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Cluster-splitting bifurcation in a system of coupled maps
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Abstract

We consider cluster-splitting bifurcations in a system of globally coupled maps as coupling parameter decreases. At these
transitions the number of clusters, i.e., groups of elements with identical dynamics, increases. We demonstrate that different
cascades of cluster-splitting can occur, depending on statistics of redistribution of the oscillators between new-born clusters.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ensembles of coupled chaotic oscillators have received a large attention in the last decade. Two typical models are
usually studied in this context: lattices with local in space interaction[1,2], and populations with global (all-to-all)
coupling [3–5]. The interesting phenomenon of non-trivial collective dynamics in such systems is a subject of
intensive study using their transfer (Frobenius–Perron) operator[6], finite-size collective Lyapunov exponents
[7,8], directed percolation universality class[9], and a linear response function[10]. Recently, an experimental
investigation of 64 globally coupled chaotic electrochemical oscillators has been performed[11]. These studies have
revealed, that already coupling of identical chaotic oscillators demonstrates non-trivial synchronization patterns.

Many aspects of the dynamics can be obtained already in the simplest model of globally coupled maps, introduced
by Kaneko[12]

xi(n + 1) = (1 − ε)f (xi(n)) + ε

N

N∑
j=1

f (xj (n)), i = 1,2, . . . , N, (1)

wherex = {xi(n)}Ni=1 is a state vector at timen = 0,1, . . . , ε ∈ R is the coupling parameter, andf : R → R is a
one-dimensional map. For further studies of this model, see, e.g., Refs.[13–20]and references therein.

An interesting form of asymptotic behavior that can arise in the system of globally coupled map(1) is clustering
[12] or partial synchronization[21]. The population of oscillators splits intoK subgroups
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xi1 = xi2 = · · · = xiN1

def=y1, xiN1+1 = xiN1+2 = · · · = xiN1+N2

def=y2, . . . ,

xiN1+N2+···+NK−1+1 = xiN1+N2+···+NK−1+2 = · · · = xiN
def=yK (2)

calledclusters such that all oscillators within a given cluster asymptotically move in synchrony. The number of
variablesxi that synchronize into a given stateyj is denoted byNj , such that

∑K
j=1 Nj = N . Note that, under the

conditions above, system(1) can posses many differentK-cluster states with the same variable distribution among
the clusters[13]. Clustering has been also observed in experiments with chaotic[11] and periodic[22–24]dynamics.

In-cluster dynamics of aK-cluster state is governed by theK-dimensional systemFK of the form

yi(n + 1) = (1 − ε)f (yi(n)) + ε

K∑
j=1

p
(K)
j f (yj (n)), i = 1, . . . , K, (3)

obtained after direct reduction of(1) to the cluster subspaceΠK defined by(2). This system is again a population of
globally coupled maps, but the coupling comes with weight parametersp

(K)
j = Nj/N corresponding to the relative

number of variablesxi belonging to thej th cluster. One-cluster (or coherent) state, for instance, is characterized
by the dynamics, where all elements in the ensemble considered display the same temporal variation. In this case,
the dynamics is restricted to the diagonalDN = {(x1, x2, . . . , xN)|x1 = x2 = · · · = xN } and is governed by the
one-dimensional mapf .

Typically, with the decrease of the coupling parameterε one observes an increase of the number of clusters.
Indeed, in the limiting case of strongest couplingε = 1 the one-cluster state is superstable: It appears in one
time step. From the other side, for vanishing coupling, when dynamics of the mappingf is chaotic, no clusters
appear. The whole phase diagram is rather complex (cf.[12]). In this paper, we focus on a certain aspect of the
order–disorder transition in system(1), namely on the cluster-splitting bifurcations, at which the number of clusters
increases. Moreover, we restrict mainly our attention to the case of periodic clusters, which play an important role
at large couplings, see[12–15,25,26]. Stability and bifurcations of spatially homogeneous and clustered periodic
solutions of coupled systems have been also studied in Refs.[27–30]. A particular case of the cluster-splitting
cascade, cluster doubling, has also been demonstrated in Ref.[14] for a system of globally coupled logistic maps
and for systems of globally coupled Duffing oscillators and Josephson junction series arrays.

The starting point in the consideration of cluster-splitting is the investigation of stability of a cluster state. The
system ofN coupled maps(1) has a stableK-cluster state with the distribution of the oscillators among the clusters
N1 : N2 : · · · : NK if the following conditions are fulfilled:

(i) K-dimensional in-cluster system(3) has an attractorA(K);
(ii) in-cluster attractorA(K) is also an attractor of the originalN -dimensional system(1).

For the condition (ii) to be fulfilled,K transverse Lyapunov exponents[25,31]

λ
(K)
⊥,j = lim

k→∞
1

k

k−1∑
n=0

ln |f ′(yj (n))| + ln |1 − ε|, j = 1,2, . . . , K (4)

of A(K) must be negative[32]. Note, that each Lyapunov exponentλ
(K)
⊥,j is of multiplicity Nj − 1. It is responsible

for growth of perturbations destroying the identity of the elements of thej th cluster. Thus, the splitting of thej th
cluster is governed by the LEλ(K)

⊥,j .
In this paper, we study mechanisms of cluster-splitting transitions of periodic regimes in system(1). We show that

the transition can typically proceed via one of the two following local bifurcations of a stable periodic in-cluster orbit:
Transverse period-doubling or transverse transcritical bifurcations. Under these bifurcations, one of the clusters splits
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into two stable sub-clusters, thus the total number of clusters increases by one. We observe characteristic cascades
of such cluster-splitting bifurcations and conclude that the type of the next splitting bifurcation essentially depends
on the form of the previous splitting.

2. Cluster splitting: numerical observation

In this section, we describe how the cluster-splitting transitions appear in numerical experiments. A detailed
description and the theory will be presented in the sections below.

Consider system(1) of N = 100 coupled logistic mapsf (x) = ax(1− x) with the nonlinearity parametera and
x ∈ [0; 1]. Choose the parameter valuea = 3.84 providing that the mapf has an attracting period-3 cycleγ3 (its
multiplicator is equal toν ≈ −0.8753). The symmetric period-3 cycleγ (1)

3 (originated by the cycleγ3) belonging to
the main diagonalDN forms a coherent (one-cluster) state which will be stable in the wholeN -dimensional phase
space if transverse multiplicatorµ(1)

1 = ν(1− ε)3 calculated in accordance with(4) is less than 1 in absolute value.
It can be easily found that this happens for a range of the coupling parameterε ∈ (ε−; ε+), whereε− ≈ −0.0454
andε+ ≈ 2.0454. Thus, for this range ofε, system(1) has the asymptotically stable coherent state with period-3
temporal dynamics.

With decreasingε beyondε−, the transverse multiplicatorµ(1)
1 of γ (1)

3 becomes less then−1 and the coherent state
losses its stability. Just after the bifurcation, system(1) demonstrates a variety of two-cluster states with different
ratios of cluster sizesN1 : N2 and with period-6 temporal dynamics. At further decreasingε, these clustered states
appear to split again in a similar period-doubling way.

In Fig. 1, we plot one-parameter bifurcation diagrams originated from the stable period-3 coherent state of system
(1) following the evolution of the dynamics as the coupling parameterε decreases. At each new value ofε, the initial
conditions were slightly randomly perturbed from the asymptotic state of the previous value, and then iterated accord-
ing to(1)without perturbations. In this way, we trace the evolution of the clustered state in system(1)asε decreases.1

Four particular examples of cluster-splitting cascades are presented inFig. 1. As we can see, the bifurcation se-
quences can run in different ways, which depends essentially on perturbations described above. InFig. 1, CkPm(N1 :
N2 : · · · : Nk)denotes a stablek-cluster state with period-m temporal dynamics and withNj elements in thej th clus-
ter (CkQm states for superposition of a period-m cycle with quasiperiodic dynamics). The following cluster-splitting
sequences are obtained:
Fig. 1a: C1P3 (100)⇒ C2P6 (49:51)⇒ C3P12 (23:26:51)⇒ C4P12 (23:26:21:30)

⇒ C5P24 (11:12:26:21:30)⇒ C6P48 (5:6:12:26:21:30).
Fig. 1b: C1P3 (100)⇒ C2P6 (50:50)⇒ C4P12 (24:26:25:25)⇒ C4Q12 (24:26:25:25).
Fig. 1c: C1P3 (100)⇒ C2P6 (47:53)⇒ C3P12 (23:24:53)⇒ C4P24 (10:13:24:53)

⇒ C5P24 (10:13:24:19:34)⇒ C6P24 (10:13:3:21:19:34)⇒ C7P48 (5:5:13:3:21:19:34)
⇒ C9P96 (2:3:2:3:13:3:21:19:34).

Fig. 1d: C1P3 (100)⇒ C2P6 (46:54)⇒ C3P12 (23:23:54)⇒ C5P24 (11:12:11:12:54)
⇒ C5Q24 (11:12:11: 12:54).

Note that the number of clusters can grow by 1 or by 2, moreover, with or without temporal period-doubling.
In one of the cases the cluster-splitting cascade carries on up to nine-cluster states (Fig. 1c). In other cases, it is
terminated by four-cluster quasiperiodic dynamics (Fig. 1b).

1 In this way we consider the clustered states that “smoothly” appear in cluster-splitting bifurcations asε decreases slowly. It is worth noticing
that system(1) may also have many other stable two-cluster states coexisting with those obtained in the calculations.
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Fig. 1. Bifurcation diagrams for system(1) with N = 100 anda = 3.84. The only one branch of the original coherent periodic cycle is shown.
When calculating, small random perturbations of the amplitude 10−9 were applied to the initial conditions at each next value ofε.

3. From coherent to two-cluster state: analytical approach

In this section, we present a complete analytic description of cluster-splitting bifurcation for the simplest case of
the splitting of period-1 1-cluster to a period-2 2-cluster. Although more complex transitions can be, in principle,
handled in a similar way, the corresponding calculations are rather tedious.
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We start with the situation when the fixed pointx∗ = 1−1/a of the logistic mapf (x) = ax(1−x) is stable, i.e.,
its multiplicatorν = (2−a) is less than 1 in absolute value. The symmetric fixed pointγ

(1)
1 = (x∗, x∗) ∈ Π2 is also

stable transversally ifε ∈ (ε−; ε+), whereε± = 1∓1/(2−a), i.e., its transverse multiplicatorµ(1)
1 = (2−a)(1−ε)

derived in accordance with(4) is less than 1 in absolute value. We consider below the case 2< a < 3, then the
transverse multiplicator of the fixed point(x∗, x∗) is equal to−1 atε = ε− = (3 − a)/(2 − a).

To find what happens at this transition we consider the map which acts within the two-cluster subspaceΠ2 of the
form (3):

F2 :

(
x

y

)
�→
(

f (x) + (1 − p)ε(f (y) − f (x))

f (y) + pε(f (x) − f (y))

)
, (5)

wherep = p
(2)
1 and 1− p = p

(2)
2 . Each stable regime in this map forε � ε− corresponds to a possible

cluster-splitting.

3.1. Symmetric splitting

Let p = 1/2 (symmetric, i.e., equally sized, two clusters). Forε < ε−, the mapF2 has period-2 cycleγ (2)
2 =

{(x1, y1), (x2, y2)} out of the diagonalD2 = {(x, y)|x = y} and such thatx1 = y2 andx2 = y1 with coordinates

x1,2 = a(1 − ε) + 1 ±
√
a(a − 2)(1 − ε)2 + 2ε − 3

2a(1 − ε)
.

The cycleγ (2)
2 is stable for the mapF2, i.e., within the two-cluster subspaceΠ2, for ε ∈ (εh; ε−), where

εh = 2a2 − 4a − 3 − √
8a2 − 16a + 9

2a(a − 2)

is a moment of supercritical Hopf bifurcation ofγ
(2)
2 .

The two transverse multiplicatorsµ(2)
1,2 of the symmetric two-cluster state given by the cycleγ

(2)
2 ∈ Π2 are equal

to each other (cf.(4))

µ
(2)
1,2 = f ′(x1)f

′(x2)(1 − ε)2 = f ′(y1)f
′(y2)(1 − ε)2 = a(2 − a)ε2 + 2(a2 − 2a − 1)ε − a2 + 2a + 4.

Then, one can easily find that the in-cluster cycleγ
(2)
2 ∈ Π2 will be stable in the wholeN -dimensional phase space

of system(1) if ε ∈ (εdb; ε−), where

εdb = a2 − 2a − 1 − √
3a2 − 6a + 1

a(a − 2)
.

At ε = εdb, we haveµ(2)
1,2 = −1, andµ(2)

1,2 < −1 for ε < εdb. We can observe thatεh < εdb < ε−, i.e., splitting
occurs prior to the change of the 2-cluster dynamics.

The evolution of the system forp = 1/2 can be described as follows. Let us fixε > ε− in system(1) and start
to decrease it. First, the coherent (one-cluster) state given by the fixed pointγ

(1)
1 symmetrically (i.e., equally sized)

split atε = ε− into stable two-cluster state given byγ (2)
2 with doubling temporal periodicity. Then, atε = εdb, the

two-cluster state loses its stability. In-cluster cycleγ
(2)
2 , being stable within the cluster subspaceΠ2, bifurcates via

transverse period-doubling bifurcation leading to further cluster-splitting transitions.
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3.2. Completely asymmetric splitting

Let p = 0 (another limiting case of the system(5)).
As before, the fixed pointγ (1)

1 = (x∗, x∗) of the mapF2 bifurcates with decreasingε at the same valueε = ε−

via transverse period-doubling bifurcation giving birth to a period-2 cycleγ
(2)
2 = {(x1, y1), (x2, y2)}

x1,2 = a(1 − ε) + 1 ±
√
(a − 1)2(a − ε)2 + ε(1 − ε)(2a − 3) + ε − 4

2a(1 − ε)
, y1,2 = 1 − 1

a
,

which is stable for system(5).
The transverse multiplicatorµ(2)

2 = f ′(y1)f
′(y2)(1 − ε)2 of the cycleγ

(2)
2 equals(2 − a)2(1 − ε)2 and,

consequently, monotonically grows from 1 asε decreases beyondε−. Therefore, in the casep = 0, the cycleγ (2)
2

is born to be transversely unstable.

3.3. General case

To study intermediate cluster splitting, i.e., when 0< p < 1/2, we change the variables

ξ = y + x

2
, η = y − x

2
(6)

transforming the mapF2 into

F̃2 :

(
ξ

η

)
�→
(

f (ξ) + ε(1 − 2p)f ′(ξ)η − aη2

f ′(ξ)(1 − ε)η

)
. (7)

For ε ≤ ε−, there exists a one-dimensional invariant unstable manifoldWu = {(ξ, η)|ξ = ϕ(η)} of the symmetric
fixed point(x∗,0) of the mapF̃2. The Taylor series expansion ofϕ(·) in the vicinity of zero is

ϕ(η) = x∗ + (2p − 1)η + 4ap(1 − p)

2 − a − (2 − a)2(1 − ε)2
η2 + O(|η|3). (8)

Substituting expression(8) into Eq. (7), we obtain a one-dimensional map acting along the manifoldWu (here, we
consider only the terms up to the third order)

h : η �→ (2 − a)(1 − ε)η + 2a(1 − 2p)(1 − ε)η2 + 8a2p(1 − p)(1 − ε)

(2 − a)2(1 − ε)2 + a − 2
η3. (9)

The polynomial variable change

η = g(θ) = θ + bθ2, b = 2a(1 − 2p)

(2 − a)2(1 − ε)2 + a − 2
(10)

removes the quadratic term in(9), and we obtain the following map (neglecting again terms of high order):

h̃ : θ �→ (2 − a)(1 − ε)θ + 8a2(1 − ε)

(
(1 − 2p)2

(2 − a)((2 − a)(1 − ε) − 1)
+ p(1 − p)

(2 − a)2(1 − ε)2 + a − 2

)
θ3.

The fixed pointθ = 0 of the maph̃ undergoes atε = ε− a supercritical period-doubling bifurcation giving birth to
a stable period-2 cycle whose coordinates areθ1,2 = ±√

q/r, where

q = 2(2 − a)(1 − ε)((2 − a)(1 − ε)2 − 1)((2 − a)2(1 − ε)2 − 1)

× [p(1 − p)((2 − a)(1 − ε)(3 − 4ε) − 3) − (2 − a)(1 − ε)2 + 1]
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and

r = 4a(1 − ε)[p(1 − p)((2 − a)(1 − ε)(3 − 4ε) − 3) + (2 − a)(1 − ε)2 − 1].

Applying the variable change(10), we obtain expressions for coordinatesη1,2 of the corresponding period-2 cycle
of the maph

η1,2 = bq ± r
√
q

r2
.

By using the variable change(6), we can rewrite the maximal transverse multiplicatorµ
(2)
2 = f ′(y1)f

′(y2)(1− ε)2

of the cycleγ (2)
2 of the mapF2 in the form

µ
(2)
2 = 1 + 4a2(1 − ε)2η1η2 − 2a(1 − ε)(η3

1 + η3
2)

η1η2
. (11)

Substituting the expressions forη1,2 in (11), we can obtain the transverse multiplicatorµ
(2)
2 as a function ofa, p,

andε: µ(2)
2 = µ

(2)
2 (a, p, ε).

Next, consider a partial derivative ofµ(2)
2 with respect toε at the bifurcation valueε = ε−:

∂µ
(2)
2

∂ε

∣∣∣∣∣
ε=ε−

= 2(a − 1)(a − 2)(3p − 1)

2ap(p − 1) + a − 1
. (12)

For 2< a < 3, the derivative(12) equals 0 atp = 1/3 and it is negative forp < 1/3 and positive forp > 1/3.
At ε = ε−, we haveµ(2)

2 =1. Hence, forp ∈ [0; 1/3), µ(2)
2 grows from 1 asε starts to decrease fromε−; for these

values ofp the periodic 2-cluster orbit is transversally unstable. Alternatively, forp ∈ [1/3; 2/3], µ(2)
2 decreases

from 1 asε decreases fromε−; for these values ofp the periodic 2-cluster orbit is transversally stable. The graphs
of the transverse multiplicatorµ(2)

2 of the two-cluster period-2 cycleγ (2)
2 are plotted inFig. 2 for different values

of parameterp = N1/N .

Fig. 2. Solid curves present graphs of the maximal transverse multiplicatorµ
(2)
2 of the two-cluster period-2 cycleγ (2)

2 for different cluster
partitionsp = N1/N . Only cycles withp > 1/3 are born stable. The dashed curve gives the absolute value of the transverse multiplicator of
the period-1 coherent state. Parametera = 2.9.
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The results above allow us to conclude that the transverse period-doubling bifurcation of the period-1 coherent
state of system ofN coupled maps(1) can lead to the emergence of stable period-2 two-cluster states, provided that
the distribution between the clustersN1 : N2 satisfiesNi/N ≥ 1/3, i = 1,2, or, equivalently, 1/2 ≤ N1/N2 ≤ 2.
Below we shall see that the critical ratioN1/N2 = 1/2 holds also for other cluster-splitting bifurcations induced
by other in-cluster cycles.

4. Two mechanisms of cluster splitting: period-doubling and transcritical

In this section, we describe two mechanisms of cluster-splitting transitions that occur in system(1)when parameter
ε decreases.

Suppose that system(1) has a stableCkPm(N1 : N2 : · · · : NK)-state, i.e., aK-cluster state with period-m
temporal dynamics and with the variable distribution among the clusters of the formN1 : N2 : · · · : NK . In this case,
the systemFK of the form(3)with parameters{p(K)

i }Ki=1,p(K)
i = Ni/N , has a stable period-m cycleγ (K)

m . In-cluster
stability (i.e., stability with respect to theK-dimensional systemFK ) of this cycle is determined byK in-cluster
multiplicatorsν(K)

i , i = 1,K. The other set ofK transverse multiplicatorsµ(K)
i , i = 1,K, calculated in accordance

with (4) control the transverse stability (i.e., stability with respect to out-cluster perturbations) ofγ
(K)
m . The cycle

γ
(K)
m provides a stableK-cluster states if all multiplicatorsν(K)

i andµ(K)
i , i = 1,K, are less than 1 in absolute value.

When the parametersa andε of system(1) vary, the multiplicators ofγ (K)
m may leave the unit disk. In this

connection, we distinguish between two typical cases: Either one of the in-cluster multiplicatorsν
(K)
i or one of

the transverse multiplicatorsµ(K)
i becomes larger than 1 in absolute value. In the first case, the in-cluster attractor

γ
(K)
m bifurcates within the cluster subspaceΠK changing in-cluster dynamics via, e.g., period-doubling, Hopf,

or saddle-node bifurcation. Transversal stability of the cluster state is preserved by continuity, provided that the
bifurcation above is supercritical. In the second case, which is a subject of our interest, the in-cluster cycleγ

(K)
m

losses its stability in the transverse to the cluster subspace directions causing, as we shall see, cluster splitting.
Suppose that one of the transverse multiplicatorsµ

(K)
i leaves the interval [−1; 1] as parameters vary2 while the

others do not; this is a general situation. Below we argue that at this transition theith cluster of system(1) can split
into two clusters. The other clusters remain unaffected as soon as the other transverse multiplicators remains inside
[−1; 1]. To investigate this cluster bifurcation, we consider the(K + 1)-dimensional systemFK+1 of the form(3)
with parameters{p(K+1)

j }K+1
j=1 such thatp(K+1)

j = p
(K)
j for j < i,p(K+1)

i +p
(K+1)
i+1 = p

(K)
i , andp(K+1)

j+1 = p
(K)
j for

j > i. In other words, we seek for a solution where theith cluster splits into two, with still undetermined parameters
p
(K+1)
i andp(K+1)

i+1 . If this new systemFK+1 attains a stable cycleγ (K+1)
q (which is stable also transversely, i.e., all

itsK +1 transverse multiplicators are less than 1 in absolute value), then system(1) demonstrates a cluster-splitting
bifurcation.

In Fig. 3a–c, different mechanisms of cluster-splitting transition are shown schematically. They depend on the
value ofµ(K)

i (−1 or +1) at the bifurcation: (a)µ(K)
i passes through−1, (b) and (c)µ(K)

i passes through+1.

The vertical axis depicts the differenceη between the two newly split clustersy(K+1)
i andy

(K+1)
i+1 . Bold curves

correspond to stable clusters, thin ones to unstable clusters.

4.1. Period-doubling splitting

In Fig. 3a, the period-doubling cluster-splitting transition is presented. Atε = εdb, the transverse multipli-
catorµ(K)

i of the K-cluster cycleγ (K)
m becomes less than−1. The period-m cycle γ

(K)
m undergoes transverse

2 For the system(1), the transverse multiplicatorsµ(K)
i are real as follows from(4), because the coupled maps are one-dimensional.
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Fig. 3. Different mechanisms of cluster-splitting which proceed (a) via period-doubling, (b) pitchfork, and (c) via transcritical bifurcation.
η = y

(K+1)
i − y

(K+1)
i+1 is a difference between two newly spitted clusters. The thin solid and dashed curves correspond, respectively, to stable

and unstable, within the corresponding cluster subspace, in-cluster cycles involved in the bifurcation. The bold solid curves correspond to stable
in the wholeN -dimensional phase space in-cluster cycles. Transverse pitchfork bifurcation (b) does not instantly lead to cluster stable clusters:
They stabilize later atε = εst.

period-doubling bifurcation giving birth to a stable period-2m cycleγ (K+1)
2m which belongs to a(K +1)-cluster sub-

spaceΠK+1. The splitting considered is said to be symmetric if two equal-size clustersp
(K+1)
i = p

(K+1)
i+1 = 1

2p
(K)
i

arise, and asymmetric ifp(K+1)
i �= p

(K+1)
i+1 . While the in-cluster attractorγ (K+1)

2m is born to be stable within the

cluster subspaceΠK+1, the transverse stability ofγ (K+1)
2m depends essentially on the measure of asymmetry, i.e.,

on the ratiop(K+1)
i /p

(K+1)
i+1 . From the consideration ofSection 3it follows that the splitting is stable if 1/2 ≤

p
(K+1)
i /p

(K+1)
i+1 ≤ 2.
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4.2. Pitchfork and transcritical splitting

Another cluster-splitting scenarios occur in system(1) when the transverse multiplicatorµ(K)
i of the cycle

γ
(K)
m passes through 1. Then, the cycleγ

(K)
m losses its transverse stability in pitchfork or transcritical bifurcation

depending on whether symmetric or asymmetric splitting occurs (i.e., depending on the ratiop
(K+1)
i /p

(K+1)
i+1 ).

Indeed, after the bifurcation, there are two stable period-m cyclesγ (K+1)
m,1 andγ (K+1)

m,2 for the corresponding system

FK+1. These cycles are born via a transverse pitchfork bifurcation ofγ
(K)
m at ε = εpf if the splitting is symmetric

(p(K+1)
i = p

(K+1)
i+1 , Fig. 3b). If the splitting is asymmetric(p(K+1)

i �= p
(K+1)
i+1 ), the cyclesγ (K+1)

m,1 andγ (K+1)
m,2 are

born in a saddle-node bifurcation atε = εsn followed by a transcritical bifurcation of the cyclesγ (K)
m andγ

(K+1)
m,2

at ε = εtr = εpf (Fig. 3c, see also Ref.[33]). The transverse stability of the cyclesγ
(K+1)
m,i , i = 1,2 can be argued

as follows. First note that both pitchfork and transcritical bifurcations do not change temporal period. Consider
next the pitchfork bifurcation, one can easily see that here when a fixed point moves away from the diagonal in the
transverse direction, one of the variables decreases and the other increases. This implies that the transversal exponents
corresponding to these variables split: one increases and the other decreases. Thus, one of the new-born clusters will
be transversally unstable, which causes the instability of the whole clustered state. The new-born clusters can stabilize
in theN -dimensional phase space only at some distance from the bifurcation point (bold curves inFig. 3b start from
ε = εst < ε−). At the transcritical bifurcation, where one branch lies far away from the bifurcating solution, different
variants are possible.Fig. 3c demonstrates one possibility, where the cycleγ

(K+1)
m,2 becomes transversely stable at

a distance from the transcritical destabilization ofγ
(K)
m , whereas the other cycleγ (K+1)

m,1 can be transversely stable
even prior to the transcritical bifurcation (bold curves inFig. 3c). In this case, the transverse transcritical bifurcation
of a periodicK-cluster attractor leads to an asymmetric cluster-splitting without change of temporal periodicity.

5. Cluster-splitting cascades

In this section, we follow the cluster-splitting cascades presented inFig. 1and describe in detail the mechanisms
of the cluster-splitting bifurcations outlined in the previous section. As inSection 2, we fix parameter valuea = 3.84
at which logistic mapfa has a stable period-3 cycle. We expect the bifurcation properties to be qualitatively similar
for other periodic windows off .

5.1. Cluster-splitting via period-doubling

Consider the two-dimensional systemF2 of the form(3) (i.e., K = 2 there) having two parametersp(2)
1 and

p
(2)
2 =1 − p

(2)
1 . Suppose, for definiteness, thatp

(2)
1 ≤ 1/2, i.e., the first of the two clusters is not larger of the

second one. For anyε ∈ (ε−; ε+) (ε± are such as inSection 2), systemF2 has a stable period-3 cycleγ (1)
3 on the

diagonalD2 = {(y1, y2)|y1 = y2}. At ε = ε−, the cycleγ (1)
3 undergoes a transverse supercritical period-doubling

bifurcation (multiplicatorµ(1)
1 passes through−1) giving birth to a stable period-6 cycleγ (2)

6 which splits from the
diagonalD2 asε further decreases.

In Fig. 4, the bifurcation diagram in the(p(2)
1 , ε)-parameter plane is presented. The region of the in-cluster stability

of γ (2)
6 is obliquely hatched. It contains two sub-regions:C2P6U andC2P6S . In the regionC2P6S , which is shaded

by dark gray, both transverse multiplicatorsµ
(2)
1 andµ(2)

2 of the cycleγ (2)
6 are less than 1 in absolute value, i.e., this

state is transversally stable. The transition atε = ε− is an example of the cluster-splitting via period-doubling, as
described inSection 4.
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Fig. 4. Cluster-splitting bifurcation diagram for the coherent (one-cluster) state of system(1). The dark gray domain ABCD is the stability
region of two-cluster states with period-6 temporal dynamics and partition{p(2)

1 , p
(2)
2 }. The light gray domain DCEF is the stability region of

three-cluster period-12 states with partition{p(3)
1 , p

(3)
2 , p

(3)
3 }, wherep(3)

1 = p
(3)
2 = 1

2p
(2)
1 andp

(3)
3 = p

(2)
2 . Obliquely and vertically hatched

regions are for the stability of the two- and three-cluster periodic attractors within the corresponding cluster subspaces, respectively. Parameter
a = 3.84.

Although, in general, all values ofp(2)
1 are possible, their relative probabilities are different, as shown inFig. 5.

From the numerical experiments it follows that the most probable clusters to be captured at direct numerical
simulations with randomly distributed initial conditions are close to symmetric ones. If all partitions of elements
in two clusters were equally probable (equipartition), then the probabilities would be equal to the total number
of different two-cluster states, i.e., toN !/(N1!N2!). Asymptotically for largeN , with the use of Stirling formula,
this distribution density can be written asP(p2

1) ∼ exp(N [−p
(2)
1 ln p

(2)
1 − (1 − p

(2)
1 ) ln (1 − p

(2)
1 )]). However,

this simple estimation does not work (seeFig. 5b). In numerical experiments we indeed observe that for large
N the probability density scales asP(p2

1) ∼ exp(Nφ(p
(2)
1 )), but the functionφ is much stronger concentrated near

symmetric partition than one gets from the equipartition. One can conclude that the nearly symmetric clusters have
much larger basin of attraction in the wholeN -dimensional phase space comparing to non-symmetric ones.

If ε further decreases beyond the bifurcation valueε = ε−, the(p(2)
1 , ε)-parameter point leaves the regionC2P6S

through its lower boundary, curve DC inFig. 4. The transverse multiplicatorµ(2)
1 of the period-6 cycleγ (2)

6 (or both

the transverse multiplicatorsµ(2)
1 andµ

(2)
2 if p

(2)
1 = 1/2, point C inFig. 4) becomes less than−1. Here the next

cluster-splitting period-doubling bifurcation occurs; its features can be analyzed analogously to the consideration
above.

To evaluate stability of the new-born clusters, consider the systemF3 of the form(3) with K = 3. There are
three parametersp(3)

i , i = 1,3 such thatp(3)
1 + p

(3)
2 + p

(3)
3 = 1. Consider the casep(3)

1 = p
(3)
2 (= 1

2p
(2)
1 ) and

p
(3)
3 = p

(2)
2 , i.e., the case where in the two-cluster state(p

(2)
1 , p

(2)
2 ) the first cluster splits into two equal parts. First,

in (p
(3)
1 + p

(3)
2 , ε)-parameter plane, we find a region, where systemF3 has a stable period-12 cycleγ (3)

12 . In Fig. 4,
this region is vertically hatched being delineated by two thin dot-dashed curves. It contains a sub-regionC3P12S ,
where the cycleγ (3)

12 is stable inN dimensions so as, in addition, all three transverse multiplicatorsµ
(3)
i , i = 1,3

of γ (3)
12 are less than 1 in absolute value. This regionC3P12S is shaded by light gray inFig. 4 and bounded by
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Fig. 5. (a) Probability for a trajectory of system(1) to be attracted by a two-cluster state with partition{p(2)
1 , p

(2)
2 } after transverse destabilization

the coherent state. The average has been done over 10,000 initial conditions randomly distributed in a small neighborhood (diameter is 10−9)
of the unstable coherent state forε slightly beyond its transverse period-doubling bifurcation. Parametera = 3.84. (b) The same probabilities
as densities in the scaled coordinates, where the vertical axis represents( ln P − 0.5 ln N)/N , to reveal the scaling behavior for largeN . The
scaling distribution resulting from the equipartition hypothesis is shown with dashed curve.

bold dashed curves. One can see that the regionsC2P6S andC3P12S are fitted each to other along the arc DC.
Therefore, the transverse period-doubling bifurcation of the two-cluster period-6 cycleγ

(2)
6 induces cluster splitting

of one of the two clusters leading to the appearance of stable three-cluster states of double temporal periodicity.
If p

(2)
1 < p

(2)
2 (the casep(2)

1 = p
(2)
2 will be consider later inSection 5.3), then the smallerp(2)

1 -cluster of
the two-cluster state splits into two sub-clusters. After the bifurcation, system(1) has stable three-cluster states
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Fig. 6. Cluster-splitting bifurcation diagram of a three-cluster state.C3P12S is a stability regions for period-12 three-cluster states with a
partition {p(3)

i }3
i=1 such thatp(3)

3 = 0.532 is fixed (p(3)
1 + p

(3)
2 = 0.468).C4P24S is a stability region for period-24 four-cluster states with

partition{p(4)
i }4

i=1 such thatp(4)
1 = p

(4)
2 = 1

2p
(3)
1 , p(4)

3 = p
(3)
2 , andp(4)

4 = p
(3)
3 . Parametera = 3.84.

with variables distribution among the clusters of the formp
(3)
1 N : p

(3)
2 N : p

(3)
3 N , wherep(3)

1 + p
(3)
2 = p

(2)
1 and

p
(3)
3 = p

(2)
2 . Splitting is symmetric ifp(3)

1 = p
(3)
2 (Fig. 4).

In Fig. 6, the region of stability of three-cluster states, denoted byC3P12S , is presented for the casep(3)
1 ≤ p

(3)
2 ,

where the sump(3)
1 +p

(3)
2 = p

(2)
1 is fixed, i.e., when the three-cluster states are born in period-doubling splitting of

a two-cluster state with some fixed partition{p(2)
1 ,1− p

(2)
1 }. As one can conclude, the cluster-splitting bifurcation

of the two-cluster state runs in the same way as for the coherent (one-cluster) state. It results in a variety of stable
three-cluster states of period-12 temporal periodicity. In this case, thep

(2)
1 -cluster can split via period-doubling into

either two equal sub-clustersp(3)
1 = p

(3)
2 (symmetric splitting) or non-equal sub-clustersp

(3)
1 < p

(3)
2 (asymmetric

splitting).
With further decrease of the coupling parameterε, the parameter point on the plane(p

(3)
1 , ε) leaves regionC3P12S

through its lower boundary (the bifurcation curve FEC inFig. 4or the curve AB inFig. 6). The three-cluster attractor
γ

(3)
12 losses its stability in transverse to the cluster subspaceΠ3 directions. Depending on the values of the parameters

p
(3)
i , the transverse bifurcation ofγ (3)

12 may develop differently as it is demonstrated inFig. 3a and c. There are
two possibilities related to two arcs FE and EC of the bifurcation curve FEC bounding the regionC3P12S from
below inFig. 4. The critical bifurcation value for the parameterp

(2)
1 = p

(3)
1 +p

(3)
2 is given by the point E for which

p
(2)
1 ≈ 0.47. Then clearlyp(3)

3 ≈ 0.53.

Consider first the casep(2)
1 < 0.47, thenp(3)

3 > 0.53. Forp(3)
3 = 0.532, the stability regionC3P12S of the

three-cluster periodic attractorγ (3)
12 is delineated by solid bold curves inFig. 6. Along the bifurcation curve AB,

the transverse multiplicatorµ(3)
1 of the cycleγ (3)

12 (or two multiplicatorsµ(3)
1 andµ

(3)
2 if p

(3)
1 = p

(3)
2 , point B in

Fig. 6, this case will be considered later inSection 5.3) becomes equal to−1. The cycle undergoes transverse
period-doubling bifurcation. In addition, it remains stable within the cluster subspaceΠ3. Therefore, we can apply
the above-described cluster-splitting procedure for the transition from three to four clusters.

Consider a systemF4 of the form(3) with K = 4 and parametersp(4)
i , i = 1,4, such thatp(4)

1 = p
(4)
2 = 1

2p
(3)
1 ,

p
(4)
3 = p

(3)
2 , andp

(4)
4 = p

(3)
3 . At the transverse period-doubling bifurcation of the cycleγ

(3)
12 , F4 attains a stable
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period-24 cycleγ (4)
24 (vertically hatched region in(p(4)

1 + p
(4)
2 , ε)-parameter plane,Fig. 6). For the considered

case of symmetric splitting, i.e.,p(4)
1 = p

(4)
2 , the four-cluster cycleγ (4)

24 is born to be also stable in the whole
N -dimensional phase space of system(1). The regionC4P24S of theN -dimensional stability is shaded by light
gray inFig. 6. Thus, we again observe cluster-splitting bifurcation: Thep

(3)
1 -cluster, which is the smallest in the

partition {p(3)
1 , p

(3)
2 , p

(3)
3 }, splits into two sub-clusters via temporal period-doubling producing stable four-cluster

period-24 states.
In the case of asymmetric splittingp(4)

1 �= p
(4)
2 , the transverse stability of the cycleγ (4)

24 depends essentially

on the level of asymmetryp(4)
1 /p

(4)
2 between the two newly split sub-clusters. The situation is analogous to that

described above for the splitting of coherent and two-cluster states, seeFigs. 4 and 6, respectively.

5.2. Transcritical cluster splitting

The transcritical cluster-splitting bifurcation scenario (seeFig. 3c) occurs for the three-cluster stateC3P12 in
the casep(3)

3 < 0.53. Thenp(2)
1 > 0.47 and the destabilization ofγ (3)

12 is caused by crossing the bifurcation curves

CE in Fig. 4by the parameter point(p(2)
1 , ε). Along this bifurcation curve, the transverse multiplicatorµ

(3)
3 of the

three-cluster cycleγ (3)
12 is equal to 1, i.e., thep(3)

3 -cluster splits as parameterε decreases via a pitchfork/transcritical
bifurcation.

In Fig. 7, we present a typical diagram of this bifurcation for a fixed valuep
(3)
3 < 0.53. The multiplicator is

µ
(3)
3 = 1 along the bifurcation curve AB. Below the curve, the four-dimensional systemF4 of the form(3) with

parametersp(4)
i , i = 1,4, such thatp(4)

1 = p
(3)
1 , p(4)

2 = p
(3)
2 , andp(4)

3 = p
(4)
4 = 1

2p
(3)
3 (symmetric splitting) has

two period-12 cyclesγ (4)
12,1 andγ (4)

12,2. Both cycles are born in a transverse pitchfork bifurcation of the three-cluster

cycleγ
(3)
12 and are stable for the systemF4, i.e., within the cluster subspaceΠ4. In Fig. 7, in-cluster stability region

of γ (4)
12,i is hatched by vertical lines.

Sub-region of theN -dimensional stability of the four-cluster cyclesγ
(4)
12,i , i = 1,2 is shaded by light gray and de-

noted byC4P12S in Fig. 7. As one can see, there is a gap between the bifurcation curves AB and CD inFig. 7a, where
the four-cluster states considered are transversely unstable. The gap becomes less visible as asymmetry between the
clusters decreases, seeFig. 7b. Therefore, the transverse pitchfork bifurcation of a periodic in-cluster attractor does
not directly results in a stable cluster splitting: All newly born clusters appear first to be unstable. Nevertheless,
soon after the bifurcation they stabilize. Cluster-splitting occurs but with “a parameter delay”, see alsoFig. 3b.

Consider now the generic case, where the splitting is asymmetric:p
(4)
3 + p

(4)
4 = p

(3)
3 , p(4)

3 ≤ p
(4)
4 . For fixed

p
(4)
1 = 0.22 andp(4)

2 = 0.26, the regionsC4P12S1 andC4P12S2 of stability inN dimensions of the cyclesγ (4)
12,1 and

γ
(4)
12,2, respectively, are delineated inFig. 8. In the subplot, the dotted rectangle is enlarged, where the thin dot-dashed

horizontal line at the valueεtr = −0.167443 indicates the moment at which the three-cluster period-12 cycleγ
(3)
12

losses its transverse stability in a transcritical bifurcation. The three-cluster partition is{0.22,0.26,0.52}.
One can see inFig. 8 that, at the moment when period-12 three-cluster stateC3P12 losses its stability in the

transcritical bifurcation, the onlyγ (4)
12,1 cycle can be stable (inN dimensions), which occurs whenp(4)

3 is smaller
than the abscissa of the pointF (shown in the subplot). Therefore, the transverse transcritical bifurcation of periodic
in-cluster attractor leads to asymmetric cluster splitting as was also observed inFig. 1a and c.

5.3. Symmetric cluster-splitting

Here we discuss a situation mentioned already inSection 5.1, namely the case, where the coherent period-3 state
symmetrically splits into two-cluster states with partition{p(2)

1 , p
(2)
2 } such thatp(2)

1 = p
(2)
2 = 1/2. This splitting
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Fig. 7. Cluster-splitting bifurcation diagram for pitchfork transverse destabilization of the generative cycleγ
(3)
12 .C3P12S andC4P12S are stability

regions for period-12 three- and four-cluster states with the following partitions: (a)p
(3)
3 = 0.52 is fixed andp(4)

3 = p
(4)
4 = 1

2p
(3)
3 = 0.26. (b)

p
(3)
3 = 0.506 is fixed andp(4)

3 = p
(4)
4 = 1

2p
(3)
3 = 0.253. Parametera = 3.84.

proceeds via temporal period-doubling. After the bifurcation, a stable symmetric period-6 two-cluster statesC2P6
appears, seeFig. 4. Both the transverse multiplicatorsµ(2)

i , i = 1,2 of C2P6 are equal to each other and, with
decreasingε, become less than−1 (bifurcation pointC in Fig. 4). Therefore, at this bifurcation, both clusters
split simultaneously via temporal period-doubling bifurcation giving rise to stable four-cluster states with variable
distribution among the clustersp(4)

1 N : p(4)
2 N : p(4)

3 N : p(4)
4 N , wherep(4)

1 +p
(4)
2 = p

(2)
1 andp(4)

3 +p
(4)
4 = p

(2)
2 . At

this transition, each of two clustersp(2)
i , i = 1,2, may split symmetrically (p(4)

i = 1/4, i = 1,4) or asymmetrically

(p(4)
i �= p

(4)
j , i �≡ j ) independently of the splitting of the other cluster. Symmetric splitting is always stable,
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Fig. 8. Stability regions of four-cluster period-12 states of system(1) originated from the cyclesγ (4)
12,1 (bounded by bold solid curves) andγ (4)

12,2

(bounded by bold dashed curves). The partition{p(4)
i }4

i=1 is such thatp(4)
1 = 0.22 andp(4)

2 = 0.26. Dot-dashed horizontal line in the subplot
corresponds to transcritical loss of transverse stability byC3P12-state with partition{0.22,0.26,0.52}. Parametera = 3.84.

whereas the asymmetric splitting is stable if 1/2 ≤ p
(4)
1 /p

(4)
2 ≤ 2 and 1/2 ≤ p

(4)
3 /p

(4)
4 ≤ 2. The stability regions

of C4P12-states are denoted byC4P12S in Fig. 9a.
With further decreasingε, the four-cluster states bifurcate either within its cluster subspaceΠ4 via Hopf bifurcation

(the bifurcation curve CD inFig. 9a) or via transverse period-doubling when the clusterp
(4)
1 (the bifurcation curve

DE) orp(4)
4 (the bifurcation curve EF) splits, resulting in stable period-24 five-cluster states.

Fig. 9b shows the situation when a period-12 three-cluster state with a distribution among clustersp
(3)
1 N : p(3)

2 N :

p
(3)
3 N such thatp(3)

1 = p
(3)
2 , bifurcates via transverse period-doubling (the bifurcation curve EF inFig. 4or point B

in Fig. 6). (Such a three-cluster state has arisen before from the period-6 two-cluster state with partition{p(2)
1 , p

(2)
2 }

via symmetric period-doubling splitting of thep(2)
1 -cluster into two equal sub-clustersp(3)

1 = p
(3)
2 = 1

2p
(2)
1 , see

Fig. 4, point C.) Then period-24 five-cluster states arise. Their region of stability is presented inFig. 9b and denoted
byC5P24S . Each of these clustered states are born at the moment of loss of transverse stability by the three-cluster
statesC3P12 atε ≈ −0.1702. At the bifurcation, two equal clustersp(3)

1 andp(3)
2 of C3P12 split simultaneously

via transverse period-doubling resulting in the appearance of a variety of stable period-24 five-cluster states.
With further decreasingε, the five-cluster states bifurcate within the cluster subspace via period-doubling (bifur-

cation curve EF inFig. 9b) or via Hopf bifurcation (bifurcation curve CD). Moreover, the five-cluster states may also
bifurcate with cluster splitting (bifurcation curves DE and FG) whenp

(5)
3 -cluster splits via temporal period-doubling

giving birth to stable period-48 six-cluster states.

5.4. Cluster transition tree

We summarize our findings inFig. 10, where the cluster transitions up to five-cluster states are collected schemat-
ically.

With decreasing the coupling parameterε, the coherent period-3 stateC1P3 splits into two-cluster statesC2P6
with partition{p(2)

1 , p
(2)
2 } via temporal period-doubling (bifurcation curve AB inFig. 4, transition I inFig. 10). The
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Fig. 9. (a) Stability regions of period-12 four-cluster states with partition{p(4)
i }4

i=1 that arise after cluster-splitting bifurcation of symmetric

period-6 two-cluster state. (b) Stability regions of period-24 five-cluster states with partition{p(5)
i }5

i=1 that arise after cluster-splitting bifurcation

of period-12 three-cluster state with two equal clustersp
(3)
1 = p

(3)
2 and withp(3)

3 = 0.54 = p
(5)
5 . Parametera = 3.84.

splitting can be symmetric (p(2)
1 = p

(2)
2 ) or asymmetric (p(2)

1 �= p
(2)
2 ). In the latter case, the two-cluster stateC2P6

splits via period-doubling into three-cluster statesC3P12 with partition{p(3)
i }3

i=1 such thatp(3)
1 +p

(3)
2 = p

(2)
1 and

p
(3)
3 = p

(2)
2 (bifurcation curve CD inFig. 4, transition II inFig. 10). If the splitting of the coherent state has been

symmetric, the two cluster stateC2P6 splits via temporal period-doubling into four-cluster statesC4P12 with
partition{p(4)

i }4
i=1 such thatp(4)

1 +p
(4)
2 = p

(2)
1 andp(4)

3 +p
(4)
4 = p

(2)
2 (bifurcation point C inFig. 4, transition III in

Fig. 10). The stateC4P12 can then bifurcate within the cluster subspace via Hopf bifurcation (curve CD inFig. 9a,
transition VII inFig. 10) or it can split via temporal period-doubling into five-cluster statesC5P24 (transition VIII
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Fig. 10. Schematic representation of bifurcation sequences and emergence of clustered states that take place in system(1) after loss of stability
by periodic coherent state.CkPm denotesk-cluster states with period-m temporal dynamics (Q is for quasiperiodic motion).

in Fig. 10) with partition{p(5)
i }5

i=1 such thatp(5)
1 + p

(5)
2 = p

(4)
1 andp(5)

i+1 = p
(4)
i , i = 2,3,4 (bifurcation curve DE

in Fig. 9a) orp(5)
i = p

(4)
i , i = 1,2,3 andp(5)

4 + p
(5)
5 = p

(4)
4 (bifurcation curve EF inFig. 9a).

The three-cluster stateC3P12 with partition{p(3)
i }3

i=1 losses its transverse stability either via transverse period-
doubling or transcritical (pitchfork) bifurcation. In the latter case, the stateC3P12 asymmetrically splits into
four-cluster statesC4P12 of the same temporal periodicity and with partition{p(4)

i }4
i=1 such thatp(4)

1 = p
(3)
1 ,

p
(4)
2 = p

(3)
2 , andp(4)

3 +p
(4)
4 = p

(3)
3 (seeFigs. 7 and 8, transition V inFig. 10). The four-cluster stateC4P12, in its

turn, can bifurcate within the cluster subspace via Hopf bifurcation (curve CD inFig. 7b, transition VII inFig. 10)
or split into five-cluster states via temporal period-doubling bifurcation (curve CD inFig. 8, thep

(4)
1 -cluster splits,

transition VIII in Fig. 10) or via transverse transcritical bifurcation (bifurcation curve AD inFig. 8, thep(4)
4 -cluster

splits, transition IX inFig. 10).
If the partition{p(3)

i }3
i=1 of the three-cluster stateC3P12 admits period-doubling cluster splitting (seeSection

5.1), then the clustered stateC3P12 bifurcates either into four- or into five-cluster states. In the latter case which
occurs whenp(3)

1 = p
(3)
2 , the stateC3P12 splits into five-cluster statesC5P24 with partition{p(5)

i }5
i=1 such that

p
(5)
1 +p

(5)
2 = p

(3)
1 , p(5)

3 +p
(5)
4 = p

(3)
2 , andp(5)

5 = p
(3)
3 (the bifurcation curve EF inFig. 4and the bifurcation point

B in Fig. 6, transition VI inFig. 10). The five-cluster stateC5P24 can then bifurcate within its cluster subspace via
Hopf or via period-doubling bifurcations (curves CD and EF, respectively, inFig. 9b; transition XII inFig. 10), or
split into six-cluster states via temporal period-doubling (curves DE and FG inFig. 9b; transition is not shown in
Fig. 10).

In the casep(3)
1 < p

(3)
2 , i.e., where the stateC3P12 is born via asymmetric splitting of the two-cluster stateC2P6,

the cluster transition proceeds also through a temporal period-doubling. The stateC3P12 splits into four-cluster
statesC4P24 (bifurcation curve AB inFig. 6, thep(3)

1 -cluster splits; transition IV inFig. 10). With further decreasing
the control parameterε, the stateC4P24 bifurcates intoC5P24-states via transcritical bifurcation (Fig. 6, the
bifurcation curves BC and AF, wherep(4)

3 -cluster splits, and the bifurcation curves CD and EF, wherep
(4)
4 -cluster

splits; transition X inFig. 10). The stateC4P24 can also bifurcate into period-48 five-cluster statesC5P48 (transition
XI in Fig. 10) or six-cluster statesC6P48 (bifurcation curve DE inFig. 6,p(4)

1 -cluster or bothp(4)
1 - andp(4)

2 -clusters
split via temporal period-doubling, respectively).

With regards to the transitions presented inFig. 10, the bifurcations shown inFig. 1can be classified as follows:

Fig. 1a: The transitions I→ II → V → VIII.
Fig. 1b: The transitions I→ III → VII.
Fig. 1c: The transitions I→ II → IV → X.
Fig. 1d: The transitions I→ II → VI → XII.
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6. Conclusion

In this paper, we have described cluster-splitting bifurcations in globally coupled identical chaotic maps. We
have focused on the simplest case, where the underlying dynamical regime is periodic. The main difficulty in the
description of the cluster-splitting is in the enormous degeneracy of the linearized dynamics: If a cluster consisting of
Ni elements becomes transversally unstable,Ni − 1 directions in the phase space become unstable simultaneously.

Our approach was to look for possible stable regimes that can result from the bifurcation in the simple classes
of new-born solutions. In most cases stable supercritical regimes corresponding to splitting of unstable cluster in
two new ones do exist. Nevertheless, a great amount of degeneracy still remains due to different possible partitions
of elements between new-born clusters. We have demonstrated that in the case of period-doubling splitting only
partitions with ratios between 1/2 and 2 are stable, although statistically seen more probable are partitions with
ratios close to 1. This statistical feature of the cluster splitting requires the bifurcation diagram to be manifold: the
later bifurcations depend essentially on the partitions in the previous ones. This multiplicity in bifurcation diagrams
makes the population of coupled systems very complex even if the dynamics is not chaotic.
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