the system is unknowna priori

FIG. 5. Double revolution cycle~for the driven system!.

Chaos, Vol. 13, No. 1, 2003
then traditional cross-spectrum analysis should be perform
in addition to directionality estimates.

ated
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B. Double revolution cycles

Next we consider the regime when both generators h
undergone the period doubling bifurcation~Fig. 5! and the
wave forms are complex. As our approach is based on
phases, and the period-doubling results mainly in the am
tude modulation, we apply the method without any chang
Alternatively, we remove running average over 25 poin
which makes the amplitude of two loops nearly the sam
The results are presented in Table I. One can see tha
method works reasonably well: the symmetric coupling giv
the least index, the unidirectional coupling the largest o
and the mixed coupling gives the intermediate index. Ho
ever, for the unidirectional coupling the index is not close
one. Also in this case the quantitiesc1 , c2 are relatively
small, which means that the interaction can be hardly
tected, which results in the relatively large error of the ind
estimation.

C. Chaos–chaos

Next we consider a more complicated situation of tw
chaotic systems~Table I!. Signals are rather complex so th
the phase cannot be estimated without preprocessing,
cause many trajectories in the (x,xh) plane do not revolve
the origin. Well-defined phases can be obtained by remov
the running average over 15 points~see Fig. 6!. In one case
~unidirectional coupling! this does not help; in order to ob
tain well-defined phases, bandpass filtering~20–30 kHz! was
performed.

The phases obtained from the preprocessed signals
lowed us to obtain values of the directionality index th
agree with the configuration of the setup. In two cases
chaos–chaos interaction we encountered another difficult
the application of the method: the oscillations are close
synchrony. For periodic oscillators in synchrony our meth
fails, because in this case the phases are functionally rel

183Direction of coupling from data
and one cannot obtain estimations of partial derivatives~4!

is
FIG. 6. ~a! The original ~solid line! and filtered~bold
line! signals for the first oscillator.~b!, ~c! Phase por-
trait of the oscillator in (x,xh) coordinates for the origi-
nal and filtered data, respectively.~d! Phase of two sys-
tems are scattered around the (f1 ,f2) torus because
the coupling is too weak to induce synchronization; th
allows good estimation of directionality.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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R.
~the fitting procedure is singular!. For chaotic oscillations
near synchrony the method still works, because in this c
the phases are not perfectly locked.@It corresponds to two
stripes in thef2 mod 2p vs f1 mod 2p presentation, cf. Fig.
6~d!.# However, the higher the degree of synchrony the l
reliable are the results. As a rule of thumb, we suggest c
puting the synchronization index

r5^cos~f12f2!&21^sin~f12f2!&2,

where^ & denote time averaging~see Ref. 20 for the descrip
tion!, and with caution interpret the results for the data s
with r.0.6.

Certainly, one can in the same manner analyze the
nals that correspond to attractors with different topologi
e.g., double revolution cycle–chaos. For brevity we do
illustrate these cases in Table I.

V. CONCLUSION

In this paper we have demonstrated that the method
detection of the direction of interaction between oscillati
systems works reasonably well when applied to experime
data. The best results are obtained for simple limit cy
oscillations, but also the results for noisy oscillations, lim
cycles of a complex form, and for chaotic oscillators a
sound.

The main distinction of the method from other tec
niques consists of selecting one variable, namely the ph
for the analysis. This makes sense because the phase
mostly sensitive to the coupling. As we have shown, in s
eral cases the extraction of the phases from the signa
nontrivial, and requires certain preprocessing. The latter
also be interesting for other cases when the phase of a
regular signal should be estimated.

We emphasize that in fact some knowledge of the sys
has been used in our approach: we knew that we deal
weakly interacting oscillators. In general, prior to the dire
tionality analysis one must apply some conventional met
~i.e., cross-spectral analysis! to be sure that the signals a
not independent, otherwise, the question of directiona
does not make any sense. Practically, it is also helpfu

184 Chaos, Vol. 13, No. 1, 2003
check whether both coefficientsc1,2 are smaller than a
threshold~from our experience with simulated data we take
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0.01 as the threshold value!. If this is the case, the data se
should be discarded. By means of cross-spectral analysis
can also exclude the case when the dependence betwee
signals is due to the common forcing and not due to
coupling of interacting systems~see also Ref. 15!.
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