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Abstract

We consider the dynamics of a lattice of phase oscillators with a nearest-neighbor coupling. The clustering hierarchy is
described for the case of linear distribution of natural frequencies. We demonstrate that for small couplings prior to the
appearance of the first cluster the dynamics is quasi-Hamiltonian: the phase volume is conserved in average, and the spectrum
of the Lyapunov exponents is symmetric. We explain this unexpected for a dissipative system phenomenon using the concept
of reversibility. We show that for a certain coupling a smooth transition from the quasi-Hamiltonian to the dissipative dynamics
occurs, which is a novel type of chaos–chaos transition.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Coupled oscillators appear in various fields of
science: in biology, electronics, chemical reactions,
optics, acoustics. One of the main effects here is
synchronization, resulting in the adjusting of the fre-
quencies of the oscillators. Although Huygens first
discovered this phenomenon already in 17th century,
and a theory of synchronization was developed by
Appleton and Van der Pol in 1920s, there are many
aspects of dynamics of coupled oscillators that are a
subject of a current research. In particular, synchro-
nization transitions in lattices of coupled oscillators
attracted a lot of attention. Such lattices of elements
with nearest-neighbor coupling appear, e.g., in laser
arrays [1], Josephson junctions[2], phase-locked
loops [3,4], and even in piano strings[5]. Although
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particular dynamical systems describing these lattices
are quite different, there are many general features
that can be described already in the framework of the
simplest model of coupled phase equations[6–9]. In-
deed, because the phase of a self-sustained oscillator
is free and the amplitude is relaxing to a particular
value, small coupling influences the phases only.

In the case of many coupled oscillators, between
the limiting cases of full synchronization (when all
oscillators have the same frequency) and complete
desynchronization (all the frequencies are different)
one encounters regimes of partial synchronization.
For a lattice such a state appears in the form of
synchronization clusters, when neighboring or even
non-neighboring oscillators form groups having the
same frequency. In general, the transition from a
non-synchronous to a synchronous state can be de-
scribed as formation and merging of clusters. Partic-
ular features of this process depend on the coupling
and on the distribution of natural frequencies. Typi-
cally, one assumes that the coupling is attracting, i.e.
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it tends to equalize the phases of interacting oscilla-
tors. More variative is the distribution of frequencies,
here two types of models attracted special interest.
In papers[10–13] a random distribution of natural
frequencies was considered and the clustering hier-
archy has been calculated. Here one can generally
make only statistical predictions on the transition.
In [13–15] it has been demonstrated that clusters
can be observed in lattices of chaotic oscillators as
well.

Most close to our present study is the paper[7],
where a linear distribution of the natural frequencies
in a one-dimensional lattice have been studied. It
was motivated by experimental observations of for-
mation of clusters in mammalian intestinal smooth
muscle[16]. The attention of Ermentrout and Kopell
[7] was mainly restricted to the final stage at large
couplings, when two or few clusters merge to pro-
duce the fully synchronized state. In this paper, we
consider the same problem as in[7], but we fol-
low the transition from small to large couplings.
Moreover, our main attention will be devoted to a
non-trivial state at small couplings prior to the for-
mation of the first cluster. We demonstrate that in
this state the dynamics of the dissipative lattice is
quasi-Hamiltonian, i.e. the phase volume is conserved
(in average) and the lattice demonstrates typical for
Hamiltonian systems coexistence of chaotic regimes
and quasi-periodic tori. To the best of our knowl-
edge, it is the first observation of quasi-Hamiltonicity
for coupled oscillator arrays. Our explanation of this
property is in the reversibility of the oscillator lattice
due to high symmetry of the frequency distribu-
tion. We note that the quasi-Hamiltonian dynamics
of dissipative systems due to the reversibility have
been already discussed for low-dimensional laser
models [17] and for Josephson junctions[18,19].
The treatment is especially difficult if the system
under consideration is high dimensional. Thus, our
study is more rigorous for small lattices than for
large ones.

The plan of the paper is as follows. We introduce
the model of a lattice of phase oscillators inSection 2.
Here we present numerical results illustrating the
formation of clusters. We give also the numerical

evidence of the quasi-Hamiltonian dynamics: the
symmetry of the Lyapunov spectrum and the vanish-
ing of the phase volume divergence on time average.
Reversibility of the system is discussed inSection 3.
We show that it is related to particular symmetries
of the coupling function and of the distribution of
natural frequencies. To support these findings, we de-
scribe inSection 4what happens if these symmetries
are broken. The results are summarized and discussed
in Section 5.

2. The phase lattice model and its properties

2.1. Basic model

In this section we formulate the basic model and
describe the results of its numerical simulation. We
describe an individual oscillator with a phase variable
ϕk, and assume that being uncoupled it rotates with a
constant natural frequencyωk. The coupling of nearest
neighbors is implemented via a coupling functionf
that depends on the phase differences. As a result, we
obtain a set of ODEs (cf.[3,6,7])

ϕ̇k = ωk + εf (ϕk−1 − ϕk)+ εf (ϕk+1 − ϕk),

k = 1, . . . , N. (1)

Here ε is the coupling constant, it is assumed to be
the same for all oscillator pairs. It is natural to assume
that the coupling vanishes when the phases of the os-
cillators are equal, i.e.f (0) = 0. Then the boundary
conditionsϕ0 = ϕ1, ϕN+1 = ϕN ensure the correct
equations fork = 1, N .

Clearly, because solely the phase differences are
enteringEq. (1), a closed system can be written for
these differences only, reducing the number of vari-
ables by 1. This reduction takes the simplest form if
the functionf is an odd one, and this is always as-
sumed hereafter. In particular, below we will mainly
consider the simplest casef (ϕ) = sinϕ, but for the
moment we would like to write the equations in a
more general form

ψ̇k = ∆k + εf (ψk−1)+ εf (ψk+1)− 2εf (ψk),

k = 1, . . . , n, (2)
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whereψk = ϕk+1 − ϕk, ∆k = ωk+1 − ωk, andn =
N − 1. The boundary conditions for system(2) are
ψ0 = ψn+1 = 0.

2.2. Small and large couplings

Before proceeding to numerical simulations, we
outline some general properties of system(2) (cf.
[3,7]). Mostly simple are the limiting cases of small
and large couplings.

For ε = 0, Eq. (2) have a simplen-frequency
solution. If the frequency differences∆k are incom-
mensurate, this solution is quasi-periodic and can be
represented as an ergodic motion on ann-dimensional
torus. The natural invariant measure on this torus is
uniform. According to the KAM-theory-type argu-
ments, if the frequencies are far from resonances, the
quasi-periodic motion is observed for small coupling
ε � 1 as well.

For largeε a fully synchronized state is observed.
In terms of the phase differencesψk this corresponds
to a stable fixed point in(2). To see this, it is enough
to mention that the equation for the stationary state
ψ̇k = 0

Akmf (ψm) = −ε−1∆k, (3)

is a linear system for the unknown variablesf (ψm).
The matrixA is tridiagonal (Ak,k = −2, Ak,k+1 =
Ak−1,k = 1) and can be inverted (A−1

km = −k(N −
m)/N , with k ≤ m andA−1

km = A−1
mk ). Denotingαm =

−A−1
km∆k, we obtain a system

f (ψm) = ε−1αm. (4)

If f (·) is boundedfmin ≤ f ≤ fmax, thenEq. (4)can
be resolved if for allm

εfmin < αm < εfmax. (5)

The 2π -periodic functionf has at least two branches,
so there are at least 2n different fixed points. As have
been shown in[7], only one of them is stable cor-
responding to the choice of the branch withf ′ > 0
for all variables. Thus, a stable phase-locked solution
exists for large enough couplings. From the consider-
ation above it is also clear, how it loses its stability.
This happens when for somem∗ the solutions of(4)

seize to exist via a saddle-node bifurcation. Typically,
beyond this transition the variableψm∗ rotates while
other phase differences remain bounded. This corre-
sponds to the splitting of the lattice(1) in two clusters
k ≤ m∗ andk > m∗.

The limiting situations described above suggest
that there exists a hierarchy of transitions from
the completely phase-locked state at largeε to the
quasi-periodic state at smallε. A scenario depends
on the frequenciesωk. In this paper we focus on a
particular case of linearly distributed natural frequen-
cies in the lattice. As have been discussed in[7], it
corresponds to a real experimental situation of mam-
malian intestinal smooth muscle[16]. Furthermore,
we will mostly consider the simplest case of coupling
functionf (ϕ) = sinϕ.

2.3. Synchronization properties: clustering hierarchy

In the rest of this section we consider the particular
case of a linear distribution of natural frequencies in
(1). This means that all frequency differences∆k in
(2) are equal. Rescaling the time we can set these
differences to unity, thus the resulting system has only
one parameter—the coupling constantε.

Of course, this specific choice∆k = 1 introduces
some new symmetries into the system; below we will
see that they strongly influence the dynamics. Fur-
thermore, we use in this section the coupling function
f (ϕ) = sinϕ. This simplest choice also brings addi-
tional symmetries, to be discussed below.

The main quantities of interest are the observed
frequencies of the oscillators defined as the mean rota-
tion velocitiesΩk = 〈ϕ̇k〉. For the oscillators forming
a cluster, these frequencies coincide. Thus, an appear-
ance of a cluster can be easily seen from the bifurca-
tion diagramΩk vs. ε. We present these diagrams for
several values of the chain lengthN in Fig. 1.

The synchronization diagrams reveal several fea-
tures:

(i) With increasingε the rotators successively group
into clusters of equal frequencies. The last tran-
sition to a single cluster occurs atεc, which can
be calculated according toEqs. (4) and (5). In the
case∆k = 1 the solution(4) can be written ex-
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Fig. 1. Observed frequenciesΩk vs. coupling strengthε for oscillator chains of different length. The bifurcation diagrams were produced
by choosing randomly 10 initial points for eachε and plotting the resulting frequencies with dots on one graph. The smeared regions that
are seen for smallε indicate the dependence of the frequencies on the initial conditions. On these graphs also the average contraction rate
S (seeEq. (6)) of the phase volume is shown with squares.
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plicitly: αm = m(N−m)/2. Taking the maximum
of this expression, we obtain

εc = maxm αm =




N2

8
even N,

(N − 1)(N + 1)

8
odd N.

(ii) There are regions where the diagram is “smeared”.
Most visible is this region for the case of three os-
cillators. In the smeared region the averaged fre-
quency depends on initial conditions, what means
that the system does not have a single attractor,
but, presumably, many invariant states. Note that
these regions mostly appear in small lattices at
small couplings, prior to the first clustering. The

Fig. 2. Lyapunov exponents vs. coupling strengthε for the same lattices as inFig. 1 (the caseN = 3 is not shown, here all Lyapunov
exponents vanish forε < 1 and two are negative forε > 1).

investigation of this state is the main purpose of
this paper.

2.4. Quasi-Hamiltonian dynamics for small
couplings

To reveal the dynamics of the lattice, we have cal-
culated the Lyapunov exponents. The continuous-time
system (2) has one zero Lyapunov exponent for
non-constant solutions (and, correspondingly, in sys-
tem (1) two Lyapunov exponents are exactly zero).
The calculations of the exponents give the results
shown inFig. 2. For small couplings we always ob-
tain a sign-symmetric picture of the exponents: they
appear in pairs having the same absolute value and
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opposite signs (additionally, some Lyapunov expo-
nents can be zero). This means that the phase volume
is conserved on time average: its mean divergence

S =
∑
k

〈
∂ψ̇k

∂ψk

〉
= −2ε

∑
k

〈f ′(ψk)〉 (6)

is the sum of the Lyapunov exponents, and it vanishes.
We have checked this by calculating the average(6)
directly, and found it to be nearly zero (apart from
statistical fluctuations). These results are presented in
Fig. 1 (see also detailed calculations inFig. 5).

The symmetrical Lyapunov exponents and the con-
servation of the phase volume are the hallmarks of the
Hamiltonian dynamics. Thus we call the dynamics of
the lattice at small couplings quasi-Hamiltonian.

3. Reversibility of regular and chaotic regimes

3.1. Reversibility

Our explanation of the quasi-Hamiltonian behav-
ior is based on the reversibility of the dynamics (see
[20,21] for mathematical definitions). Reversibility
means that there exists an involutionR : Ψ �→ Ψ (in-
volution means thatR2 is identical transformation;Ψ
here denotes the set of variablesΨ = (ψ1, . . . , ψn))
which together with the time reversal transformation
T : t �→ −t leaves the system invariant. Reversibil-
ity yields that the trajectories of a dynamical system
come in symmetric pairs. Indeed, for every point of
the phase spaceΨ (0) there is the symmetric point
RΨ (0), and the trajectoryΨ (t) starting fromΨ (0)
is symmetric to the trajectoryRΨ (−t) running back-
ward in time and starting fromRΨ (0). In the terms
of trajectory stability, these symmetric trajectories
have inverse Lyapunov spectra, because the Lyapunov
exponents change sign with the time inversion.

The fact that a system is reversible (i.e. it possesses
an involution as described above) still does not say
anything on the dissipativity/conservativity of the ob-
served dynamics; it means only that if there is an at-
tractor, there should be the corresponding symmetric
repeller. Particularly important is the case when some
symmetric trajectories coincide, i.e. if the involution

R transforms a trajectory to itself. It will be the case
if (but not only if) this trajectory crosses the set FixR

of the invariant points of the involution (Ψ ∈ Fix R

means thatRΨ = Ψ ). Such a trajectory we call re-
versible. Properties of periodic reversible trajectories
are like those of in Hamiltonian systems: the Lyapunov
exponents are sign-symmetric and the phase space vol-
ume in their vicinity is conserved on average (in par-
ticular, the local Poincaré map is area-preserving).

In general, reversible trajectories may be non-peri-
odic, and coexist with non-reversible ones. Here we
can distinguish two cases. A reversible non-periodic
trajectory can connect an attractor and a repeller, be-
ing heteroclinic. Otherwise, it can be non-wandering,
in particular, if it can repeatedly return to a vicinity of
the set FixR. In the latter case the average properties
are qualitatively similar to those of periodic reversible
trajectories, and in particular the Lyapunov exponents
are sign-symmetric. This property is very important if
we consider complex (quasi-periodic or chaotic) in-
variant sets. If such a set is ergodic, and at least one
typical trajectory belonging to it is reversible, then the
invariant measure isR-symmetric and the dynamics of
the system is quasi-Hamiltonian on this set. Note that
this property does not require any symplectic struc-
ture and hence does not depend on evenness/oddness
of the underlying phase space.

We now argue that in order for periodic and
non-wandering reversible trajectories to exist, the set
Fix R should be large enough. Let us consider the
evolution of FixR in time. A reversible periodic exists
if the setsF t (Fix R) and FixR intersect, whereF t is
the evolution operator of the dynamical system. This
intersection generally can occur in an-dimensional
phase space if the topological dimension of FixR

is large enough, at least [n/2], i.e. n/2 for even and
(n−1)/2 for oddn, the dimension ofF t (Fix R) being
then [n/2] + 1. Based on the continuity arguments,
we obtain the same estimate for a general existence
of non-wandering trajectories, because in the latter
case the distance betweenF t (Fix R) and FixR has
to nearly vanish at some times. Contrary to this, if
the dimension of the set FixR is small, generally
there are no non-wandering reversible trajectories.
From these arguments, it follows that not all possible
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involutionsR can explain the quasi-Hamiltonian be-
havior, but only those having a high-dimensional
invariant set FixR.

3.2. Reversibility of the oscillator lattice

We now proceed to apply this concept to the lattice
of n oscillators(2). The involution yielding reversibil-
ity here is

R : ψk �→ π − ψn−k. (7)

One can see that this transformation can be represented
as the productR = P ◦ Q of two involutions:

P : ψk �→ ψn−k, (8)

and

Q : ψk �→ π − ψk. (9)

These transformations reflect the symmetry of the dis-
tribution of the natural frequencies (P requires∆k =
∆n−k) and the symmetry of the coupling functionf (·)
(Q requires that the odd functionf has only odd har-
monics in its expansion in sine Fourier series). In-
volution (7) has an invariant setψk + ψn−k = π

of dimension [n/2], thus we can expect periodic and
non-wandering reversible trajectories to exist. This is
not the case for the involutionQ: its invariant setψk =
π/2 is one point.

Below we consider implications of the reversibility
described for some particular lattices.

3.3. Three coupled oscillators

The chain of three rotators has the simplest
non-trivial dynamics. System(2) reduces to only two
equations:

ψ̇1 = 1 − 2ε sinψ1 + ε sinψ2,

ψ̇2 = 1 − 2ε sinψ2 + ε sinψ1. (10)

Forε > εc = 1 there exists a stable point solution, cor-
responding to synchronization. We now demonstrate
that the whole dynamics forε < εc is reversible.

Involution (7) for the system(10) has invariant
line FixR : ψ1 + ψ2 = π . It is clear that on the

Fig. 3. The phase portrait of system(10). The line FixR is shown
as bold dashed one; it is crossed by all trajectories.

two-dimensional phase plane(ψ1, ψ2) every rotating
trajectory crosses this line many times, thus all trajec-
tories are periodic and reversible, and the desynchro-
nized state is quasi-Hamiltonian. We show the phase
portrait in Fig. 3. It represents a typical for an inte-
grable Hamiltonian system family of periodic orbits.
These orbits have different periods, and this explains
the diversity of frequencies inFig. 1. A difference in
Hamiltonian phase portraits can also be easily seen:
because the phase volume is conserved in average,
but not locally, different regions on the phase plane
are filled with different densities. The transition to
clusters occurs via an inverse saddle-node bifurcation,
at which a stable and unstable points appear atψ1 =
ψ2 = π/2 from the condensation of trajectories.

3.4. Four coupled rotators

The system of four coupled rotators reads

ψ̇1 = 1 − 2ε sinψ1 + ε sinψ2,

ψ̇2 = 1 − 2ε sinψ2 + ε sinψ1 + ε sinψ3,

ψ̇3 = 1 − 2ε sinψ3 + ε sinψ2. (11)

Applying involution (7), we obtain that the set FixR
is the lineψ1 + ψ3 = π,ψ2 = π/2. The phase tra-
jectories in a three-dimensional phase space generally
do not intersect a given line, so we cannot expect re-
versibility for all trajectories. In this case we observe
a non-trivial transition from the quasi-Hamiltonian to
the dissipative dynamics, to be described below.
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Fig. 4. The Poincaŕe map for system(11) for different values of coupling. The maps are constructed by choosing the initial conditions
on the lineψ1 + ψ3 = π (filled circles) and plotting 2000 their iterations. (a)ε = 0.3: the quasi-periodic states dominate. (b)ε = 0.39:
chaotic and quasi-periodic regimes coexist. The attractor and the repeller forε = 0.49 are shown in (c) and (d), respectively.

To visualize the dynamics we constructed the
Poincaré maps. The Poincaré section was chosen by
the conditionψ2 = π/2 so that the invariant set of the
involution is the lineψ1 +ψ3 = π on this plane. The
Poincaré maps for different values of parameterε are
presented inFig. 4. They are constructed by iterations
of initial points lying on the lineψ1 + ψ3 = π , i.e.
belonging to FixR.

To verify whether the dynamics is quasi-Hamilto-
nian or not, we calculated the average over a very large
time (up toT = 1.5 × 107) divergence of the phase
volume S. Only the values ofS that are nearly the
same for the averaging timesT/2 andT have been
considered to be distinguishable from zero. The data
are presented inFig. 5 together with the calculations
for larger lattices.

3.4.1. Quasi-periodic dynamics for small ε
In the case shown inFig. 4a the dynamics appears

to be quasi-periodic, and the phase space appears to
be foliated by tori. All these tori cross the line FixR,
thus on each torus there is a reversible non-wandering
trajectory. This ensures reversibility of the tori, and
the whole dynamics is quasi-Hamiltonian. The average
divergenceS in this case is indistinguishable from
zero.

3.4.2. Mixed quasi-Hamiltonian dynamics
In the case shown inFig. 4b the dynamics appears to

be quasi-Hamiltonian with chaotic and quasi-periodic
components. In some components the images of FixR

appear to be dense. This allows us to speak on “re-
versibility in average”. Note that due to ergodicity the
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Fig. 5. The average divergence of the phase volume for lattices of different sizes. The lowest values at|S| ≈ 10−6 correspond to the
remaining statistical uncertainty achieved after averaging over times as large as 107. Up to this uncertainty, the threshold for the transition
from the quasi-Hamiltonian to reversible behavior appears to lie atε ≈ 0.1 for lattices withN > 4.

mean frequency is the same for all typical trajectories
in the chaotic sea, but has different values for differ-
ent tori. Thus, the mean frequency depends on initial
conditions. From the other hand, there are components
having no overlap with images of FixR, they are nev-
ertheless symmetric with regard to the involution.

3.4.3. Chaotic dissipative dynamics
As one can see from the detailed calculations of

the mean divergence of phase volume (Fig. 5), for
ε > 0.43 the divergence is non-zero, although very
small. Accordingly, we have to characterize the ob-
served chaotic state as an attractor. Surely, there ex-
ists also the symmetric to the attractor repeller—it can
be easily obtain via backward integration ofEq. (11).
We present the phase portraits of the attractor and
the repeller inFig. 4c and d. From visual inspection
of these pictures one may conclude that the attractor
and the repeller “overlap”. However, according to the
Birkhoff ergodic theorem, the invariant measures of
these invariant sets should be mutually singular.1 The
contradiction resolves if one takes into account that
although the attractor and the repeller look like pos-

1 We are thankful to D. Turaev for this remark.

sessing positive Lebesgue measure, in reality they are
fractals having Lebesgue measure zero. Because the
mean divergence of the phase volume is very small,
the dimensions of these fractals are extremely close
to 2, therefore, it is difficult to distinguish them from
quasi-Hamiltonian dynamics. On visual inspection of
Fig. 4(c) and (d), it appears that iterations of FixR

(both forward and reverse in time) return arbitrary
close to FixR. Why this does not ensure reversibility,
remains an open question.

We emphasize that for some values of coupling we
observed non-chaotic, periodic attractors in the sys-
tem. The situation appears to be similar to other cases
of non-hyperbolic chaotic dynamics (e.g. in the Henon
map), where stable orbits with relatively short periods
appear and disappear as a parameter is varied. Nu-
merically, it is difficult to distinguish whether in these
situations the chaotic attractor transforms to a chaotic
saddle and the only attractors is the regular one, or
there is a bistability “chaos–periodic orbit”.

3.4.4. Clustering transition
With increasing the coupling, atε ≈ 0.604 a pair of

stable and unstable fixed points appears in the Poincaré
map. On the stable periodic solution of system(11)
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the mean rotation frequencies of the variablesψ3 and
ψ1 coincide, what corresponds to the appearance of
the cluster (cf.Fig. 1). The set FixR is now attracted
to the stable orbit which is a global attractor of system
(11), and the dynamics on this attractor is no more
reversible.

3.5. Large number of rotators

In the case of a large number of rotators we can char-
acterize the dynamics with averaged quantities like
Lyapunov exponents, but it is rather difficult to reveal
the topological structure in the phase space. Calcula-
tions of the Lyapunov exponents show that for small
couplingsε they are coming in sign-symmetric pairs
and the phase volume is conserved in average, i.e. the
system is quasi-Hamiltonian. The dimension of the in-
variant set of the involution FixR is exactly [n/2] and
thus is large enough to make reversible orbits possible.

Numerically, it appears that the transition from
quasi-Hamiltonian to dissipative dynamics for a large
number of oscillators is not as abrupt as forN = 3,
and does not coincide with the point of the first
clustering, but is similar to the continuous transition
described above forN = 4. This can be seen from the
calculations of the average divergence of the phase
spaceS (6) presented inFig. 5. Because of large sta-
tistical fluctuations we were not able to determineS
with accuracy better than 10−6, and with this accu-
racy the threshold for the transition lies atε ≈ 0.1.
This number is expected to be the same for all chain
lengths because first clustering always appears at the
ends of the chain, nearly atε = 0.6 for all chains with
N > 3. Due to high dimensionality of the system,
we could not follow any topological transition in the
structure of chaos at this point.

4. Violations of reversibility

Obviously, the involution(7) which is responsible
for the reversibility is based on the high symmetry in
the system lattice. This symmetry is due both to the
particular distribution of the frequenciesΩk and to
the symmetry of the coupling function. We demon-

strate here that violations of these symmetries lead to
non-reversible dynamics.

4.1. Non-uniform frequency distribution

The involution(7) requires that the frequency dif-
ferences in(2) are symmetric

∆k = ∆n−k, k = 1, . . . , 1
2n, (12)

but not necessarily equal. We illustrate this inFig. 6a.
The phase volume here is conserved in average,
and the dynamics remains reversible and quasi-
Hamiltonian. Contrary to this, when we take a dis-
tribution of frequency differences that violates the
symmetry, we obtain a strange attractor instead of
quasi-Hamiltonicity (Fig. 6b). We emphasize that also
in this latter case the system is reversible under invo-
lution (9). The dimension of the invariant set of this
involution is, however, too low to ensure reversibility
of the dynamics.

We note that if the symmetry(12) is only
slightly violated, the dynamics remains nearly quasi-
Hamiltonian: the convergence of the phase space vol-
ume is small. In the chaotic case this means that the
dimension of the attractor is close to the dimension of
the phase space. In the periodic case likeFig. 3aweak
dissipation means that the Poincaré map is a circle
map close to the identity. It is known that in such
maps a vast majority of states is quasi-periodic, i.e.
they have zero Lyapunov exponents and are therefore
not distinguishable from the quasi-Hamiltonian ones.

If the symmetry (12) is strongly violated, then
only strongly dissipative regimes can be expected
in the oscillator lattice. Extensive numerical studies
with random distribution of frequencies[10–13]have
demonstrated that a typical picture is a successive
merging of oscillators in larger and larger clusters.
Particular features of the clustering hierarchy depend
on the (random) set of frequencies. As has been
shown in[22], the one-cluster state in an array with a
random distribution of the frequencies is observed in
a broader range of parameters than in an array with
a linear distribution. Clustering of phase dynamics is
also observed for chaotic oscillators, e.g., see[13–15].
In conclusion of this discussion we would like to
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Fig. 6. The dynamics of system(2) with N = 4, ε = 0.4: (a)∆1 = ∆3 = 1, ∆2 = 1.3. Here a violation of equality of frequencies that
does not destroy involution(7) preserves quasi-Hamiltonian dynamics. (b)∆1 = ∆2 = 1, ∆3 = 1.2. The involution(7) is broken; the
dynamics is dissipative with a strange attractor.

Fig. 7. (a) The dynamics of system(2) with N = 4, ∆k = 1, ε = 0.35 andf (ψ) = sinψ + 0.2 sin 3ψ is reversible. (b) The same system
as (a), but with a non-symmetric coupling functionf (ψ) = sinψ + 0.2 sin 2ψ and ε = 0.4 has a strange attractor.

mention that for coupled oscillators of type(1) a distri-
bution of frequencies always plays a destructive role:
if the frequencies are equal, the synchronous state is
stable for any value of the coupling parameter. This
should be contrasted to arrays of chaotic oscillators,
where, e.g., identical coupled oscillators may demon-
strate a space–time chaos, while a disorder may lead
to appearance of regular (non-chaotic) regimes[23].

4.2. Non-symmetric coupling function

Here we demonstrate that violations of the function
symmetry(9) lead to break of reversibility. The odd

coupling functions invariant under involution(9) are
represented by a sine Fourier series with odd harmon-
ics only. Such functions yield reversible dynamics;
one example is presented inFig. 7a. If even harmon-
ics in the Fourier series are present, the dynamics is
dissipative as can be seen inFig. 7b.

5. Conclusion

The extremely simple system of coupled phase os-
cillators demonstrates extremely rich dynamics. This
can be already seen fromFigs. 1 and 2. Many regimes
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in large lattices are chaotic, so the clustering should
be described as a transition inside chaos. In this pa-
per, we focused on a particular peculiarity of the dy-
namics for very small couplings and demonstrated
that this dynamics is reversible. This property is re-
sponsible for a rather unusual for dissipative systems
quasi-Hamiltonian dynamics. Although the reversibil-
ity holds for any coupling, only when the clusters are
absent the reversible trajectories appear to be dense in
the ergodic components; for large couplings they con-
nect a repeller and an attractor, so that the observed
dynamics on the attractor is dissipative. One can say
that synchronization excludes quasi-Hamiltonicity and
vice versa. Although we have started with a rather de-
generate case of a linear distribution of the frequen-
cies in the array, a detailed analysis of the underlying
symmetry has shown that this condition can be con-
siderably weakened, seeEq. (12). Moreover, we have
argued that if the system is “nearly reversible”, i.e. its
parameters only slightly deviate from the symmetric
ones, then the dissipativity can be extremely small,
resulting in long transients and high noise sensitivity.

We would like to emphasize that the reversibility
differs significantly from the usual symmetry prop-
erties of dynamical systems that include only phase
space transformations. The main feature of reversibil-
ity is that together with a transformation of the phase
space one changes the sign of time. This allows one
to encounter a time-reversible, quasi-Hamiltonian be-
havior, what is very unusual for dissipative systems.
In particular, in the quasi-Hamiltonian case there are
no attractor and repellers, the Poincaré recurrence the-
orem works, Lyapunov exponents come in symmetric
pairs. Typically, such systems have many ergodic
components, demonstrating usual for non-hyperbolic
Hamiltonian models coexistence of chaotic and reg-
ular behaviors.

In investigating the simplest non-trivial case of four
coupled phase oscillators we have found a non-trivial
transition from the quasi-Hamiltonian to dissipative
dynamics. It can be characterized as a spontaneous
breaking of the time-reversal symmetry, at which the
mean contraction rate smoothly deviates from zero.
Such a transition, to the best of our knowledge, was
not observed previously.

In discussing reversibility we have argued that
the symmetry of the involution that gives rise to re-
versibility should be large enough. In the particular
case considered in this paper, this requires not only the
symmetry of the coupling function, but the symmetry
of the natural frequencies as well. If the dimension of
the invariant set of the involution is low, no reversible
dynamics is observed. It would be interesting to ap-
ply these ideas to the systems of globally coupled
Josephson junctions, where the nonlinear functions
are known to have a high symmetry[18,19].
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