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Controlling oscillator coherence by delayed feedback

D. Goldobin!? M. Rosenblunt, and A. Pikovsky
IDepartment of Physics, University of Potsdam, Postfach 601553, D-14415 Potsdam, Germany
2Department of Theoretical Physics, Perm State University, 15 Bukireva str., 614990, Perm, Russia
(Received 19 March 2003; published 27 June 2003

We demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled
by the delayed feedback. We develop a theory of this effect, considering noisy systems in the Gaussian
approximation. We obtain a closed equation system for the phase diffusion constant and the mean frequency of
oscillation. For weak feedback and strong noise, the theory is in good agreement with the numerics. We discuss
possible applications of the effect for the synchronization control.
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I. INTRODUCTION lation for noisy Van der Pol oscillator:

Coherence, or constancy of oscillation frequency, is one
of the main characteristics of self-sustained systems. This
property determines the quality of clocks, electronic genera-
tors, lasers, etc. Quite often the improvement of the coher- (L)) =2d258(t—t"). (1)
ence is one of the major goals in the design of such oscilla-
tors. In terms of the phase dynamics, the coherence of a
noisy limit cycle oscillator is quantified by the phase diffu- The left-hand side represents the Van der Pol equation. In the
sion constant; it is proportional to the width of the spectralabsence of noise and delay=€d=0) and for small nonlin-
peak of oscillations. Many chaotic oscillators also admitearity ., this model has a limit cycle solutioxy~2 cosd,
phase dynamics description, and, hence, their coherence CQEI@—ZQOSm ¢, with a uniformly growing phaseg(t)
be quantified by virtue of the phase diffusion constant as welk () ;t+ ¢, [12]. Under the influence of noise and in the
[1]. absence of feedback€ 0, d>0), ¢(t) diffuses according

In this paper we demonstrate that the coherence of oscito ([ ¢(t) — ( ¢(t))]2)=Dt; the diffusion constard is pro-
lations is essentially influenced by an external delayed feedhortional to the intensity of noise? [see Eq.4) below for
back, thus offering a possibility for its effective control. De- an exact relatioh
|ay3d feedback is W|d6|y used to achieve a qualitative Change We expect that in the presence of feedback the diffusion
in the dynamics, e.g., to make chaotic oscillators to operatgonstantD generally differs fromDy; this is confirmed by
periodically (Pyragas’ control methodi2]) or to suppress the numerical results, shown in Fig. 1 féx,=1, d=0.1,
space-time chad3—5]. In our study we concentrate on the gnd . =0.7. One can see that diffusion can be suppressed or
quantitative effect of a delayed feedback on the phase diffugnhanced, depending on the feedback strekgthd the de-

sion properties of noisy periodic and chaotic oscillators.  |ay time 7. The main goal of this paper is to describe this
Investigation of effects of irregularities and noise in sys-pjicture theoretically.

tems with delay is a complicated problem, because one can-
not apply here such well-established tools as the Fokker-
Planck equation, valid for the Markov processes. In the case
of delay the process is non-Markov and therefore the prob-

X— (1= x2)x+ Q3x=k[x(t— 1) —x(t) ]+ (1),

lems are treated bgd hocstatistical methods. This has been ) 5

accomplished recently for bistable oscillatd, see also
Refs.[7-9]. Below we present a theory describing the effect -
of a delayed feedback on noisy self-sustained oscillations. It ~ 0.06-"
is based on the phase approximation of the dynamics, whict
means that the noise and the delayed feedback are assum  0.04~~
to be weak. On the other hand, we consider a full nonlinear™
phase dynamics problem, and therefore our approach goe 0024~
beyond the statistical analysis of linear stochastic delay-

differential equation$10,11]. _0027-*”

-0.03 -
- )
Il. CONTROL OF COHERENCE: NUMERICAL RESULTS k 008 e 0

In this section we present a numerical evidence for a pos- FIG. 1. Diffusion constanD for the phase of the noise-driven
sibility to control the diffusion constant by a delayed feed-Van der Pol oscillator with delayed feedba@ as the function of
back. We begin by presenting the results of numerical simus/T, andk; T,~6.61 is the oscillation period without delay.
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FIG. 2. Diffusion constanD for the Lorenz systeni2) as the
function of 7/T, andk. Ty=~0.69 is the average oscillation period

without delay. Note the logarithmic scale of tBeaxis. 40

Another numerical example demonstrates the effect of de- 20 |\

layed feedback on phase diffusion in the chaotic Lorenz

. 0 . L v 0 1 . L 0 1 . 1 0
model: 0 10 20 3 0 10 20 30 0 10 20 30

u u u

X=0o(y=x), FIG. 3. Spectra logy(S) of thezcomponent of the Lorenz sys-

. tem and projections of the phase portrait for the system in the ab-

Yy=IX—Yy—Xz, 2 sence of delayed feedbacleft column and in the presence of
) feedback with delayr=0.3 (middle column and 7=0.65 (right
z=—bz+xy+k[z(t—7)—z(1)], column); feedback strength=0.2. Note that feedback makes the

spectral peak essentially more brogehhanced diffusion, middle
whereo =10, r=32, andb=38/3. The phase of the Lorenz column or more narrow(suppressed diffusion, right column
system is well defined if one uses a projection of the phaswhereas practically no changes can be seen in the phase portraits.
space on the planai \X?+y?,7) (see Ref[1] and Fig. 3
below). Notice that there is no noise term in Eq®): be- mation has been used in REL3] to describe phase synchro-
cause of chaos the phase of the autonomous system growization of chaotic oscillatojs
nonuniformly, with a nonzero diffusion constant. One of the implications of the coherence control is a pos-
The dependence of the diffusion consténbf the phase sibility to govern synchronization properties of an oscillator.
on the feedback parametdeand is shown in Fig. 2. Quali- Indeed, the ability of an oscillator to be entrained directly
tatively this dependence is similar to that for the Van der Podepends on the phase diffusion constant, thus improving co-
model. However, there is an important distinction: the diffu-herence means improving of the synchronization abjlitly
sion has a very deep minimum for positive feedback constandVe illustrate this by consideration of the phase synchroniza-
k and the delay time close to the mean oscillation periodfion of the Lorenz system by a periodic forEesint added
here the rotation of the phase point along the trajectory of théo the equation for the variable(Fig. 4). In the absence of
Lorenz system becomes highly coherent. the feedback the force is too weak to entrain the system,
Another representation of the effect of the delayed feedwhile the coherent oscillator demonstrates synchronization.
back on the coherence of the process is given by the power
spectrum. Indeed, the power spectrum of an oscillatory ob-
servable has a peak at frequer@y, and the width of the
peak is proportional to the diffusion constantIn Fig. 3 we According to a general theorgee, e.g., Ref.16]), exter-
show how the feedback changes the spectrum of the Lorenzal force acting on a limit cycle oscillator in the first approxi-
system for the cases of maximal enhancement and maximatation affects the phase variable, but not the amplitudes,
suppression of the diffusion constant. In this figure we alsdecause the phase is free and can be adjusted by a very weak
demonstrate that the effect is not related to the suppression attion, while the amplitude variables are stable and thus
chaos: large variations of the diffusion constamiore than  change only slightly. We follow this idea to derive below our
10 timeg are not reflected in the topology of the strangebasic theoretical phase model starting from Van der Pol
attractor; also the calculated Lyapunov exponents are vergnodel (1) in the case of small nonlinearity<<1. For small
close to those without feedback. This suggests that the effeééedback and noise we can use the perturbation theory, valid
of feedback on the coherence can be described in the frames the vicinity of the limit cycle(see, e.g., Ref$1,16]). We
work of phase approximation to the dynamitisis approxi-  rewrite Eq.(1) as a system,

Ill. BASIC PHASE MODEL
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0.1 w ' . ' plex dependence on the phase difference, containing not only
\ one sine function but its harmonics as well. Moreover, as the

phase dynamics of chaotic oscillators is qualitatively similar

to the dynamics of noisy periodic oscillatofsee Ref[1]),

G Eqg. (4) can serve as a model for chaotic oscillators in the

presence of the feedback loop. In the latter case the §€rm

o1 ‘ , , . reflects the irregularity of chaotic amplitudes. Note that Eq.

8.7 8.8 8.9 9.0 9.1 9.2 (4) has been used in RdB] to describe the evolution of the

v phase of an optical field in a laser with a weak optical feed-

back.

FIG. 4. Entrainment of the Lorenz system by a harmonic force
with E=2. Right graph: without feedback the mean oscillator fre-
quency{} is not locked to the driving frequenay. Left graph: the

. . IV. STATISTICAL ANALYSIS OF THE PHASE MODEL
feedback withk=0.2, 7=0.65 makes the oscillator coherent, what

results in the appearance of the synchronization re@leav (cf. As the first step in the theoretical analysis of mo@bl
Refs.[14,15). Note also that the mean frequency is shifted by thewe separate the phase growth into the average growth and
feedback; this effect is theoretically explained below. the fluctuations, according t=Qt+ ¢, where(Q is the
_ unknown mean frequency ang is the slow phase. For the
x={yy, fluctuating instantaneous frequengft) = ¢, we obtain from
Eq. (4),

. 1
=-0 1-x9)y+kly(t— 1) —y(t) ]+ = 4(1),
y oX+ u[1=x)y+kly(t—7)—y(t)]+ Qoé( ) b(1)= Qg — O+ £(t)—a Sin€Lr cog (t—1)— ()]

and obtain according tdl,16] +acosQrsin y(t—7)—y(t)]. 5)
: 10 1 . . . . .
¢:QO+W K[yo(t—7)—yo(t)]+ Q—g(t) , In the following we analyze this equation using different
0 0

approximations.

where xg=2 c0s¢, Yo= —2 sin¢g are the limit cycle solu-
tions related to the phase a@s= —arctanyy/xy); therefore A. Noise-free case: Multistability in oscillation frequency
ddldyo=—xo/(x5+y3). Substituting the variables,,y, on

; ) _ We begin our consideration with the noise-free case,
the right-hand sidérhs) by ¢, we obtain

=y=v=0, when Eq.5) reduces to
$=Qo+K[sing(t— 1) —sing(t)]cog ¢(1)] Q+asinQr=0Q,. 6)

1
+ 50 ¢(bcodg). (3)  Thus, the delayed feedback changes the frequency of the
0 oscillator. The transcendent E@) has a unique solution for

We are mostly interested in the long-time behavior of the2y Qo if |a7|<1, and multiple solutions otherwise. The
phase; therefore, we average the rhs over the period of oscitter case is especially difficult and will be considered else-
lations. As a result, the rhs contains only the terms dependingynere- (Numerical simulation of the effect of the noise on
on the phase differences. Next, we use thi & correlated e multistable states in E¢4) was performed in Re{.9].)

and independent ab, so that Below we will consider a situation with weak delayed feed-
’ back only, when no multistability occurs. We will also show
(Z(1)(t")cosd(t)cosp(t’))~(Z(t)L(t")) that noise can destroy multistability, so that in its presence

the conditionar| <1 can be weakenddee Eq(11) below].

X(cos¢(t)cosp(t’))
=d?s(t—t'). B. Linear approximation

Here we assume that the fluctuations of the phase are very

Finally we obtain our basic phase equation weak, i.e.,iy(t) — (t—7)<<2. In this first order iny ap-

b=00+asin d(t—7)— (t)]+ &) 4) proximation, we obtain from Eq5) with account of Eq(6)
wherea=k/2 is the renormalized strength of the feedback v(t) ==& +acosQ y(t—7) = ()], ™
and &(t) is the effective noise satisfying &(t)£(t'))
=(d2/4&)§) S(t—t'). where(} is a solution of Eq(6). This linear equation can be

We emphasize that, although we derived &4).for the  easily solved in the Fourier domain. As a result the power
Van der Pol equation, a similar equation can be obtained fospectrum of frequency fluctuatior® () can be related to
any limit cycle oscillator(if the assumption of weak pertur- the power spectrum of noisg,(w) (note that no further
bations is valig—the only difference may be in a more com- assumption on the noise statistics is needed
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S,(w) V(u)={v(t)v(t+u)).

Q)ZS§(C!)) Using the notation introduced in E¢LO) we rewrite Eq.(9)
for the average frequency as

w?+2wasinwrcosQr+2(1—coswr)alcof Q7

— _ —Rqj
The diffusion constant can be obtained by considering the (1=0o~ae “sinldr. 1D

limit —0: We note that it is similar to Eq(6), but contains an addi-

S4(0) tional factore™ R, which describes the above-mentioned par-
S,(0)= = tial suppression of the effect of the delayed feedback due to
1+ sQ7)? iffusi
(1+arcosi7) phase diffusion.
To obtain equations for the autocorrelation functivfu)
we introduce also the autocorrelation function of the noise
C(u) and the cross-correlation functio®(u), defined ac-

Thus, the diffusion constam=27S,(0) is obtained in the
linear approximation as

Dy cording to
D:(1+arcosQT)7’ ® C(u)y=(&(1)é(t+u)), S(u)y=(&tv(t+u)).

where Do=2mS,(0) is the diffusion of the “no control” After the averaging described in the Appendix we obtain the
oscillator. equations for the correlation functions

Below we will obtain a more accurate expression for the
diffusion constant; however, the simple form& allows us
to give a qualitative explanation of the numerical results pre-
sented in Figs. 1 and 2. As it follows from E®), the feed-
back term can compensate or amplify the fluctuations in the r
phase growth, in dependence on the sign of the product S(u)=C(u)—ae‘RcosQTJ S(u—s)ds. (13
a cosQ 7 (for small feedback this term can be estimated as 0

acos()y7), because this product appears in Ef). as the : _— L
effective strength of the feedback regulating the fluctuation%_sgéa c:hzalro\;wttufyq(c%)lrzs?i?gtéhae glillrélgc;r;g;%mnutyz given

OT the_ phase. This explains the o_scnlatory dependence of the To proceed it is convenient to consider the spectra accord-
diffusion constant on the delay time ing to

V(u):S(u)—ae*RcosQrJ'OTV(sﬂL u)ds, (12

C. Gaussian approximation

1 (= A
. - : % =—f duV(u)e 'Y,
Our main statistical approach in the treatment of full non- (@) 27 ) W

linear Eq.(4) is based on the Gaussian approximation for
#(t). We also assume the noisy terfftt) to be Gaussian. and similarly forS andC. Then Eqgs(12) and(13) yield
However, contrary to the numerical simulation, where the
noise is white, we consider a general spectrum of the noise.

ioT

— _ —R
Averaging Eq.(5) for the fluctuations of the instantaneous Vw)=5(w)~ae "cosldr o ' (149
frequencyw (t) = ¢ (which is also Gaussianwe come to the i
. 1_e— T
equation for the mean frequen€y. S(w)=C(w)—ae R cosQ78(w) - (15)

0=0,—Q—asinQ(cod y(t—7)— (1)]). (9)
) . . . which allows us to excludé(w) and obtain
The phase difference(t) = ¢(t— 7) — ¢(t) is Gaussian with
zero average, hendgosn)=exd —(7°)/2]. The phase dif-
ference can be represented as an integral of the instanta- Ww)=C(w)
neous frequency:

sinwT
1+2are RcosQr
wT

2—2coswr| !
t +a?r?e Rcog Qr—————| . (16)
n(t)=—f v(s)ds, w
t—7
Equation(10) in the spectral form reads
which gives for the variance of,

*» 1—coswT

. R=f ———Vw)do. (17)

<772>=2f (r—s)V(s)ds=2R. (10) e @
0

Here we have used thaf{w) is an even function. System

Here we have introduced the autocorrelation function of thg16) and(17) is still hard to solve in the general form, due to

instantaneous frequency, integration in Eq(17).
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The quantity of our main interest is the diffusion constant

D of the phase). D is related to the spectral density of the

frequency fluctuations at zero frequen®=2m)(0). Us-

ing Eq.(16) we obtain, for this quantity,
(1+are RcosQ7)?’

D (18

whereD,=27C(0) is the “no control” diffusion constant in

the absence of the feedback. To obtain a closed system fc

the determination ob we further assume that the spectrum
of the frequency fluctuation¥(w) is very broad. One can
expect this if the spectrum of noisgw) is broad, i.e., if the

noise is nearlys correlated. More precisely, we assume that
the correlation time of frequency fluctuation is much smaller

than the delay timer, so that integra(17) can be approxi-
mated as

D
V(0)dw=

R > (19

f“ 1—coswr
—o0 w2

As a result we obtain a closed system of equations—
main result of our analysis,

oo (20
(1+are”™2cos07)?’
Q=0,—ae ®?sinQr, (21)

relating the diffusion constam in the presence of the feed-
back to the “no control” diffusion constanbD, and to the
parameters of the feedbaekand a, as well as to the “no
control” frequency(},. This is a nonlinear system of two
equations for two variableB and (), which can be solved

numerically for a given set of parameters. In the case o

small noise,Dy7<1, we can see” ?~1 and end with
Egs.(6) and(8), obtained above in the linear approximation.

Another useful approximation is that of small feedback,

then we can approximate the diffusion constant in @¢)
by its “no control” value, this gives
Do

= — , Q=0y—ae P2sinQr.
(1+are Po2cosOr)?

(22)

Now only the equation fof) is implicit, while the diffusion
constant depends on the parameters in an explicit way.
We compare the theoretical results given by Eg6) and
(21) with the direct numerical simulations in Figs. 5 and 6. In
Fig. 5 we present numerical results for phase m¢delThe

presented case of relatively strong noise demonstrates a goou

PHYSICAL REVIEW E 67, 061119 (2003

Oa=0.1 Oa=-0.1

Ha=0.2 Sa=-0.2

Q

G

FIG. 5. Diffusion constanD (a) and mean frequencf (b) as
functions of delayr for model(4) with (£(t) &(t+t'))=245(t") and
Qo=2m, and different values of feedback strength. Symbols
present the results of the direct numerical simulation of médel

théond lines show theoretical results according to Eg6) and(21).

—17) are practically uncorrelated; thus the feedback reduces
to a random term, which neither compensates nor amplifies
the fluctuations.

Figure 6 demonstrates the results for the Van der Pol
model(1). The only parameter we have fitted here is the “no
control” frequency{),~0.95. Here the correspondence with
theory is good for smak, but fails for larger. The reason is
that in this case the effective noise is small and therefore the
feedback control is effective even for large delays. However,
for largear Eqg. (21) exhibits multistability, which results in
an enhancement of the diffusion; here neither the linear ap-
proximation for small noisg¢Egs.(6) and(8)] nor the Gauss-
]ian approximation used in derivation of EGR0) and(21) is
valid.

V. CONCLUSION

In summary, we have presented the effect of the coher-
ence control by means of the delayed feedback. The control

0.06
0.04
0.02
0.00
0 1 2 3 4
T,

correspondence with theory. Furthermore, one can see that Fig g Diffusion constanD of the Van der Pol model with

the effect of delayed feedback decreases witlbecause of

delayed feedbackparameters are the same as in Fig]. Symbols

the diffusion. Physically, it can be explained as follows. Thepresent the results of the direct numerical simulation; solid lines
feedchk either compensates or ampllf!es the dewatyons froBhow the corresponding theoretical results according to Exgs.
the uniform phase growth. If the diffusion constant is large,and (21). The delay time is normalized by the average pefigd

then during a large delay time the phaséét) and ¢(t

=27/0.95.
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is possible for noisy limit cycle oscillators as well as for 0.010 ,
chaotic systems, admitting computation of the phase. Next &= no feedback |
we have developed a statistical theory of phase diffusion o—>51=0.3

under the influence of a delayed feedback. Using the Gauss 0.005 @ 1=0.65 .
ian approximation, we have derived a closed system of equas §

tions for the diffusion constant and the mean frequency for&
the case of short-time correlations of the instantaneous fre 0.000
guency. The theory works if the feedback is not very strong,
or if the noise is strong enough to suppress multistability in
mean frequency. An opposite situation, where effects of mul- ~ _ 505 . .
tistability are dominant, will be considered elsewhere. Y 5 10 15

We would like to mention that formally the equations de- u
scribing the control are the same as in the Pyragas method of FiG. 7. Correlation functiong(u) for the sequences of the
chaos control. However, in our case the delay timie not  poincarereturn times in the Lorenz system, in the absence and in
necessarily equal to the period of some unstable limit cyclethe presence of the delayed feedback vkith0.2. Note that vari-
embedded in chaos. Moreover, we consider the situatioances of the return times, given py0), arepractically unchanged,
when the feedback is so small that no stabilization of periwhereas the anticorrelation between two successive intervals is ei-
odic orbits occur. For the Lorenz system, e.g., such a stabther decrease@for =0.3) or increasedfor 7= 0.65).
lization by the simplest Pyragas method is anyhow not pos-
sible due to a special symmetry of the system. The mains important for periodic oscillators as wellOn the other
difference to the Pyragas approach is that we do not intend thand, synchronization can be suppressed or enhanced by the
suppress chaos, but to control uniformity—coherence—ofegulation of the coherence.
phase growth in a chaotic system.

Note also that our method differs from other possibilities
to control the diffusion properties of the phase. For example,
synchronization of oscillations by a periodic external force p g acknowledges financial support from the DAAD Tri-
reduces or even Completely suppresses the dim_(g;tmwrel- lateral Program “Germany-France-Russia,” as well as from
evant model is the noisy Adler equatiph], or, equivalently, e Foundation Dynasty and the International Center for
an equation of motion of an overdamped noise-driven parg,ndamental Physicévioscow). This work was supported
ticle in a periodic potential, see Rédfl7] for calculation of by DFG (SFB 555 “Complex Nonlinear Processgs'We

the diffusion for the latter problemin our method no peri-  {hank K. Pyragas and L. Tsimring for fruitful discussions.
odic force is needed and the system remains autonomous,

preserving full symmetry with respect to time shifts. In other
words, the power spectrum of the delay-controlled oscilla- APPENDIX
tions does not contaii peaks but is continuous.

A direction of the future development of this work is
aimed at detailed understanding of the particular features
the control of chaotic systems. Indeed, in this case our theory
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Equations folV andSare obtained by multiplying Ed5)
O\%\/ith v(t+u) and é(t+u) and averaging

provides only qualitative explanation of the effect. This limi- V(u)=(v(Hov(t+u))=(&(tv(t+u))

tation of the theory is related to the statistical properties of .

the effective noise in a chaotic system that definitely cannot —asinQ7-< v(t+u)cog< f v(S)dS)>
be considered as weak or Gaussi@fte remind that effec- t—7

tive noise here describes the effect of irregular, although de- ¢

terministic, amplitudes, on the phase dynamiBarticularly, —acos() T< v(t+ u)sin( f v(S)dS) > ,
it is known that for the Lorenz system this noise is not sym- t—r

metric and possesses nontrivial correlation properties

[14,15. Our preliminary numerical investigations show that S(u)=(v(t)&(t+u))= (&) E(t+u))

the feedback significantly affects these correlations. We illus-
trate this in Fig. 7, where we present the autocorrelation , t

function of the Poincareeturn times in the Lorenz system. It —astr< §(t+ U)C°S< ft v(s)ds) >

is seen that for the case of feedback with 0.65~T,, the

successive return times become essentially anticorrelated, ) t

which apparently accounts for unusually highy factor _aCOSQT< §(t+u)sm( L_TU(S)dS>>'

~30) suppression of the phase diffusion. We have demon-

strated that this effect is of particular importance for the con- , ) i
trol of synchronization. In fact, the delayed feedback has 4°© accomplish the averaging we use the Furutsu-Novikov
twofold effect on synchronization properties. On one hand/ormula[18,19, valid for zero-mean Gaussian variabley:

the feedback shifts the oscillation frequency, thus giving a

possibility to facilitate or impede the entrainmétitis effect (XF(y))=(F'(y)){xy).

-T
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all terms having the fornx cosy) vanish, while other terms >
of type (x siny) yield

t t
<v(t+u)sin< Jt v(s)ds>> =<CO{ jtTv(S)ds)><§(t+u)JtTu(s)ds>
t

-7

0
:<COE< ft v(S)dS)><v(t+u)J’t v(s)ds> =€ RJlTS(S—U)dS.
t t

-T -T

v(s)ds

-7

For the case under consideration this means that averages of (e
&(t+u)sin J
t

0
=e‘Rf V(s—u)ds,

This leads to Eqs(12) and(13).
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