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Abstract

A theory of e*ect of delayed feedback on the coherence of the noisy self-sustained oscillations
is developed. In the Gaussian approximation a closed system of equations is derived for the phase
di*usion constant and the mean frequency. A comparison with numerics shows that the theory
works well for weak feedback and strong noise.
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Coherence is one of the main characteristics of self-oscillating systems. For periodic
oscillators it determines their quality as clocks, and usually the improvement of the
coherence is one of the major goals in the construction of such oscillators. In terms
of the phase dynamics, the coherence is quantitatively measured by the phase di*usion
constant, it is proportional to the width of the spectral peak of oscillations. Many
chaotic oscillators can be also represented via the phase dynamics, thus allowing one
to characterize their coherence by virtue of the phase di*usion constant as well [1].

In this paper we study how the coherence of oscillations is in;uenced by exter-
nal delayed feedback. Applying a delayed feedback is widely use to control di*erent
properties of the dynamical systems: to make chaotic oscillators operate periodically
(Pyragas’ control method [2]) and to suppress space–time chaos [3,4]. In our consid-
eration below we are not considering such delay-induced qualitative changes in the
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dynamics, but focus on the quantitative e*ect of a delayed feedback on the phase
di*usion properties.

Investigation of e*ects of irregularities and noise in systems with delay is not an easy
task, because one cannot use here well-established methods (like the Fokker–Planck
equation) valid for Markov processes. In the case of delay the process is non-Markov
and ad hoc statistical methods should be developed. This has been accomplished
recently for bistable oscillators [5], see also Refs. [6–8]. Below we present a the-
ory describing the e*ect of a delayed feedback on noisy self-sustained oscillations. It
is based on the phase approximation to the dynamics, which means that the noise and
feedback are assumed to be small.

The basic model we study in this paper is the equation describing the dynamics of
the phase under in;uence of noise and delay:

�̇ = �0 + �(t) + a sin(�(t − �) − �(t)) ; (1)

where the noisy term �(t) is assumed to be Gaussian. Eq. (1) has been used in
Ref. [8] to describe evolution of the phase of an optical Geld in a laser with weak opti-
cal feedback. Of our main interest are the di*usion properties of the phase �(t). Under
in;uence of the noise, in the absence of feedback, it di*uses 〈(�(t) − 〈�(t)〉)2〉 ˙
D0t with the di*usion constant D0 =

∫∞
−∞ 〈�(t′)�(t′ + t)〉 dt. This constant determines

the coherence of oscillations, as the power spectrum of an observable x = cos(�)
has a peak at frequency �0 whose width is D. The feedback changes the di*usion
constant, and the main goal of our investigation is to Gnd dependence of D on the
parameters a; �.

We start our theoretical consideration with the noise-free case, when Eq. (1) reduces
to �̇=�0 + a sin(�(t − �)−�(t)). If we seek for a solution with a uniformly rotating
phase �(t) = �t, we obtain

� + a sin�� = �0 : (2)

This equation has a unique solution for any �0 if |a�|¡ 1, otherwise multiple solu-
tions are possible. The latter case is especially diKcult and will be considered else-
where (see numerical simulations of e*ect of noise on the multistable states in (1) in
Ref. [8]). Below we will consider a situation with small delayed feedback only, where
no multistability occurs. We will also show that noise can destroy multistability, so
that in its presence the condition |a�|¡ 1 can be weakened.

Our main statistical approach in studying Eq. (1) is based on the Gaussian approxi-
mation for �(t). First, we separate the average rotation and the ;uctuations according
to �=�t +  . For the ;uctuating instant frequency (which is also Gaussian) v(t) =  ̇
we get from (1)

v(t) = �0 − � + �(t) − a sin�� cos � + a cos�� sin � : (3)

The equation for the mean frequency � results from the averaging of (3): 0=�0−�−
a sin��〈 cos �〉. The phase di*erence � =  (t − �) −  (t) = − ∫ t

t−� v(s) ds is Gaussian
with zero average, thus

〈cos �〉 = exp
[
−〈�2〉

2

]
〈�2〉 = 2

∫ �

0
(�− s)V (s) ds ≡ 2R : (4)
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Here we have introduced the autocorrelation function of the instant frequency V (s) =
〈v(t)v(t + s)〉. In the introduced notations the equation for the average frequency can
be rewritten as

� = �0 − ae−R sin�� : (5)

One can note that it is analogous to Eq. (2), but with an additional factor e−R, which
describes a diminishing of the in;uence of the delayed feedback due to phase di*usion.

To obtain equations for the autocorrelation function V (s) we introduce also the auto-
correlation function of noise C and the cross-correlation function S, deGned according
to C(s) = 〈�(t)�(t + s)〉; S(s) = 〈�(t)v(t + s)〉. Equations for V and S are obtained via
multiplying Eq. (3) with v(t + u) and �(t + u) and averaging

〈v(t)v(t + u)〉= 〈�(t)v(t + u)〉 − a sin��
〈
v(t + u) cos

(∫ t

t−�
v(s) ds

)〉

−a cos��
〈
v(t + u) sin

(∫ t

t−�
v(s) ds

)〉

and similar for 〈v(t)�(t+u)〉. To accomplish the averaging we use the Furutsu–Novikov
formula, valid for having zero averages Gaussian variables x; y : 〈xF(y)〉=〈xy〉〈F ′(y)〉.
In application to our averages this means that all averages of the form 〈x cosy〉 vanish
and the other give〈

v(t + u) sin
(∫ t

t−�
v(s) ds

)〉
= e−R

∫ 0

−�
V (s− u) ds;

〈
�(t + u) sin

(∫ t

t−�
v(s) ds

)〉
= e−R

∫ 0

−�
S(s− u) ds :

As a result we obtain

V (u) = S(u) − ae−R cos��
∫ �

0
V (s + u) ds ; (6)

S(u) = C(u) − ae−R cos��
∫ �

0
S(u− s) ds : (7)

Together with Eq. (5) and the deGnition of quantity R (4) they constitute a closed
system.

To proceed further it is convenient to consider the spectra, according to V(!) =
(1=2�)

∫∞
−∞ duV (u)e−i!u and similar expressions for S;C. Then Eqs. (6) and (7)

yield

V(!) = S(!) − ae−R cos��
ei!� − 1

i!
;

S(!) = C(!) − ae−R cos��S(!)
1 − e−i!�

i!
;
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Fig. 1. Di*usion constant and mean frequency as functions of delay � for �2 = 1 and �0 = 2�, and di*erent
values of feedback. Symbols: direct numerical simulation of model (1); solid lines: theory (8).

what allows us to exclude S(!) to get

V(!) = C(!)
[
1 + 2a�e−R cos��

sin!�
!�

+ a2�2e−2R cos2 ��
2 − 2 cos!�

!2

]−1

:

Eq. (5) in the spectral form reads (here we use that V(!) is an even function)
R =

∫∞
−∞ (1 − cos!�)!−2V(!) d!. This system is still hard to solve in a general

form, due to integration in the expression for R.
The quantity of main interest for us is the di*usion constant of the phase  , it is

related to the spectral density of the frequency ;uctuations at zero frequency: D =
2�V(0). For this quantity we obtain: D=D0(1+a�e−R cos��)−2, where D0 =2�C(0)
is the di*usion constant in the absence of the feedback. To obtain a closed system
for determining D we assume further that the spectrum of the frequency ;uctuations
V(!) is very broad. One can expect this for broad spectrum of noise C(!), i.e. if the
noise is nearly delta-correlated. More precisely, we need to assume that the correlation
time of frequency is much smaller than the delay time �, so that the integral can be
approximated as R ≈ ∫∞

−∞ (1 − cos!�)!−2V(0) d! = �D=2. As a result we obtain a
closed system of equations—the main result of our analysis—

D =
D0

(1 + a�e−�D=2 cos��)2 ; � = �0 − ae−�D=2 sin�� ; (8)

relating the di*usion constant D in the presence of the feedback to the “bare” di*usion
constant D0 and to the parameters of the feedback � and a, as well to the “bare”
frequency �0. This is a nonlinear system of two equations for two variables D and �,
which can be solved numerically for a given set of parameters.
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In Fig. 1 we compare the results of direct numerical simulation of model (1) with
theoretical predictions (8). In this case of relatively strong noise the correspondence is
good.

Summarizing, we have developed a statistical theory of phase di*usion under in;u-
ence of delayed feedback. In the Gaussian approximation a closed system of equations
for the di*usion constant and the mean frequency have been derived for the case of
short correlations of the instant frequency. The theory works if the feedback is not very
strong, or if the noise is strong enough to suppress multistability of mean frequency.
An opposite situation, where e*ects of multistability are dominant, will be considered
elsewhere.
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