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Many natural and human-made nonlinear oscillators exhibit the ability to adjust their

rhythms due to weak interaction: two lasers, being coupled, start to generate with a common

frequency; cardiac pacemaker cells fire simultaneously; violinists in an orchestra play in

unison. Such coordination of rhythms is a manifestation of a fundamental nonlinear

phenomenon—synchronization. Discovered in the 17th century by Christiaan Huygens, it

was observed in physics, chemistry, biology and even social behaviour, and found practical

applications in engineering and medicine. The notion of synchronization has been recently

extended to cover the adjustment of rhythms in chaotic systems, large ensembles of

oscillating units, rotating objects, continuous media, etc. In spite of essential progress in

theoretical and experimental studies, synchronization remains a challenging problem of

nonlinear sciences.

1. Historical perspective

The history of synchronization goes back to the 17th

century when the famous Dutch scientist Christiaan

Huygens reported on his observation of synchronization

of two pendulum clocks which he had invented shortly

before. This invention of Huygens essentially increased the

accuracy of time measurement and helped him to tackle the

longitude problem. During a sea trial, he observed the

phenomenon that he briefly described in his memoirs

Horologium Oscillatorium (The Pendulum Clock, or Geome-

trical Demonstrations Concerning the Motion of Pendula as

Applied to Clocks) [1]:

‘. . . It is quite worths noting that when we suspended two

clocks so constructed from two hooks imbedded in the

same wooden beam, the motions of each pendulum in

opposite swings were so much in agreement that they

never receded the least bit from each other and the sound

of each was always heard simultaneously. Further, if this

agreement was disturbed by some interference, it

reestablished itself in a short time. For a long time I

was amazed at this unexpected result, but after a careful

examination finally found that the cause of this is due to

the motion of the beam, even though this is hardly

perceptible.’

According to a letter of Huygens to his father, the

observation of synchronization was made while Huygens

was sick and stayed in bed for a couple of days watching two

clocks hanging on a wall. Interestingly, in describing the

discovered phenomenon, Huygens wrote about ‘sympathy

of two clocks’ (le phénoméne de la sympathie, sympathie des

horloges). Besides an exact description, he also gave a

brilliant qualitative explanation of this effect of mutual

synchronization; he correctly understood that the confor-

mity of the rhythms of two clocks had been caused by an

imperceptible motion of the beam. In modern terminology

this would mean that the clocks were synchronized in anti-

phase due to coupling through the beam.

In the middle of the nineteenth century, in his famous

treatise The Theory of Sound, Lord Rayleigh [2] described

an interesting phenomenon of synchronization in acoustical

systems:

‘When two organ-pipes of the same pitch stand side by

side, complications ensue which not unfrequently give

trouble in practice. In extreme cases the pipes may

almost reduce one another to silence. Even when the

mutual influence is more moderate, it may still go so far

as to cause the pipes to speak in absolute unison, in spite

of inevitable small differences.’

Thus, Rayleigh observed not only mutual synchronization

when two distinct but similar pipes begin to sound in
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unison, but also the related effect of oscillation death, when

the coupling results in suppression of oscillations of

interacting systems.

Being, probably, the oldest scientifically studied non-

linear effect, synchronization was understood only in the

1920s when E. V. Appleton and B. Van der Pol system-

atically—theoretically and experimentally—studied syn-

chronization of triode generators. This new stage in the

investigation of synchronization was related to the devel-

opment of electrical and radio physics (now these fields

belong to engineering). On 17 February 1920 W. H. Eccles

and J. H. Vincent applied for a British Patent confirming

their discovery of the synchronization property of a triode

generator—a rather simple electrical device based on a

vacuum tube that produces a periodically alternating

electrical current. The frequency of this current oscillation

is determined by the parameters of the elements of the

scheme, e.g. of the capacitance. In their experiments, Eccles

and Vincent coupled two generators which had slightly

different frequencies and demonstrated that the coupling

forced the systems to vibrate with a common frequency.

A few years later Edward Appleton and Balthasar van der

Pol replicated and extended the experiments of Eccles and

Vincent andmade the first step in the theoretical study of this

effect [3, 4]. Considering the simplest case, they showed that

the frequency of a generator can be entrained, or synchro-

nized, by a weak external signal of a slightly different

frequency. These studies were of great practical importance

because triode generators became the basic elements of radio

communication systems. The synchronization phenomenon

was used to stabilize the frequency of a powerful generator

with the help of one which was weak but very precise.

To conclude the historical introduction, we cite the

Dutch physician Engelbert Kaempfer [5]{ who, after his

voyage to Siam in 1680 wrote:

‘The glowworms . . . represent another shew, which settle

on some Trees, like a fiery cloud, with this surprising

circumstance, that a whole swarm of these insects,

having taken possession of one Tree, and spread

themselves over its branches, sometimes hide their Light

all at once, and a moment after make it appear again

with the utmost regularity and exactness . . ..’

This very early observation reports on synchronization in a

large population of oscillating systems. The same physical

mechanism that makes the insects to keep in sync is

responsible for the emergence of synchronous clapping in a

large audience or onset of rhythms in neuronal popula-

tions.

We end our historical excursus in the 1920s. Since then

many interesting synchronization phenomena have been

observed and reported in the literature; some of them are

mentioned below. More importantly, it gradually became

clear that diverse effects which at first sight have nothing in

common, obey some universal laws. Modern concepts also

cover such objects as rotators and chaotic systems; in the

latter case one distinguishes between different forms of

synchronization: complete, phase, master-slave, etc. A

great deal of research carried out by mathematicians,

engineers, physicists and scientists from other fields, has led

to the development of an understanding that, say, the

conformity of the sounds of organ pipes or the songs of the

snowy tree cricket is not occasional, but can be understood

within a unified framework (for details and further

references see [7 – 9]).

It is important to emphasize that synchronization is an

essentially nonlinear effect. In contrast to many classical

physical problems, where consideration of nonlinearity

gives a correction to a linear theory, here the account of

nonlinearity is crucial: the phenomenon occurs only in the

so-called self-sustained systems.

2. Self-sustained oscillators

Self-sustained oscillators are models of natural oscillating

objects, and these models are essentially nonlinear. To be

not too abstract, we consider the classical object, which

gave birth to synchronization theory, the pendulum clock.

Let us discuss how it works. Its mechanism transforms the

potential energy of the lifted weight (or compressed spring,

or electrical battery) into the oscillatory motion of the

pendulum. In its turn, this oscillation is transferred into the

rotation of the hands on the clock’s face (figure 1 (a)). We

are not interested in the particular design of the mechan-

ism; it is only important that it takes energy from the source

in order to compensate the loss of energy due to

dissipation, and in this way maintains a steady oscillation

of the pendulum, which continues without any change until

the supply of energy expires. The next important property

is that the exact form of the oscillatory motion is entirely

determined by the internal parameters of the clock and

does not depend on how the pendulum was put into

motion. Moreover, after being slightly perturbed, following

some transient process the pendulum restores its previous

internal rhythm.

These features are typical not only of clocks, but also of

many oscillating objects of diverse nature (electronic

generators, organ pipes etc.). In physics these oscillatory

objects are denoted as self-sustained oscillators. Mathema-

tically, such an oscillator is described by an autonomous

(i.e. without explicit time dependence) nonlinear dynamical

system. It differs both from linear oscillators (which, if

damping is present, can oscillate only due to external

forcing) and from nonlinear energy conserving systems,

whose dynamics essentially depends on the initial state.{Citation taken from [6].
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The dynamics of oscillators is typically described in the

phase (state) space. Quite often two state variables suffice to

determine unambiguously the state of the system, and we

proceed here with this simplest case. For a pendulum clock,

these variables can be, e.g. the angle a of the pendulum with

respect to the vertical and its angular velocity _aa. Thus, the
behaviour of the system can be completely described by the

time evolution of a pair ða; _aaÞ. As the oscillation is periodic,

i.e. it repeats itself after the period T, x(t) corresponds to a

closed curve in the phase plane, called the limit cycle (figures 1

(b) and (c)). The reason why we distinguish this curve from all

others trajectories in the phase space is that it attracts phase

trajectories and is therefore called an attractor of the

dynamical system. The limit cycle is a simple attractor, in

contrast to a strange (chaotic) attractor. The latter is a

geometrical image of chaotic self-sustained oscillations.

Examples of self-sustained oscillatory systems are

electronic circuits used for the generation of radio-

frequency power, lasers, Belousov –Zhabotinsky and other

oscillatory chemical reactions, pacemakers (sino-atrial

nodes) of human hearts or artificial pacemakers that are

used in cardiac pathologies, and many other natural and

artificial systems. An outstanding common feature of such

systems is their ability to be synchronized.

This ability of periodic self-sustained oscillators is based

on the existence of a special variable, phase f. Mathema-

tically f can be introduced as the variable parametrizing

the motion along the stable limit cycle in the state space of

an autonomous continuous-time dynamical system. One

can always choose phase proportional to the fraction of the

period, i.e. in the way that it grows uniformly with time,

df
dt
¼ o0 ; ð1Þ

where o0 is the natural frequency of oscillations. The phase

is neutrally stable: its perturbations neither grow no decay.

(In terms of nonlinear dynamics neutral stability means

that the phase is a variable that corresponds to the zero

Lyapunov exponent of the dynamical system.) Thus,

already an infinitely small perturbation (e.g. external

periodic forcing or coupling to another system) can cause

large deviations of the phase—contrary to the amplitude,

which is only slightly perturbed due to the transversal

stability of the cycle. The main consequence of this fact is

that the phase can be very easily adjusted by an external

action, and as a result the oscillator can be synchronized!

3. Entrainment by external force

We begin our discussion of synchronization phenomena by

considering the simplest case, entrainment of a self-

sustained oscillator by external periodic force. Before we

describe this effect in mathematical terms, we illustrate it by

an example. We will again speak about clocks, but this time

about biological clocks that regulate daily and seasonal

rhythms of living systems—from bacteria to humans.

3.1. An example: circadian rhythms

In 1729 Jean-Jacques Dortous de Mairan, the French

astronomer and mathematician, who was later the

Secretary of the Académie Royale des Sciences in Paris,

reported on his experiments with a haricot bean. He

noticed that the leaves of this plant moved up and down

in accordance with the change of day into night. Having

made this observation, de Mairan put the plant in a dark

room and found that the motion of the leaves continued

even without variations in the illuminance of the environ-

ment. Since that time these and much more complicated

experiments have been replicated in different laboratories,

and now it is well known that all biological systems, from

rather simple to highly organized ones, have internal

biological clocks that provide their ‘owners’ with informa-

tion on the change between day and night. The origin of

these clocks is still a challenging problem, but it is well

established that they can adjust their circadian rhythms

(from circa=about and dies=day) to external signals: if

Time

Figure 1. (a) An example of a self-sustained oscillator, the pendulum clock. The potential energy of the lifted weight is transformed into

oscillatory motion of the pendulum and eventually into the rotation of the hands. (b) The state of the pendulum can be characterized by

the angle a and its time derivative _aa, and the time evolution of the system can be described in the phase plane (a; _aa). The closed curve

(bold curve) in the phase plane attracts all the trajectories from its neighbourhood, and is therefore called the limit cycle. The same

trajectories are shown in (c) as a time plot.
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the system is completely isolated from the environment

and is kept under controlled constant conditions (constant

illuminance, temperature, pressure, parameters of electro-

magnetic fields, etc.), its internal cycle can essentially differ

from a 24 h cycle. Under natural conditions, biological

clocks tune their rhythms in accordance with the 24 h

period of the Earth’s daily cycle.

Experiments show that for most people the internal

period of biological clocks differs from 24 h, but it is

entrained by environmental signals, e.g. illuminance,

having the period of the Earth’s rotation (figure 2).

Obviously, the action here is unidirectional: the revolution

of a planet cannot be influenced by mankind (yet); thus,

this case constitutes an example of synchronization by an

external force. In usual circumstances this force is strong

enough to ensure perfect entrainment; in order to

desynchronize a biological clock one can either travel to

polar regions or go caving. It is interesting that although

normally the period of one’s activity is exactly locked to

that of the Earth’s rotation, the phase shift between the

internal clock and the external force varies from person to

person: some people say that they are ‘early birds’

whereas others call themselves ‘owls’. Perturbation of

the phase shift strongly violates normal activity. Every

day many people perform such an experiment by rapidly

changing their longitude (e.g. crossing the Atlantic) and

experiencing jet lag. It can take up to several days to re-

establish a proper phase relation to the force; in the

language of nonlinear dynamics one can speak of different

lengths of transients leading to the stable synchronous

state. As other commonly known examples of synchroni-

zation by external force we mention radio-controlled

clocks and cardiac pacemakers.

3.2. Phase dynamics of a forced oscillator

For a mathematical treatment of synchronization we recall

that phase of an oscillator is neutrally stable and can be

adjusted by a small action, whereas the amplitude is stable.

This property allows a description of the effect of small

forcing/coupling within the framework of the phase

approximation. Considering the simplest case of a limit

cycle oscillator, driven by a periodic force with frequency o
and amplitude e, we can write the equation for the

perturbed phase dynamics in the form

df
dt
¼ o0 þ EQðf;otÞ ; ð2Þ

where the coupling function Q depends on the form of the

limit cycle and of the forcing. As the states with the phases

f0 and f0+2p are physically equivalent, the function Q is

2p-periodic in both its arguments, and therefore can be

represented as a double Fourier series. If the frequency of

the external force is close to the natural frequency of the

oscillator, o&o0, then the series contains fast oscillating

and slow varying terms, and the latter can be written as

q(f –ot). Introducing the difference between the phases of

the oscillation and of the forcing c=f –ot and perform-

ing an averaging over the oscillation period we get rid of

the oscillating terms and obtain the following basic

equation for the phase dynamics:

dc
dt
¼ �ðo� o0Þ þ EqðcÞ : ð3Þ

Function q is 2p-periodic, and in the simplest case

q(�)= sin(�) equation (3) is called the Adler equation. One

can easily see that on the plane of the parameters of the

external forcing (o, e) there exists a region eqmin5o –

o05 eqmax, where equation (3) has a stable stationary

solution. This solution corresponds to the conditions of

phase locking (the phase f just follows the phase of the

force, i.e. f=ot+ constant) and frequency entrainment

(the observed frequency of the oscillator O ¼ h _ffi exactly
coincides with the forcing frequency o; brackets hi denote
time averaging).

Generally, synchronization is observed for high-order

resonances no&mo0 as well. In this case the dynamics of

the generalized phase difference c=mf – not, where n and

m are integers, is described by an equation similar to
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Figure 2. Schematic diagram of the behavioural sleep –wake

rhythm. This cycle (termed circadian rhythm) represents the

fundamental adaptation of organisms to an environmental

stimulus, the daily cycle of light and dark. Here the circadian

rhythm is shown entrained for five days by the environmental

light – dark cycle and autonomous for the rest of the experiment

when the subject is placed under constant light conditions. The

intrinsic period of the circadian oscillator is in this particular

case greater than 24 hours. Correspondingly, the phase differ-

ence between the sleep –wake cycle and daily cycle increases: the

internal ‘day’ begins later and later. Such plots are typically

observed in experiments with both animals and humans, see, e.g.

[10 – 12].
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equation (3), namely by dðcÞ=dt ¼ �ðno�mo0Þ þ E~qqðcÞ.
The synchronous regime then means perfect entrainment of

the oscillator frequency at the rational multiple of the

forcing frequency, O=(n/m)o, as well as phase locking

mf= not+ constant. The overall picture can be shown on

the (o,e) plane: there exists a family of triangular-shaped

synchronization regions touching the o axis at the rationals

of the natural frequency (m/n)o0; these regions are usually

called Arnol’d tongues (figure 3 (a)). This picture is

preserved for moderate forcing, although now the shape

of the tongues generally differs from being exactly

triangular. For a fixed amplitude of the forcing e and

varied driving frequency o one observes different phase

locking intervals where the motion is periodic, whereas in

between them it is quasiperiodic. The curve O versus o thus

consists of horizontal plateaus at all possible rational

frequency ratios; this fractal curve is called the devil’s

staircase (figure 3 (b)). A famous example of such a curve is

the voltage – current plot for a Josephson junction in an ac

electromagnetic field; in this context synchronization

plateaus are called Shapiro steps. Note that a junction

can be considered as a rotator (rotations are maintained by

a dc current); this example demonstrates that synchroniza-

tion properties of rotators are very close to those of

oscillators.

Finally, we note that the phase difference in the

synchronous state is not necessarily constant, but may

oscillate around a constant value. Indeed, a solution mf –

not=constant was obtained from equation (2) by means

of averaging, i.e. by neglecting the fast oscillating terms. If

we take these terms into account, then we have to

reformulate the condition of phase locking as jmf –

notj5 constant. Thus, in the synchronous regime the

phase difference is bounded, otherwise it grows infinitely.

3.3. Synchronization versus resonance

At this point we would like to underline the difference to

another phenomenon, well known in oscillatory systems—

the resonance. Resonance is the response of a system that is

non-active, i.e. demonstrates no oscillations without

external driving. In other words, here one cannot speak

of an adjustment of intrinsic oscillations to an external

force, as this force is the source of oscillations. In the case

of resonance, if the force is switched off, the oscillations

disappear, while self-sustained oscillations continue to exist

even without forcing.

As a simple example of this difference let us consider

radio-controlled clocks and railway station clocks. Radio-

controlled clocks are self-oscillating, they continue to show

time even if there is no radio signal from the high-precision

centre. The role of the latter is only to adjust—to correct—

the oscillations in order to synchronize them with the time

standard. The railway station clocks receive signals from a

central clock, and if these signals are absent—they stop;

this is an example of resonance, not of synchronization.

Sometimes, when a system is forced very strongly and

operates in a highly nonlinear regime, it is hard to

distinguish between synchronization and resonance (espe-

cially if one can hardly control the forcing like for circadian

rhythms); here the observed features at the resonance may

be very close to those at the synchronization (e.g. one can

observe the devil’s staircase-like dependence on the forcing

frequency). Nevertheless, the difference becomes evident if

the forcing is reduced or switched off.

4. Two and more oscillators

4.1. Phase dynamics of two coupled oscillators

Synchronization of two coupled self-sustained oscillators

can be described in a similar way. A weak interaction

affects only the phases of two oscillators f1 and f2, and

equation (1) generalizes to

df1

dt
¼ o1 þ eQ1ðf1;f2Þ ;

df2

dt
¼ o2 þ eQ2ðf2;f1Þ : ð4Þ

For the phase difference c=f2 –f1 one obtains after

averaging an equation of the type of (3). Synchronization

now means that two non-identical oscillators start to

oscillate with the same frequency (or, more generally, with
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Figure 3. Family of synchronization regions, or Arnol’d

tongues (schematically). The numbers on top of each tongue

indicate the order of locking; e.g. 2:3 means that the relation

2o=3O is fulfilled. (b) The O/o versus o plot for a fixed

amplitude of the force (shown by the dashed line in (a)) has a

characteristic shape, known as the devil’s staircase. (In this

scheme the variation of the frequency ratio between the main

plateaus of the staircase is not shown.)
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rationally related frequencies). This common frequency

usually lies between o1 and o2. It is worth mentioning that

locking of the phases and frequencies implies no restrictions

on the amplitudes, in fact the synchronized oscillators may

have very different amplitudes and waveforms (e.g. oscilla-

tions may be relaxation (pulse-like) or quasiharmonic). We

illustrate the effect of mutual synchronization by the

classical experiment of Appleton.

4.2. Example: Appleton’s experiment

Appleton [3] systematically studied synchronization prop-

erties of triode generators in a specially designed experi-

ment. He investigated both synchronization by an external

force, and mutual synchronization of two coupled non-

identical systems. The set-up of the latter experiment is

sketched in figure 4. Each generator consists of an amplifier

(triode vacuum tube), an oscillatory LC-circuit and a

feedback implemented by means of the second inductance.

This coil, submitting a signal proportional to the oscillation

in the LC-circuit to the grid, therefore connects the output

and input of the amplifier.

There are several ways to couple two triode generators.

For example, they can be coupled via a resistor. In his

experiments, Appleton placed the coils nearby so that their

magnetic fields overlapped, and, hence, the currents in the

LC-circuits influenced each other.

The experiment was carried out with oscillators having

low frequencies of &400 Hz. The frequency of one

system was varied by tuning a capacitor. The effect of

detuning was followed in two ways. First, the Lissajous

figure was observed on the screen of the oscilloscope

indicating the equality of frequency for a certain range of

detuning. The phase shift between the synchronized

generators was estimated from the Lissajous figures.

Second, the beat frequency, i.e. the difference between the

frequencies of two generators, was measured in a rather

simple way: the beats were so slow that Appleton was

able to count them by ear. The beat frequency (jO1 –O2j)
is depicted in figure 5 as a function of the readings of the

tuning capacitor (arbitrary units), i.e. as a function of

detuning.

We conclude the discussion of mutual synchronization

of two coupled systems with two remarks. (i) Similar to

Oscilloscope

Synchronous regime Asynchronous regime

Figure 4. Set-up of the triode generator experiment by E. V. Appleton [3]. The dashed arc indicates that the coils were placed in such a

way that their magnetic fields overlapped, thus coupling the generators. Synchronization can be identified from Lissajous figures x1(t)
versus x2(t) observed on the oscilloscope. The left figure corresponds to a synchronous state. The periods of oscillations are identical,

therefore the plot is a closed curve. The right figure corresponds to an asynchronous, quasiperiodic state. The point never returns to the

same coordinates and the unclosed curve fills the region.
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the case of periodic forcing, synchronization of order

n :m is also possible. Examples are synchronization of

running and breathing in mammals and locking of

breathing and wing beat frequencies in flying birds (see

[8] for citations and further examples). (ii) Depending on

the parameters of coupling, two oscillators can be locked

almost in-phase or almost in anti-phase (figure 6).

Moreover, varying the parameters of coupling one can

observe transition between different synchronous states.

As an example we mention the effect observed by J. A. S.

Kelso and later studied by Haken, Kelso and co-workers

(see [13, 14] for references and details). In their experi-

ments, a subject was instructed to perform an anti-phase

oscillatory movement of index fingers and gradually

increase the frequency. It turned out that at higher

frequency this movement becomes unstable and a rapid

transition to the in-phase mode is observed.

4.3. Synchronization in a lattice. An example: laser arrays

In many natural situations more than two oscillating

objects interact. If two oscillators can adjust their

rhythms, we can expect that a large number of systems

could do the same. One example has already been

mentioned in section 1: a large population of flashing

fireflies constitutes what we can call an ensemble of

mutually coupled oscillators, and can flash in synchrony.

A firefly communicates via light pulses with all other

insects in the population. In this case one speaks of global

(all-to-all) coupling. There are other situations when

oscillators are ordered into chains or lattices, where each

element interacts only with its several neighbours. Such

structures are common for man-made systems, examples

are laser arrays and series of Josephson junctions, but

may also be encountered in nature. So, mammalian

intestinal smooth muscle may be electrically regarded as

a series of loosely coupled pacemakers having different

intrinsic frequencies. Their activity triggers the muscle

contraction. Experiments show that neighbouring sources

often adjust their frequencies and form synchronous

clusters. We first discuss synchronization effects in large

spatially ordered ensembles of oscillators, and then

proceed with ensembles of globally coupled elements.

The simplest example of a regular spatial structure is a

chain, where each element interacts with its nearest

neighbours. Generally, both the spatial ordering and the

interaction is more complicated, e.g. the oscillators can

interact with several neighbours. For illustration we

consider experiments with a multibeam CO2 wave guide

laser consisting of 61 glass tubes in a honeycomb

arrangement conducted by Antyukhov et al. [16], see figure

7 (a).

Synchronization of laser arrays is a basic tool used to

create a source of high-intensity radiation. This can be

achieved by coupling the lasers in a linear array so that they

either interact with their nearest neighbours or with all

other elements in the structure. In the experiments of

Antyukhov et al. the lasers were coupled by means of an

Figure 5. Results of the experiment with coupled triode

generators. If no synchronization effects are taken into account,

the theoretical change of the beat frequency with capacity is

indicated by the dotted lines. The continuous lines are drawn

through the experimental values. The synchronization region (for

a fixed coupling strength) is shown by the horizontal bar. From

[3].

Figure 6. Two coupled oscillators depending on the way the coupling is introduced, may be synchronized almost in-phase, i.e. (a) with
the phase difference f2 –f1&0, or (b) in anti-phase, with f2 –f1&p. The discoverer of synchronization, Christiaan Huygens, observed

synchronization in anti-phase. Later experiments, reported in [15] demonstrated that both anti-phase and in-phase synchronous regimes

of coupled clocks are possible.
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external coupling mirror. The results, presented in figures 7

(c) and (d), clearly indicate synchronization. Indeed, if the

lasers were not synchronized then the radiation intensity in

the far-field zone, as the sum of non-coherent oscillations,

would be spatially uniform. The non-uniform distribution

in figure 7 appears because phase locking sets in; this is a

typical interference image.

4.4. Formation of clusters. An example: electrical activity

of mammalian intestine

Suppose the oscillators have slightly different frequencies

that are somehow distributed over the ensemble. What kind

of collective behaviour can be expected in such a

population? Certainly, if the interaction is very weak, there

will be no synchronization so that all the systems will

oscillate with their own frequencies. We can also imagine

that sufficiently strong coupling can synchronize the whole

ensemble, provided the natural frequencies are not too

different; this expectation is confirmed by the above

considered example. For an intermediate coupling or a

broader distribution of natural frequencies of elements we

can expect some partially synchronous states. Indeed, it

may be that several oscillators synchronize and oscillate

with a common frequency, whereas their neighbours have

their own, different, frequencies. There may appear several

such groups, or clusters of synchronized elements. We

illustrate these expectations with a description of an

experiment with mammalian intestine.

Intestine consists of layers of muscle fibres supporting

propagation of travelling waves of electrical activity that

run from the oral to aboral end. These waves trigger the

waves of muscular contraction. Diamant and Bortoff [17]

experimentally investigated the distribution of frequencies

of electrical activity along the intestine. The majority of

experiments was performed on cats, with most of the basic

observations being repeated in dogs and rhesus monkeys.

Each frequency determination represents the average over a

5 min period.

From the physical viewpoint, if we consider electrical

activity only, the intestine can be regarded as a one-

dimensional continuous medium, where each point is

oscillatory. Indeed, Diamant and Bortoff [17] found that

if a section of intestine is cut into pieces, each piece is

capable of maintaining nearly sinusoidal oscillations of a

constant frequency. There exists an approximately linear

gradient of these frequencies, so that they decrease from the

oral to aboral end. Measured in situ and plotted as a

function of the coordinate along the intestine, the

frequency of electrical activity typically exhibits plateaus

(figure 8). This indicates the existence of clusters of

synchronous activity [18]. Within each cluster the phase

shift between the oscillations increases with the spatial

coordinate (in accordance with the gradient of frequencies

in the pieces of intestine); neighbouring clusters are

separated by regions of modulated oscillations, or beats.

4.5. Globally coupled oscillators

Now we study synchronization phenomena in large

ensembles of oscillators, where each element interacts with

all others. This is usually denoted as global, or all-to-all

coupling. As a representative example we have already

mentioned synchronous flashing in a population of fireflies.

Figure 7. Synchronization in a lattice of 61 laser oscillators arranged in a honeycomb (a). For low coupling, the intensity in the focal

spot of the array output is approximately uniform (b). Stronger coupling results in synchronization which manifests itself as a spatially

ordered intensity distribution (d). The case of intermediate coupling is shown in (c). Schematically drawn after [16].
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Figure 8. Synchronous clusters in a mammalian intestine. The

frequency of slow electrical muscle activity plotted as a function

of distance along the intestine typically shows a step-wise

structure. (The distance is measured from the ligament of

Treitz.) The *, ^ and * symbols represent the three

consecutive (at 30 min intervals) measurements of frequency

along the intestine in situ; for each measurement the electrodes

were re-positioned. The stars show the frequency of the

consecutive segments of the same intestine in vitro. From [17].
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A very similar phenomenon, self-organization in a large

applauding audience, has probably been experienced by

every reader of this article, e.g. in a theatre. Indeed, if the

audience is large enough, then one can often hear a rather

fast (several oscillatory periods) transition from noise to a

rhythmic, nearly periodic, applause. This happens when the

majority of the public applaud in unison, or synchronously.

The each-to-each interaction is also denoted as a mean

field coupling. Indeed, each firefly is influenced by the light

field that is created by the whole population. Similarly,

each applauding person hears the sound that is produced

by all the other people in the hall. Thus, we can say that all

elements are exposed to a common force. This force results

from the summation of outputs of all elements. Let us

denote these outputs by xk(t), where k=1, . . . , N is the

index of an oscillator and N is the number of elements in

the ensemble; x can be a variation of light intensity or of

the acoustic field around some average value, or, generally,

any other oscillating quantity. Then the force that drives

each oscillator is proportional to
P

k xkðtÞ. It is conven-

tional to write this proportionality as eN�1
P

k xkðtÞ, so

that it includes the normalization by the number of

oscillators N. The term N�1
P

k xkðtÞis just an arithmetic

mean of all oscillations, which explains the origin of the

term ‘mean field coupling’.

Thus, the oscillators in a globally coupled ensemble are

driven by a common force. Clearly, this force can entrain

many oscillators if their frequencies are close. The problem

is that this force (the mean field) is not predetermined, but

arises from interaction within the ensemble. This force

determines whether the systems synchronize, but it itself

depends on their oscillation—it is a typical example of self-

organization [19]. To explain qualitatively the appearance

of this force (or to compute it, as is done in [8, 20]) one

should consider this problem self-consistently.

First, assume for the moment that the mean field is zero.

Then all the elements in the population oscillate indepen-

dently, and their contributions to the mean field nearly

cancel each other. Even if the frequencies of these

oscillations are identical, but their phases are independent,

the average of the outputs of all elements of the ensemble is

small if compared with the amplitude of a single oscillator.

(According to the law of large numbers, it tends to zero

when the number of interacting oscillators tends to infinity;

the fluctuations of the mean field are of the order N – 1/2.)

Thus, the asynchronous, zero mean field state obeys the

self-consistency condition.

Next, to demonstrate that synchronization in the

population is also possible, we suppose that the mean field

is non-vanishing. Then, naturally, it entrains at least some

part of the population, the outputs of these entrained

elements sum up coherently, and the mean field is indeed

non-zero, as assumed. Which of these two states—

synchronous or asynchronous—is realized, or, in other

words, which one is stable, depends on the strength of

interaction between each pair and on how different the

elements are. The interplay between these two factors, the

coupling strength and the distribution of the natural

frequencies, also determines how many oscillators are

synchronized, and, hence, how strong the mean field is.

We discuss now how the synchronization transition

occurs, taking the applause in an audience as an example

(experimental study of synchronous clapping is reported in

[21]). Initially, each person claps with an individual

frequency, and the sound they all produce is noisy{. As

long as this sound is weak, and contains no characteristic

frequency, it does not essentially affect the ensemble. Each

oscillator has its own frequency ok, each person applauds

and each firefly flashes with its individual rate, but there

always exists some value of it that is preferred by the

majority. Definitely, some elements behave in a very

individualistic manner, but the main part of the population

tends to be ‘like the neighbour’. So, the frequencies ok are

distributed over some range, and this distribution has a

maximum around the most probable frequency. Therefore,

there are always at least two oscillators that have very close

frequencies and, hence, easily synchronize. As a result, the

contribution to the mean field at the frequency of these

synchronous oscillations increases. This increased compo-

nent of the driving force naturally entrains other elements

that have close frequencies, this leads to the growth of the

synchronized cluster and to a further increase of the

component of the mean field at a certain frequency. This

process develops (quickly for relaxation oscillators, rela-

tively slow for quasilinear ones), and eventually almost all

elements join the majority and oscillate in synchrony, and

their common output—the mean field—is not noisy any

more, but rhythmic.

The physical mechanism we described is known as the

Kuramoto self-synchronization transition [22]. The scenar-

io of this transition does not depend on the origin of the

oscillators (biological, electronic, etc.) or on the origin of

interaction. In the above presented examples the coupling

occurred via an optical or acoustic field. Global coupling of

electronic systems can be implemented via a common load;

in this case the voltage applied to individual systems

depends on the sum of the currents of all elements. (As an

example we mention an array of Josephson junctions.)

Chemical oscillators can be coupled via a common

medium, where concentration of a reagent depends on the

reaction in each oscillator and, on the other hand,

{Naturally, the common (mean) acoustic field is non-zero, because each
individual oscillation is always positive; the intensity of the sound cannot
be negative, it oscillates between zero and some maximal value.
Correspondingly, the sum of these oscillations contains some rather large
constant component, and it is the deviation from this constant that we
consider as the oscillation of the mean field and which is small. Therefore,
the applause is perceived as some noise of almost constant intensity.
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influences these reactions (figure 9 (a)). The Kuramoto

transition can be treated as a non-equilibrium phase

transition, the mean oscillating field serving as an order

parameter (figure 9 (b)).

Thescenariosof theKuramototransitionmayalsobemore

complicated, e.g. if the distribution of the individual

frequenciesokhasseveralmaxima.Thenseveral synchronous

clusters can be formed; they can eventually merge or coexist.

Clustering can also happen if, say, the strength of interaction

of an element of the population with its nearest (in space)

neighbours is larger than with those that are far away.

4.6. An example: synchronization of glycolytic oscillations

in a population of yeast cells

Suppose that some reagent is produced at a chemical

reaction and that the reaction rate depends on the

concentration of that reagent. If the medium is constantly

stirred, then the concentration is spatially homogeneous

and is determined by all oscillators (figure 9 (a)). Hence, it

can be considered as the mean field.

Under certain conditions sustained glycolitic oscillations

can be observed in a suspension of yeast cells in a stirred

cuvette (see [23] and references therein). The oscillations can

be followed by measuring the fluorescence of one of the

metabolites, namely nicotinamide adenine dinucleotide

(NADH). Richard et al. [23] considered two alternative

hypotheses on the origin of macroscopic NADH oscillation.

First, one can assume that it arises due to the summation of

simultaneously induced oscillations of individual cells.

Indeed, the glycolytic oscillation is induced by adding

glucose to the starved cell culture. As the cells are not too

different and begin to oscillate at the same instant of time,

one can expect that at least for some time the cells remain

approximately in phase. The alternative hypothesis is

synchronization of chemical oscillators globally coupled

via the common medium. Richard et al. [23] confirmed the

second alternative by performing the following experiment.

They initiated glycolytic oscillations in two populations of

cells, so that the phase shift between them was about p, and
then mixed these two populations together. If the cells were

oscillating independently, the oscillations would cancel each

other. If the cells are coupled, one expects synchronization

to occur in the mixture of two (previously synchronous)

populations. This latter effect was indeed observed in the

experiments: immediately after mixing there was no oscilla-

tion of NADH, but it re-appeared after approximately

3 min (the characteristic oscillation period is about 40 s).

Next, Richard et al. [23] demonstrated that the extracellular

free acetaldehyde concentration oscillates at the frequency

of intracellular glycolytic oscillations. They concluded that

this chemical plays the role of the communicator between

the cells, or what we call the mean field. This conclusion is

confirmed by two facts. First, the yeast cells respond to

acetaldehyde pulses. Added during oscillations, acetalde-

hyde induces a phase shift that depends on the concentra-

tion of the addition (i.e. strength of the pulse) and its phase.

Second, the acetaldehyde is secreted by oscillating cells.

5. Chaotic systems

Nowadays it is well known that self-sustained oscillators,

e.g. nonlinear electronic devices, can generate rather

complex, chaotic signals. Most oscillating natural systems

also exhibit rather complex behaviour. Recent studies have

revealed that such systems, being coupled, are also capable

to undergo synchronization. Certainly, in this case we have

to specify this notion more precisely, because it is not

obvious, how to characterize the rhythm of a chaotic

oscillator. It is helpful that sometimes chaotic waveforms

are rather simple, so that a signal is ‘almost periodic’; we

can consider it as consisting of similar cycles with varying

amplitude and period (which can be roughly defined as the

time interval between the adjacent maxima). Taking a large
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Figure 9. (a) Chemical oscillators in a stirred tank are globally coupled via a common medium. This is an example of mean field

coupling, with the concentration of a certain reagent playing the role of the mean field. (b) Variance of the mean field depends on the

coupling between each pair of oscillators and can be considered as an order parameter of the synchronization transition: if the coupling is

below some critical value then the mean field is nearly zero; if the coupling exceeds some threshold then a macroscopic mean field appears

in the population due to self-synchronization of its elements.
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time interval t we can count the number of cycles within

this interval Nt, compute the mean frequency

o0 ¼ lim
t!1 2p

Nt

t
; ð5Þ

and take it for characterization of the chaotic oscillatory

process.

With the help of the mean frequencies we can describe the

collective behaviour of interacting chaotic systems in the

same way as we did for periodic oscillators. If the coupling is

large enough (e.g. in the case of resistively coupled

electronic circuits it means that the resistor should be

sufficiently small), the mean frequencies of two oscillators

become equal, and one can obtain a synchronization region,

exactly as in the case for periodic systems. It is important

that coincidence of mean frequencies does not imply that the

signals coincide as well. It turns out that weak coupling does

not affect the chaotic nature of both oscillators; the

amplitudes remain irregular and uncorrelated, whereas the

frequencies are adjusted in a fashion that allows us to speak

of the phase shift between the signals. This regime is denoted

as phase synchronization of chaotic systems.

Very strong coupling tends to make the states of both

oscillators identical. It influences not only the mean

frequencies but also the chaotic amplitudes. As a result,

the signals coincide (or nearly coincide) and the regime of

complete synchronization sets in. Also known are the so-

called generalized and master – slave synchronizations (see,

e.g. [8] and references therein); these effects are related to

the complete synchronization of chaos.

5.1. Phase synchronization. An example: electrochemical

system

Phase synchronization of chaotic systems is mostly close to

the classical locking phenomena. It is based on the

observation that many chaotic self-sustained oscillators

admit determination of the instantaneous phase and the

corresponding mean frequency. Below we illustrate this

with an electrochemical oscillator, experimentally investi-

gated by Kiss and Hudson [24]. An autonomous system

demonstrates chaotic dynamics; its three-dimensional

representation in delay coordinates is shown in figure 10

(a). The strange attractor looks like a smeared limit cycle;

this allows one to introduce the phase as a variable that

gains 2p with each rotation of the phase space trajectory.

There also exists an alternative way to introduce the

phase of the observed chaotic signal x(t), namely by virtue

of the Hilbert transform. With this technique one

constructs from an oscillatory observable x(t) a complex

analytic signal

zðtÞ ¼ sðtÞ þ isHðtÞ ¼ AðtÞ exp ½ifðtÞ� : ð6Þ

Here the function sH(t) is the Hilbert transform of s(t)

sHðtÞ ¼ p�1PV
Z 1
�1

sðtÞ
t� t

dt ; ð7Þ

and PV means that the integral is taken in the sense of the

Cauchy principal value. The instantaneous phase f(t) (and,
if needed, instantaneous amplitude A(t)) of the signal s(t)

can be thus uniquely defined from (6). A harmonic

oscillation s(t)=A cos ot is often represented in the

complex form as A cos ot+iA sin ot. It means that the

real oscillation is complemented by the imaginary part

which is delayed in phase by p/2, that is related to s(t) by

the Hilbert transform. The analytic signal is the direct and

natural extension of this technique, as the Hilbert trans-

form performs the – p/2 phase shift for every spectral

component of s(t). The Hilbert transform can be easily

implemented numerically (see [8] for citations and practical

hints) and therefore is effectively used in experimental

studies of synchronization.

The Hilbert transform can be considered as an alter-

native way to construct a two-dimensional projection of the

trajectory. Quite often such a projection has a rather simple

structure, with trajectories rotating around some centre; for

the electrochemical oscillator this projection is depicted in

figure 10 (c). The instantaneous phase obtained as an angle

on the ‘signal –Hilbert transform’ plane is shown in figure

10 (d). The evolution of this phase is rather similar to that

of the phase of the periodic oscillator (1), the only

difference being that it grows non-uniformly. Indeed, due

to chaos one can hardly expect that the periods of rotation

along different loops of the chaotic trajectory would be

exactly equal: in general they depend on the amplitude, and

the latter is chaotic. Due to this one can characterize the

phase dynamics of a chaotic oscillator as a composition of

uniform growth with the average frequency o0 (see

equation (5)) and of a random walk. (This feature makes

the synchronization properties of chaotic systems close to

the properties of noisy periodic oscillators.) The average

frequency corresponds to the peak in the spectrum of the

chaotic signal (see figure 10 (b); for the electrochemical

oscillator under consideration it is 1.325 Hz). The intensity

of the random walk corresponds to the width of this peak,

or, in other words, characterizes the suitability of the

oscillator to serve as a clock.

Having introduced the phase and the frequency for

chaotic oscillators we can characterize their synchroniza-

tion. Now it becomes rather obvious that the effects of

phase locking and frequency entrainment, known for

periodic self-sustained oscillators, can be observed for

chaotic systems as well.

The simplest case is the phase locking by an external

periodic signal. When the electrochemical oscillator (figure

10) is driven by a signal with a frequency O close to o0, the
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forcing affects the evolution of the phase, and the observed

(mean) frequency o becomes adjusted to the external one.

The results of the experiment for different amplitudes of the

forcing (figure 11) allow one to define the synchronization

region, where the frequency of the system is completely

entrained by the external force, see figure 12. This region is

a complete analogue of the synchronization regions

(Arnol’d tongues) for periodic oscillators.

It is important to emphasize that the chaos itself is not

suppressed by the external force. What happens is not a

disappearance of chaos, but an adjustment of the mean

oscillation frequency. Chaos may be destroyed by a strong

force, but a small forcing affects only the phase, entraining

the frequency of its rotation.

Mutual phase synchronization of chaotic oscillators is

also quite similar to the classical case. To demonstrate this,

one can couple two chaotic electrochemical oscillators. The

quantities to be observed are the oscillator phases: for each

oscillator one has to extract these phases from the portraits

such as shown in figures 10 (a) and (c). Then the calculation

of the phase difference and observed frequencies O1, O2

characterizes the entrainment. For a large enough coupling

and for small mismatch of natural frequencies one observes

that frequencies become equal, O1=O2, like in the

experiments with periodic oscillators described in section

4.2.

Furthermore, synchronization transition in a population

of chaotic oscillators can be observed as well. The

mechanism here is the same as described in section 4.5

above: due to interaction, some oscillators become en-

trained and start to oscillate with the same frequency, the

fields of these oscillators sum coherently, and the resulting

mean field maintains synchrony. Considering chaotic

oscillators we additionally have to take into account that

only the phases of the oscillators are adjusted, whereas the

individual oscillations remain chaotic. Thus, the mean field

arises due to contributions of mutually entrained oscillators

with nearly equal phases, but with different chaotic

amplitudes. Summation of these contributions leads to a

periodic field with some average amplitude—chaos is

‘washed out’ due to the averaging over the ensemble. As

a result, the synchronization transition in an ensemble of

coupled chaotic oscillators manifests itself as the appear-

ance of a periodic macroscopic mean field, while each

individual oscillator remains chaotic. Such synchronization

transition has been observed in experiments with an

Figure 10. A chaotic electrochemical oscillator, its phase and frequency. Panels (a) and (c) show two versions of the phase portrait. In

(a) the delayed coordinates are used, which is a standard way for the phase space reconstruction. For the determination of the

instantaneous phase of the chaotic system the projection on the ‘signal –Hilbert transform’ plane (c) is more suitable. The phase defined

as an angle on the plane (c) is shown in panel (d). It grows nearly uniformly, with the frequency o0=1.325 Hz, but more detailed

examination reveals non-uniformity in the growth due to chaos (inset in panel (c)). The average frequency can also be extracted from the

power spectral density (PSD) of the signal (panel (b)). From [24].
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ensemble of 64 electrochemical chaotic oscillators. Figure

13 (a) shows the chaotic oscillations of two elements.

Figure 13 (b) depicts the dependence of the amplitude of the

mean field on the coupling constant K. The mean field

starts to grow at K&0.05; this is the synchronization

threshold. For smaller couplings the mean field does not

vanish, but its amplitude has values &0.2. This happens

due to the finite size effect: if the oscillators are completely

uncorrelated, the mean field, as the sum of N statistically

independent contributions, has the amplitude of order

N – 1/2: the fluctuations in a relatively small ensemble do not

vanish.

5.2. Complete synchronization. Example: coupled lasers

Strong mutual coupling of chaotic oscillators leads to their

complete synchronization when two or more chaotic systems

have exactly the same states, and these identical states vary

irregularly in time. Converse to phase synchronization, it

can be observed in any chaotic system, not necessarily

autonomous, and in particular in periodically driven

oscillators or in discrete-time systems (maps). In fact, this

phenomenon is not close to the classical synchronization of

periodic oscillations, as here we do not have adjustment of

rhythms. Instead, complete synchronization means sup-

pression of differences in coupled identical systems. There-

fore, this effect cannot be described as entrainment or

locking; it is closer to the onset of symmetry. Maybe

another word instead of ‘synchronization’ would better

serve for underlining this difference; we will follow the

nowadays accepted terminology, using the adjective ‘com-

plete’ to avoid ambiguity.

Figure 11. The difference between the observed frequency o of the chaotic oscillator and that of the external force, for different forcing

amplitudes ((a) 0 mV, (b) 6.6 mV, (c) 13.2 mV, (d) 16.5 mV). For large amplitudes the synchronization region, where o=O, is large
(compare with the results of the classical experiment of Appleton, figure 5). From [24].

Figure 12. The synchronization region for the periodically

driven chaotic oscillator on the ‘frequency of the driving –

amplitude of the driving’ plane. From [24].
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The main precondition for complete synchronization is

that the interacting systems are identical, i.e. they are

described by exactly the same equations of motion. This

identity implies that if the initial states of these systems are

equal, then during the evolution they remain equal at all

times. However, in practice this coincidence of states will be

realized only if such a regime is stable, i.e. if it is restored

after a small violation. This imposes a condition on the

strength of the coupling between the systems.

To be more concrete in our discussion, let us consider a

coupled system of the type

dx

dt
¼ FðxÞ þ eðy� xÞ ; dy

dt
¼ FðyÞ þ eðx� yÞ : ð8Þ

Here x and y are two identical systems, described by the

same equations F, and we will assume that the solutions are

chaotic. e is the coupling parameter and the corresponding

terms on the right-hand side describe a so-called diffusive

coupling, which tends to equalize the states of two systems

(this can be easily seen if one sets F=0, then the difference

y7 x decreases in time with the rate 2e).
While the coupling tends to equalize the states of two

systems, another mechanism prevents this. This mechanism

is the inherent for chaos sensitive dependence to initial

conditions. Suppose that e=0, then we have two

uncoupled identical systems; they can be regarded as two

realizations of one system with different initial conditions.

Because chaotic motions sensitively depend on initial

conditions (this phenomenon is often called the ‘Butterfly

effect’), the values y(t) and x(t) will differ significantly after

some time, even if y(0)& x(0).
Summarizing, we see two counterplaying tendencies in

the diffusive interaction of two identical chaotic systems:

intrinsic chaotic instability tends to make the states of the

systems different, while coupling tends to equalize them. As

a result, there exists a critical value of coupling ec, such that

for stronger coupling a completely synchronized state

y(t)= x(t) sets in. For this regime the coupling term in (8)

vanishes, and, hence, each of the systems vary chaotically

with time as if they were uncoupled. Thus, the complete

synchronization is a threshold phenomenon: it occurs only

when the coupling exceeds some critical level, proportional

to the largest Lyapunov exponent of the individual system.

Below the threshold, the states of two chaotic systems are

different but close to each other.

We illustrate the theoretical consideration by the results

of Roy and Thornburg [26], who observed synchronization

of chaotic intensity fluctuations of two Nd:YAG lasers with

modulated pump beams. The coupling was implemented by

overlapping the intracavity laser fields and varied during

the experiment. For strong coupling, the intensities became

identical, although they continued to vary in time

chaotically (figure 14).

6. Conclusions and outlook

In spite of the long history, theory of synchronization

remains a rapidly developing branch of nonlinear science.

Among the ongoing directions, not discussed in this article,

we mention synchronization in spatially-distributed sys-

tems and synchronization-like phenomena in stochastic and

excitable systems [27].

Recent theoretical development has been strongly

influenced by interdisciplinary studies, especially by widely

growing applications to biological and medical problems. It

turns out that synchronization is very frequently encoun-

tered in live systems [8, 28]. In particular, it is believed that

the mechanism of the Kuramoto transition plays an

important role in dynamics of neural ensembles and is

responsible for the emergence of such severe pathologies as

epilepsies and Parkinson’s disease. A popular paradigmatic

model, analysed in this context, is a system of pulse-

coupled integrate-and-fire oscillators, see e.g. [29]. Another

direction of research is related to attempts to desynchronize

undesirable, pathological collective rhythms and to develop

Figure 13. Illustration of the synchronization transition in an ensemble of globally coupled chaotic electrochemical oscillators. In panel

(a) two time series of two elements are shown. In panel (b) the dependence of the mean field on the coupling K demonstrates the transition

at K&0.05. From [25].
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in this way a therapeutic tool [30]. Finally we mention that

ideas from the synchronization theory are used in the

analysis of multivariate experimental data. The goal of such

an analysis is to detect weak interaction between oscillatory

systems, e.g. to reveal a coordination between respiratory

and cardiac rhythms in humans [31] or localize the source

of pathological brain activity in Parkinson’s disease [32,

33].
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