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Controlling oscillator coherence by delayed feedback
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We demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled
by the delayed feedback. We develop a theory of this effect, considering noisy systems in the Gaussian
approximation. We obtain a closed equation system for the phase diffusion constant and the mean frequency of
oscillation. For weak feedback and strong noise, the theory is in good agreement with the numerics. We discuss
possible applications of the effect for the synchronization control.

DOI: 10.1103/PhysRevE.67.061119 PACS number~s!: 05.40.2a, 02.50.Ey, 05.45.2a
n
h
ra
e

illa
of
u-
ra

i
c
e

sc
e

e-
ng
ra

e
iff

s
ca
ke
as
ob
n

c
s.
hi
um
ea
go
lay

o
d
u

the

e

ion

d or

is

n

I. INTRODUCTION

Coherence, or constancy of oscillation frequency, is o
of the main characteristics of self-sustained systems. T
property determines the quality of clocks, electronic gene
tors, lasers, etc. Quite often the improvement of the coh
ence is one of the major goals in the design of such osc
tors. In terms of the phase dynamics, the coherence
noisy limit cycle oscillator is quantified by the phase diff
sion constant; it is proportional to the width of the spect
peak of oscillations. Many chaotic oscillators also adm
phase dynamics description, and, hence, their coherence
be quantified by virtue of the phase diffusion constant as w
@1#.

In this paper we demonstrate that the coherence of o
lations is essentially influenced by an external delayed fe
back, thus offering a possibility for its effective control. D
layed feedback is widely used to achieve a qualitative cha
in the dynamics, e.g., to make chaotic oscillators to ope
periodically ~Pyragas’ control method@2#! or to suppress
space-time chaos@3–5#. In our study we concentrate on th
quantitative effect of a delayed feedback on the phase d
sion properties of noisy periodic and chaotic oscillators.

Investigation of effects of irregularities and noise in sy
tems with delay is a complicated problem, because one
not apply here such well-established tools as the Fok
Planck equation, valid for the Markov processes. In the c
of delay the process is non-Markov and therefore the pr
lems are treated byad hocstatistical methods. This has bee
accomplished recently for bistable oscillators@6#, see also
Refs.@7–9#. Below we present a theory describing the effe
of a delayed feedback on noisy self-sustained oscillation
is based on the phase approximation of the dynamics, w
means that the noise and the delayed feedback are ass
to be weak. On the other hand, we consider a full nonlin
phase dynamics problem, and therefore our approach
beyond the statistical analysis of linear stochastic de
differential equations@10,11#.

II. CONTROL OF COHERENCE: NUMERICAL RESULTS

In this section we present a numerical evidence for a p
sibility to control the diffusion constant by a delayed fee
back. We begin by presenting the results of numerical sim
1063-651X/2003/67~6!/061119~7!/$20.00 67 0611
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lation for noisy Van der Pol oscillator:

ẍ2m~12x2!ẋ1V0
2x5k@ ẋ~ t2t!2 ẋ~ t !#1z~ t !,

^z~ t !z~ t8!&52d2d~ t2t8!. ~1!

The left-hand side represents the Van der Pol equation. In
absence of noise and delay (k5d50) and for small nonlin-
earity m, this model has a limit cycle solutionx0'2 cosf,
ẋ0'22V0 sinf, with a uniformly growing phasef(t)
'V0t1f0 @12#. Under the influence of noise and in th
absence of feedback (k50, d.0), f(t) diffuses according
to ^@f(t)2^f(t)&#2&}D0t; the diffusion constantD0 is pro-
portional to the intensity of noised2 @see Eq.~4! below for
an exact relation#.

We expect that in the presence of feedback the diffus
constantD generally differs fromD0; this is confirmed by
the numerical results, shown in Fig. 1 forV051, d50.1,
andm50.7. One can see that diffusion can be suppresse
enhanced, depending on the feedback strengthk and the de-
lay time t. The main goal of this paper is to describe th
picture theoretically.

FIG. 1. Diffusion constantD for the phase of the noise-drive
Van der Pol oscillator with delayed feedback~1! as the function of
t/T0 andk; T0'6.61 is the oscillation period without delay.
©2003 The American Physical Society19-1
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Another numerical example demonstrates the effect of
layed feedback on phase diffusion in the chaotic Lore
model:

ẋ5s~y2x!,

ẏ5rx2y2xz, ~2!

ż52bz1xy1k@z~ t2t!2z~ t !#,

wheres510, r 532, andb58/3. The phase of the Loren
system is well defined if one uses a projection of the ph
space on the plane (u5Ax21y2,z) ~see Ref.@1# and Fig. 3
below!. Notice that there is no noise term in Eqs.~2!: be-
cause of chaos the phase of the autonomous system g
nonuniformly, with a nonzero diffusion constant.

The dependence of the diffusion constantD of the phase
on the feedback parametersk andt is shown in Fig. 2. Quali-
tatively this dependence is similar to that for the Van der
model. However, there is an important distinction: the dif
sion has a very deep minimum for positive feedback cons
k and the delay time close to the mean oscillation peri
here the rotation of the phase point along the trajectory of
Lorenz system becomes highly coherent.

Another representation of the effect of the delayed fe
back on the coherence of the process is given by the po
spectrum. Indeed, the power spectrum of an oscillatory
servable has a peak at frequencyV0, and the width of the
peak is proportional to the diffusion constantD. In Fig. 3 we
show how the feedback changes the spectrum of the Lo
system for the cases of maximal enhancement and max
suppression of the diffusion constant. In this figure we a
demonstrate that the effect is not related to the suppressio
chaos: large variations of the diffusion constant~more than
10 times! are not reflected in the topology of the stran
attractor; also the calculated Lyapunov exponents are v
close to those without feedback. This suggests that the e
of feedback on the coherence can be described in the fra
work of phase approximation to the dynamics~this approxi-

FIG. 2. Diffusion constantD for the Lorenz system~2! as the
function of t/T0 and k. T0'0.69 is the average oscillation perio
without delay. Note the logarithmic scale of theD axis.
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mation has been used in Ref.@13# to describe phase synchro
nization of chaotic oscillators!.

One of the implications of the coherence control is a p
sibility to govern synchronization properties of an oscillat
Indeed, the ability of an oscillator to be entrained direc
depends on the phase diffusion constant, thus improving
herence means improving of the synchronization ability@1#.
We illustrate this by consideration of the phase synchron
tion of the Lorenz system by a periodic forceE sinnt added
to the equation for the variablez ~Fig. 4!. In the absence of
the feedback the force is too weak to entrain the syst
while the coherent oscillator demonstrates synchronizatio

III. BASIC PHASE MODEL

According to a general theory~see, e.g., Ref.@16#!, exter-
nal force acting on a limit cycle oscillator in the first approx
mation affects the phase variable, but not the amplitud
because the phase is free and can be adjusted by a very
action, while the amplitude variables are stable and t
change only slightly. We follow this idea to derive below o
basic theoretical phase model starting from Van der
model ~1! in the case of small nonlinearitym!1. For small
feedback and noise we can use the perturbation theory, v
in the vicinity of the limit cycle~see, e.g., Refs.@1,16#!. We
rewrite Eq.~1! as a system,

FIG. 3. Spectra log10(S) of the z component of the Lorenz sys
tem and projections of the phase portrait for the system in the
sence of delayed feedback~left column! and in the presence o
feedback with delayt50.3 ~middle column! and t50.65 ~right
column!; feedback strengthk50.2. Note that feedback makes th
spectral peak essentially more broad~enhanced diffusion, middle
column! or more narrow ~suppressed diffusion, right column!,
whereas practically no changes can be seen in the phase port
9-2
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ẋ5V0y,

ẏ52V0x1m@12x2!y1k@y~ t2t!2y~ t !#1
1

V0
z~ t !,

and obtain according to@1,16#

ḟ5V01
]f

]y0
S k@y0~ t2t!2y0~ t !#1

1

V0
z~ t ! D ,

where x052 cosf, y0522 sinf are the limit cycle solu-
tions related to the phase asf52arctan(y0 /x0); therefore
]f/]y052x0 /(x0

21y0
2). Substituting the variablesx0 ,y0 on

the right-hand side~rhs! by f, we obtain

ḟ5V01k@sinf~ t2t!2sinf~ t !#cos@f~ t !#

1
1

2V0
z~ t !cos~f!. ~3!

We are mostly interested in the long-time behavior of
phase; therefore, we average the rhs over the period of o
lations. As a result, the rhs contains only the terms depen
on the phase differences. Next, we use thatz is d correlated
and independent off, so that

^z~ t !z~ t8!cosf~ t !cosf~ t8!&'^z~ t !z~ t8!&

3^cosf~ t !cosf~ t8!&

5d2d~ t2t8!.

Finally we obtain our basic phase equation

ḟ5V01a sin@f~ t2t!2f~ t !#1j~ t !, ~4!

wherea5k/2 is the renormalized strength of the feedba
and j(t) is the effective noise satisfyinĝ j(t)j(t8)&
5(d2/4V0

2)d(t2t8).
We emphasize that, although we derived Eq.~4! for the

Van der Pol equation, a similar equation can be obtained
any limit cycle oscillator~if the assumption of weak pertur
bations is valid!—the only difference may be in a more com

FIG. 4. Entrainment of the Lorenz system by a harmonic fo
with E52. Right graph: without feedback the mean oscillator f
quencyV is not locked to the driving frequencyn. Left graph: the
feedback withk50.2, t50.65 makes the oscillator coherent, wh
results in the appearance of the synchronization regionV'n ~cf.
Refs.@14,15#!. Note also that the mean frequency is shifted by
feedback; this effect is theoretically explained below.
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plex dependence on the phase difference, containing not
one sine function but its harmonics as well. Moreover, as
phase dynamics of chaotic oscillators is qualitatively simi
to the dynamics of noisy periodic oscillators~see Ref.@1#!,
Eq. ~4! can serve as a model for chaotic oscillators in t
presence of the feedback loop. In the latter case the termj(t)
reflects the irregularity of chaotic amplitudes. Note that E
~4! has been used in Ref.@9# to describe the evolution of the
phase of an optical field in a laser with a weak optical fee
back.

IV. STATISTICAL ANALYSIS OF THE PHASE MODEL

As the first step in the theoretical analysis of model~4!,
we separate the phase growth into the average growth
the fluctuations, according tof5Vt1c, where V is the
unknown mean frequency andc is the slow phase. For the
fluctuating instantaneous frequencyv(t)5ċ, we obtain from
Eq. ~4!,

v~ t !5V02V1j~ t !2a sinVt cos@c~ t2t!2c~ t !#

1a cosVt sin@c~ t2t!2c~ t !#. ~5!

In the following we analyze this equation using differe
approximations.

A. Noise-free case: Multistability in oscillation frequency

We begin our consideration with the noise-free casej
5c5v50, when Eq.~5! reduces to

V1a sinVt5V0 . ~6!

Thus, the delayed feedback changes the frequency of
oscillator. The transcendent Eq.~6! has a unique solution fo
any V0, if uatu,1, and multiple solutions otherwise. Th
latter case is especially difficult and will be considered el
where.~Numerical simulation of the effect of the noise o
the multistable states in Eq.~4! was performed in Ref.@9#.!
Below we will consider a situation with weak delayed fee
back only, when no multistability occurs. We will also sho
that noise can destroy multistability, so that in its presen
the conditionuatu,1 can be weakened@see Eq.~11! below#.

B. Linear approximation

Here we assume that the fluctuations of the phase are
weak, i.e.,c(t)2c(t2t)!2p. In this first order inc ap-
proximation, we obtain from Eq.~5! with account of Eq.~6!

v~ t !5ċ5j~ t !1acosVt@c~ t2t!2c~ t !#, ~7!

whereV is a solution of Eq.~6!. This linear equation can be
easily solved in the Fourier domain. As a result the pow
spectrum of frequency fluctuationsSv(v) can be related to
the power spectrum of noiseSj(v) ~note that no further
assumption on the noise statistics is needed!:

e
-

9-3
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Sv~v!

5
v2Sj~v!

v212va sinvt cosVt12~12cosvt!a2cos2 Vt
.

The diffusion constant can be obtained by considering
limit v→0:

Sv~0!5
Sj~0!

~11at cosVt!2 .

Thus, the diffusion constantD52pSv(0) is obtained in the
linear approximation as

D5
D0

~11at cosVt!2 , ~8!

where D052pSj(0) is the diffusion of the ‘‘no control’’
oscillator.

Below we will obtain a more accurate expression for t
diffusion constant; however, the simple formula~8! allows us
to give a qualitative explanation of the numerical results p
sented in Figs. 1 and 2. As it follows from Eq.~8!, the feed-
back term can compensate or amplify the fluctuations in
phase growth, in dependence on the sign of the prod
a cosVt ~for small feedback this term can be estimated
a cosV0t), because this product appears in Eq.~7! as the
effective strength of the feedback regulating the fluctuati
of the phase. This explains the oscillatory dependence of
diffusion constant on the delay timet.

C. Gaussian approximation

Our main statistical approach in the treatment of full no
linear Eq. ~4! is based on the Gaussian approximation
c(t). We also assume the noisy termj(t) to be Gaussian
However, contrary to the numerical simulation, where
noise is white, we consider a general spectrum of the no
Averaging Eq.~5! for the fluctuations of the instantaneou
frequencyv(t)5ċ ~which is also Gaussian!, we come to the
equation for the mean frequencyV:

05V02V2a sinVt^cos@c~ t2t!2c~ t !#&. ~9!

The phase differenceh(t)5c(t2t)2c(t) is Gaussian with
zero average, hencêcosh&5exp@2^h2&/2#. The phase dif-
ferenceh can be represented as an integral of the insta
neous frequency:

h~ t !52E
t2t

t

v~s!ds,

which gives for the variance ofh,

^h2&52E
0

t

~t2s!V~s!ds[2R. ~10!

Here we have introduced the autocorrelation function of
instantaneous frequency,
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V~u!5^v~ t !v~ t1u!&.

Using the notation introduced in Eq.~10! we rewrite Eq.~9!
for the average frequency as

V5V02ae2R sinVt. ~11!

We note that it is similar to Eq.~6!, but contains an addi-
tional factore2R, which describes the above-mentioned p
tial suppression of the effect of the delayed feedback du
phase diffusion.

To obtain equations for the autocorrelation functionV(u)
we introduce also the autocorrelation function of the no
C(u) and the cross-correlation functionS(u), defined ac-
cording to

C~u!5^j~ t !j~ t1u!&, S~u!5^j~ t !v~ t1u!&.

After the averaging described in the Appendix we obtain
equations for the correlation functions

V~u!5S~u!2ae2R cosVtE
0

t

V~s1u!ds, ~12!

S~u!5C~u!2ae2R cosVtE
0

t

S~u2s!ds. ~13!

Together with Eq.~11! and the definition of quantityR given
by Eq. ~10!, they constitute a closed system.

To proceed it is convenient to consider the spectra acc
ing to

V~v!5
1

2pE2`

`

duV~u!e2 ivu,

and similarly forS andC. Then Eqs.~12! and ~13! yield

V~v!5S~v!2ae2R cosVt
eivt21

iv
, ~14!

S~v!5C~v!2ae2R cosVtS~v!
12e2 ivt

iv
, ~15!

which allows us to excludeS(v) and obtain

V~v!5C~v!F112ate2R cosVt
sinvt

vt

1a2t2e22R cos2 Vt
222 cosvt

v2 G21

. ~16!

Equation~10! in the spectral form reads

R5E
2`

` 12cosvt

v2 V~v!dv. ~17!

Here we have used thatV(v) is an even function. System
~16! and~17! is still hard to solve in the general form, due
integration in Eq.~17!.
9-4
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The quantity of our main interest is the diffusion consta
D of the phasec. D is related to the spectral density of th
frequency fluctuations at zero frequency:D52pV(0). Us-
ing Eq. ~16! we obtain, for this quantity,

D5
D0

~11ate2R cosVt!2
, ~18!

whereD052pC(0) is the ‘‘no control’’ diffusion constant in
the absence of the feedback. To obtain a closed system
the determination ofD we further assume that the spectru
of the frequency fluctuationsV(v) is very broad. One can
expect this if the spectrum of noiseC(v) is broad, i.e., if the
noise is nearlyd correlated. More precisely, we assume th
the correlation time of frequency fluctuation is much sma
than the delay timet, so that integral~17! can be approxi-
mated as

R'E
2`

` 12cosvt

v2 V~0!dv5
tD

2
. ~19!

As a result we obtain a closed system of equations—
main result of our analysis,

D5
D0

~11ate2tD/2 cosVt!2
, ~20!

V5V02ae2tD/2 sinVt, ~21!

relating the diffusion constantD in the presence of the feed
back to the ‘‘no control’’ diffusion constantD0 and to the
parameters of the feedbackt and a, as well as to the ‘‘no
control’’ frequencyV0. This is a nonlinear system of tw
equations for two variablesD and V, which can be solved
numerically for a given set of parameters. In the case
small noise,D0t!1, we can sete2tD/2'1 and end with
Eqs.~6! and~8!, obtained above in the linear approximatio

Another useful approximation is that of small feedbac
then we can approximate the diffusion constant in Eq.~19!
by its ‘‘no control’’ value, this gives

D5
D0

~11ate2tD0/2 cosVt!2
, V5V02ae2tD0/2 sinVt.

~22!

Now only the equation forV is implicit, while the diffusion
constant depends on the parameters in an explicit way.

We compare the theoretical results given by Eqs.~20! and
~21! with the direct numerical simulations in Figs. 5 and 6.
Fig. 5 we present numerical results for phase model~4!. The
presented case of relatively strong noise demonstrates a
correspondence with theory. Furthermore, one can see
the effect of delayed feedback decreases witht, because of
the diffusion. Physically, it can be explained as follows. T
feedback either compensates or amplifies the deviations f
the uniform phase growth. If the diffusion constant is larg
then during a large delay time the phasesf(t) and f(t
06111
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2t) are practically uncorrelated; thus the feedback redu
to a random term, which neither compensates nor ampli
the fluctuations.

Figure 6 demonstrates the results for the Van der
model~1!. The only parameter we have fitted here is the ‘‘
control’’ frequencyV0'0.95. Here the correspondence wi
theory is good for smallt, but fails for larget. The reason is
that in this case the effective noise is small and therefore
feedback control is effective even for large delays. Howev
for largeat Eq. ~21! exhibits multistability, which results in
an enhancement of the diffusion; here neither the linear
proximation for small noise@Eqs.~6! and~8!# nor the Gauss-
ian approximation used in derivation of Eqs.~20! and~21! is
valid.

V. CONCLUSION

In summary, we have presented the effect of the coh
ence control by means of the delayed feedback. The con

FIG. 5. Diffusion constantD ~a! and mean frequencyV ~b! as
functions of delayt for model~4! with ^j(t)j(t1t8)&52d(t8) and
V052p, and different values of feedback strength. Symb
present the results of the direct numerical simulation of model~4!;
solid lines show theoretical results according to Eqs.~20! and~21!.

FIG. 6. Diffusion constantD of the Van der Pol model with
delayed feedback@parameters are the same as in Fig.~1!#. Symbols
present the results of the direct numerical simulation; solid lin
show the corresponding theoretical results according to Eqs.~20!
and ~21!. The delay time is normalized by the average periodT0

52p/0.95.
9-5
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is possible for noisy limit cycle oscillators as well as f
chaotic systems, admitting computation of the phase. N
we have developed a statistical theory of phase diffus
under the influence of a delayed feedback. Using the Ga
ian approximation, we have derived a closed system of eq
tions for the diffusion constant and the mean frequency
the case of short-time correlations of the instantaneous
quency. The theory works if the feedback is not very stro
or if the noise is strong enough to suppress multistability
mean frequency. An opposite situation, where effects of m
tistability are dominant, will be considered elsewhere.

We would like to mention that formally the equations d
scribing the control are the same as in the Pyragas metho
chaos control. However, in our case the delay timet is not
necessarily equal to the period of some unstable limit cy
embedded in chaos. Moreover, we consider the situa
when the feedback is so small that no stabilization of p
odic orbits occur. For the Lorenz system, e.g., such a st
lization by the simplest Pyragas method is anyhow not p
sible due to a special symmetry of the system. The m
difference to the Pyragas approach is that we do not inten
suppress chaos, but to control uniformity—coherence—
phase growth in a chaotic system.

Note also that our method differs from other possibiliti
to control the diffusion properties of the phase. For exam
synchronization of oscillations by a periodic external for
reduces or even completely suppresses the diffusion~the rel-
evant model is the noisy Adler equation@1#, or, equivalently,
an equation of motion of an overdamped noise-driven p
ticle in a periodic potential, see Ref.@17# for calculation of
the diffusion for the latter problem!. In our method no peri-
odic force is needed and the system remains autonom
preserving full symmetry with respect to time shifts. In oth
words, the power spectrum of the delay-controlled osci
tions does not containd peaks but is continuous.

A direction of the future development of this work
aimed at detailed understanding of the particular feature
the control of chaotic systems. Indeed, in this case our the
provides only qualitative explanation of the effect. This lim
tation of the theory is related to the statistical properties
the effective noise in a chaotic system that definitely can
be considered as weak or Gaussian.~We remind that effec-
tive noise here describes the effect of irregular, although
terministic, amplitudes, on the phase dynamics.! Particularly,
it is known that for the Lorenz system this noise is not sy
metric and possesses nontrivial correlation proper
@14,15#. Our preliminary numerical investigations show th
the feedback significantly affects these correlations. We ill
trate this in Fig. 7, where we present the autocorrelat
function of the Poincare´ return times in the Lorenz system.
is seen that for the case of feedback witht50.65'T0, the
successive return times become essentially anticorrela
which apparently accounts for unusually high~by factor
'30) suppression of the phase diffusion. We have dem
strated that this effect is of particular importance for the c
trol of synchronization. In fact, the delayed feedback ha
twofold effect on synchronization properties. On one ha
the feedback shifts the oscillation frequency, thus giving
possibility to facilitate or impede the entrainment~this effect
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is important for periodic oscillators as well!. On the other
hand, synchronization can be suppressed or enhanced b
regulation of the coherence.
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APPENDIX

Equations forV andSare obtained by multiplying Eq.~5!
with v(t1u) andj(t1u) and averaging

V~u!5^v~ t !v~ t1u!&5^j~ t !v~ t1u!&

2a sinVtK v~ t1u!cosS E
t2t

t

v~s!dsD L
2a cosVtK v~ t1u!sinS E

t2t

t

v~s!dsD L ,

S~u!5^v~ t !j~ t1u!&5^j~ t !j~ t1u!&

2a sinVtK j~ t1u!cosS E
t2t

t

v~s!dsD L
2a cosVtK j~ t1u!sinS E

t2t

t

v~s!dsD L .

To accomplish the averaging we use the Furutsu-Novik
formula@18,19#, valid for zero-mean Gaussian variablesx,y:

^xF~y!&5^F8~y!&^xy&.

FIG. 7. Correlation functionsr(u) for the sequences of the
Poincare´ return times in the Lorenz system, in the absence and
the presence of the delayed feedback withk50.2. Note that vari-
ances of the return times, given byr(0), arepractically unchanged,
whereas the anticorrelation between two successive intervals i
ther decreased~for t50.3) or increased~for t50.65).
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For the case under consideration this means that averag
all terms having the form̂x cosy& vanish, while other terms
of type ^x siny& yield

K v~ t1u!sinS E
t2t

t

v~s!dsD L
5K cosS E

t2t

t

v~s!dsD L K v~ t1u!E
t2t

t

v~s!dsL
5e2RE

2t

0

V~s2u!ds,
n

06111
of K j~ t1u!sinS E
t2t

t

v~s!dsD L
5K cosS E

t2t

t

v~s!dsD L K j~ t1u!E
t2t

t

v~s!dsL
5e2RE

2t

0

S~s2u!ds.

This leads to Eqs.~12! and ~13!.
tt.
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@10# U. Küchler and B. Mensch, Stoch. Stoch. Rep.40, 123~1991!.
d

@11# T.D. Frank and P.J. Beek, Phys. Rev. E64, 021917~2001!.
@12# N.N. Bogoliubov and Y.A. Mitropolsky,Asymptotic Methods

in the Theory of Nonlinear Oscillations~Gordon and Breach,
New York, 1961!.

@13# M. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. Le
78, 4193~1997!.

@14# M. Zaks, E.-H. Park, M. Rosenblum, and J. Kurths, Phys. R
Lett. 82, 4228~1999!.

@15# E.-H. Park, M.A. Zaks, and J. Kurths, Phys. Rev. E60, 6627
~1999!.

@16# Y. Kuramoto, Chemical Oscillations, Waves and Turbulen
~Springer, Berlin, 1984!.

@17# P. Reimannet al., Phys. Rev. Lett.87, 010602~2001!; B. Lind-
ner, M. Kostur, and L. Schimansky-Geier, Fluct. Noise Lett.1,
R25 ~2001!.

@18# K. Furutsu, J. Res. Natl. Bur. Stand., Sect. D667, 303 ~1963!.
@19# Y. Novikov, Zh. Eksp. Teor. Fiz.47, 1919~1964! @Sov. Phys.

JETP20, 1290~1965!#.
9-7


