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Abstract

We consider cluster-splitting bifurcations in a system of globally coupled maps as coupling parameter decreases. At these
transitions the number of clusters, i.e., groups of elements with identical dynamics, increases. We demonstrate that different
cascades of cluster-splitting can occur, depending on statistics of redistribution of the oscillators between new-born clusters.
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1. Introduction

Ensembles of coupled chaotic oscillators have received a large attention in the last decade. Two typical models are
usually studied in this context: lattices with local in space interadfig?], and populations with global (all-to-all)
coupling[3-5]. The interesting phenomenon of non-trivial collective dynamics in such systems is a subject of
intensive study using their transfer (Frobenius—Perron) opeféjofinite-size collective Lyapunov exponents
[7,8], directed percolation universality clag, and a linear response functi¢tO]. Recently, an experimental
investigation of 64 globally coupled chaotic electrochemical oscillators has been perfdtthéthese studies have
revealed, that already coupling of identical chaotic oscillators demonstrates non-trivial synchronization patterns.

Many aspects of the dynamics can be obtained already in the simplest model of globally coupled maps, introduced
by Kaneko[12]

N
xi(n+1)=A—e)fxin)+ % j;f(xj(n)), i=12....N. @)

wherex = {x; (n)}l?\’:1 is a state vector attime =0, 1, ..., ¢ € Ris the coupling parameter, and: R — Ris a
one-dimensional map. For further studies of this model, see, e.g.,[R&f20]and references therein.

An interesting form of asymptotic behavior that can arise in the system of globally coupled s plustering
[12] or partial synchronizatioff1]. The population of oscillators splits int subgroups
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_ _ _ def _ _ _ def
Xipg = Xip =+ = Xiy, = V1, Xingrr = Xingp2 = 0 = Xiyjyn, = V25 ce

def
XNy NpttNg 11 = NNy Nt b Ng g2 = 70 = Xiy =YK (2
called clusters such that all oscillators within a given cluster asymptotically move in synchrony. The number of
variablesy; that synchronize into a given staggis denoted byv;, such thaﬁjf=1 N; = N. Note that, under the
conditions above, syste(tt) can posses many differekt-cluster states with the same variable distribution among
the cluster$13]. Clustering has been also observed in experiments with ctjadiiand periodi¢22—24]dynamics.
In-cluster dynamics of & -cluster state is governed by tikedimensional systenfix of the form

K
Y+ =A—-e)foim) +e Yy pi fm), i=1...K, (3)
j=1

obtained after direct reduction ¢if) to the cluster subspadéx defined by(2). This system is again a population of
globally coupled maps, but the coupling comes with weight parampﬁﬁ?s: N;/N corresponding to the relative
number of variables; belonging to thejth cluster. One-cluster (or coherent) state, for instance, is characterized

by the dynamics, where all elements in the ensemble considered display the same temporal variation. In this case,
the dynamics is restricted to the diago®al = {(x1, x2, ..., xn)|x1 = x2 = --- = xy} and is governed by the
one-dimensional maj.

Typically, with the decrease of the coupling parameteme observes an increase of the number of clusters.
Indeed, in the limiting case of strongest coupling= 1 the one-cluster state is superstable: It appears in one
time step. From the other side, for vanishing coupling, when dynamics of the mappsmghaotic, no clusters
appear. The whole phase diagram is rather compleX12}). In this paper, we focus on a certain aspect of the
order—disorder transition in systeh), namely on the cluster-splitting bifurcations, at which the number of clusters
increases. Moreover, we restrict mainly our attention to the case of periodic clusters, which play an important role
at large couplings, sgé2-15,25,26] Stability and bifurcations of spatially homogeneous and clustered periodic
solutions of coupled systems have been also studied in Rafs30] A particular case of the cluster-splitting
cascade, cluster doubling, has also been demonstrated ifilREfor a system of globally coupled logistic maps
and for systems of globally coupled Duffing oscillators and Josephson junction series arrays.

The starting point in the consideration of cluster-splitting is the investigation of stability of a cluster state. The
system ofV coupled map$l) has a stabl& -cluster state with the distribution of the oscillators among the clusters
N1: Nz :---: Nk if the following conditions are fulfilled:

(i) K-dimensional in-cluster syste(8) has an attractad(X);
(i) in-cluster attractordX) is also an attractor of the originAl-dimensional systerttL).

For the condition (ii) to be fulfilledK transverse Lyapunov exponeifi?$,31]

k,
,\““_nm Z|n|f/(yj(n))|+|n|1—8|, ji=12....K (4)
n=0

of A%) must be negativg82]. Note, that each Lyapunov exponeri{{) is of multiplicity N; — 1. Itis responsible
for growth of perturbations destroying the identity of the elements ofitheluster. Thus the splitting of thgh
cluster is governed by the LELK;
In this paper, we study mechanisms of cluster-splitting transitions of periodic regimes in $¥stéfa show that
the transition can typically proceed via one of the two following local bifurcations of a stable periodic in-cluster orbit:
Transverse period-doubling or transverse transcritical bifurcations. Under these bifurcations, one of the clusters splits
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into two stable sub-clusters, thus the total number of clusters increases by one. We observe characteristic cascad:
of such cluster-splitting bifurcations and conclude that the type of the next splitting bifurcation essentially depends
on the form of the previous splitting.

2. Cluster splitting: numerical observation

In this section, we describe how the cluster-splitting transitions appear in numerical experiments. A detailed
description and the theory will be presented in the sections below.

Consider systertil) of N = 100 coupled logistic mapg(x) = ax(1 — x) with the nonlinearity parameterand
x € [0; 1]. Choose the parameter value= 3.84 providing that the map has an attracting period-3 cyclg (its
multiplicator is equal t&# ~ —0.8753). The symmetric period-3 cyc;lél> (originated by the cyclgs) belonging to
the main diagonaDy forms a coherent (one-cluster) state which will be stable in the wNet#tmensional phase
space if transverse multiplicatpfll) = v(1—¢)3 calculated in accordance wih) is less than 1 in absolute value.

It can be easily found that this happens for a range of the coupling parasmeter—; ¢*), wheres™ ~ —0.0454
ande™ &~ 2.0454. Thus, for this range af system(1) has the asymptotically stable coherent state with period-3
temporal dynamics.

With decreasing beyonds—, the transverse multiplicatq)aill) of y3(1) becomes less thenl and the coherent state
losses its stability. Just after the bifurcation, syst@)demonstrates a variety of two-cluster states with different
ratios of cluster size#/; : N> and with period-6 temporal dynamics. At further decreasinpese clustered states
appear to split again in a similar period-doubling way.

In Fig. 1, we plot one-parameter bifurcation diagrams originated from the stable period-3 coherent state of system
(1) following the evolution of the dynamics as the coupling parametiecreases. At each new valuesothe initial
conditions were slightly randomly perturbed from the asymptotic state of the previous value, and then iterated accord-
ing to(1) without perturbations. In this way, we trace the evolution of the clustered state in §yi3esn decreases.

Four particular examples of cluster-splitting cascades are preseriggl ih As we can see, the bifurcation se-
guences can run in different ways, which depends essentially on perturbations described &bgve QRPmM(N7 :

N> :---: Ny) denotes a stablecluster state with period: temporal dynamics and withi; elements in thgth clus-
ter (CkQmstates for superposition of a periedeycle with quasiperiodic dynamics). The following cluster-splitting
sequences are obtained:
Fig. 1a: C1P3(100)= C2P6 (49:51)= C3P12 (23:26:51)= C4P12 (23:26:21:30)
= C5P24 (11:12:26:21:30 C6P48 (5:6:12:26:21:30).
Fig. 1b: C1P3 (100)= C2P6 (50:50)= C4P12 (24:26:25:25)} C4Q12 (24:26:25:25).
Fig. Ic: C1P3 (100)= C2P6 (47:53)= C3P12 (23:24:53)= C4P24 (10:13:24:53)
= C5P24 (10:13:24:19:343 C6P24 (10:13:3:21:19:34% C7P48 (5:5:13:3:21:19:34)
= C9P96 (2:3:2:3:13:3:21:19:34).
Fig. 1d: C1P3 (100)= C2P6 (46:54)= C3P12 (23:23:54)= C5P24 (11:12:11:12:54)
= C5024 (11:12:11: 12:54).

Note that the number of clusters can grow by 1 or by 2, moreover, with or without temporal period-doubling.
In one of the cases the cluster-splitting cascade carries on up to nine-clusteriStatés)( In other cases, it is
terminated by four-cluster quasiperiodic dynamiegy( 1b).

1 In this way we consider the clustered states that “smoothly” appear in cluster-splitting bifurcaticescasases slowly. It is worth noticing
that systen{1) may also have many other stable two-cluster states coexisting with those obtained in the calculations.
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Fig. 1. Bifurcation diagrams for systefth) with N = 100 andz = 3.84. The only one branch of the original coherent periodic cycle is shown.
When calculating, small random perturbations of the amplitud@ Weere applied to the initial conditions at each next value.of

3. From coherent to two-cluster state: analytical approach
In this section, we present a complete analytic description of cluster-splitting bifurcation for the simplest case of

the splitting of period-1 1-cluster to a period-2 2-cluster. Although more complex transitions can be, in principle,
handled in a similar way, the corresponding calculations are rather tedious.
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We start with the situation when the fixed pairft= 1 — 1/a of the logistic mapf (x) = ax(1—x) is stable, i.e.,
its multiplicatorv = (2—a) is less than 1 in absolute value. The symmetric fixed gqﬁﬂt: (x*, x*) e I1pis also
stable transversally if € (¢7; e1), wheres* = 151/(2—a), i.e., itstransverse multiplicat@u‘ll) =2—-a)(1—¢)
derived in accordance witfd) is less than 1 in absolute value. We consider below the casai2< 3, then the
transverse multiplicator of the fixed poiat*, x*) is equalto—1 ate = ¢~ = (3—a)/(2 — a).

To find what happens at this transition we consider the map which acts within the two-cluster suspatiee
form (3):

<x> (f(x)+(1—p)s(f(y)—f(x))>
Fo: > ,

%)
y f) +pe(fx)— f(y)

wherep = pf) and 1— p = péz). Each stable regime in this map fer < ¢~ corresponds to a possible

cluster-splitting.

3.1. Symmetric splitting

Let p = 1/2 (symmetric, i.e., equally sized, two clusters). Eot ¢~, the mapF> has period-2 cycl%(z) =

{(x1, y1), (x2, y2)} out of the diagonaD, = {(x, y)|x = y} and such that; = y» andx, = y1 with coordinates

al—g)+1+Vala—2)1—e)2+2c—3
2a(1—¢) ’

X12 =

The cycleyz(z) is stable for the mapy, i.e., within the two-cluster subspafb, for ¢ € (en; ¢7), where

o _ 202 —4a—3—8®—16a+09
h= 2a(a — 2)

is a moment of supercritical Hopf bifurcation pf”.
The two transverse multiplicato 2; of the symmetric two-cluster state given by the cy;z;j@ € II are equal
to each other (cf(4))

uy = a0 f - = fODf 21— o) = a@ - a)e? + 2(a® — 2a — e — a® + 2a + 4.

Then, one can easily find that the in-cluster cy@@ € IT, will be stable in the whol&v-dimensional phase space
of system(1) if ¢ € (eqp; £€7), Where

a?—2a—1—+/3a2—-6a+1
ala —2) '

&db =
At ¢ = ggp, We haveu(f)2 = -1, and,u(f; < —1fore < eqp. We can observe that, < egp < €7, i.e., splitting
occurs prior to the change of the 2-cluster dynamics.

The evolution of the system fgr = 1/2 can be described as follows. Let us fix- ¢~ in system(1) and start
to decrease it. First, the coherent (one-cluster) state given by the fixed/féisymmetrically (i.e., equally sized)
split ate = ¢~ into stable two-cluster state given Ipf) with doubling temporal periodicity. Then, at= gqp, the
two-cluster state loses its stability. In-cluster cypf@, being stable within the cluster subspdég bifurcates via
transverse period-doubling bifurcation leading to further cluster-splitting transitions.
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3.2. Completely asymmetric splitting

Let p = 0 (another limiting case of the systd®)).
As before, the fixed poirutrl(l) = (x*, x*) of the mapF> bifurcates with decreasingat the same value = ¢~

via transverse period-doubling bifurcation giving birth to a period-2 cyﬁé: {(x1, y1), (x2, y2)}

Call-e)+1+/@a-1D2a—e)2+e(l—¢e)(2a—3) +ec—4

1.2 2a(1—¢) ’

vi2=1-—,
a

which is stable for systertb).
The transverse multiplicatqry) = f/(y1) f'(y2)(1 — )2 of the cycley,? equals(2 — a)2(1 — ¢)2 and,

consequently, monotonically grows from lsadecreases beyond . Therefore, in the case = 0, the cycleyz(z)

is born to be transversely unstable.
3.3. General case

To study intermediate cluster splitting, i.e., wherQ < 1/2, we change the variables
y+x y—x
= . = 6
3 5 n 5 (6)

transforming the map> into

- (s > & +e—2p)f'E)n —an?

Fo: — , .

n SE)QA—e)n
Fore < &7, there exists a one-dimensional invariant unstable manidid= {(§, n)|é = ¢(n)} of the symmetric
fixed point(x*, 0) of the mapﬁz. The Taylor series expansion @f-) in the vicinity of zero is
4ap(1 — p)

2—a—(2—a)21—-¢)

Substituting expressiof8) into Eq. (7) we obtain a one-dimensional map acting along the maniididhere, we
consider only the terms up to the third order)

(1

o) =x*+2p—Dn + 5%+ O(In[3). ®)

8a?p(l—p)(1—e) 4

. _ _ _ 2
hin— 2-a)1l—-en+2a(l-2p)1—e)n°+ (2—a)2(1—s)2+a—2n 9
The polynomial variable change
n=g0)=6+b0% b= 2a(1=2p) (10)

T 2-a)2(l—-8)2+a-2
removes the quadratic term (@), and we obtain the following map (neglecting again terms of high order):

(1—2p)? N p(1—p) ) 93
C-a)2-a)l-e) -1  2-a2l—-e2+a-2)

hi6 (2—a)(1—8)9+8a2(1—8)<
The fixed poin® = 0 of the map: undergoes at = ¢~ a supercritical period-doubling bifurcation giving birth to

a stable period-2 cycle whose coordinateshare= +.,/q/r, where

¢ =22-a)1—-e)(2-a)l-¢e)?-D(2-a)’1L—-e)?-1)
x[pA—p)(2—a)1—e)B—4e) —3) —2—a)1—e)? +1]



112 O. Popovych et al. / Physica D 168-169 (2002) 106-125
and
r=4al—e)[pl—p)((R—-a)1—e)(3—4e) =3+ (2—a)(l—e)®—1].

Applying the variable chang@0), we obtain expressions for coordinatgs of the corresponding period-2 cycle
of the maph

ba+r./q
n2=—>%—-
,

By using the variable chang6), we can rewrite the maximal transverse multiplicajé? = ') f/(y2)(1—¢)?

of the cycleyz(z) of the map#F> in the form

2a(1—&)(n3 + n3)
n1n2 ’

uf’ =1+ 4a’(1— &)’z — (11)

Substituting the expressions fgr 2 in (11), we can obtain the transverse multiplicaﬂf) as a function ot:, p,

.2 2
ande: M(z) = y,é )(a, D, €).

Next, consider a partial derivative g 2 with respect te at the bifurcation value = ¢~:

s _ 2a-D@—-2)@p-1

= 12
de e 2ap(p — 1) +a—1 (12)

For 2 < a < 3, the derivativd12) equals 0 app = 1/3 and it is negative fop < 1/3 and positive forp > 1/3.

Ate =¢7,we haveu(zz):l. Hence, forp € [0; 1/3), /L(ZZ) grows from 1 ag starts to decrease froan ; for these
values ofp the periodic 2-cluster orbit is transversally unstable. Alternativelypfar [1/3; 2/3], M(ZZ) decreases
from 1 ase decreases from; for these values gp the periodic 2-cluster orbit is transversally stable. The graphs
of the transverse multiplicath(zz) of the two-cluster period-2 cyclpz(z) are plotted inFig. 2 for different values

of parametep = N1/N.

L/ . Y £ ..

1A L LiE, ]
0’20‘4 -0.33 -0.26 -0.19 -0.12 -0.05

€

Fig. 2. Solid curves present graphs of the maximal transverse multipliné%blof the two-cluster period-2 cyclgzz(z) for different cluster
partitionsp = N1/N. Only cycles withp > 1/3 are born stable. The dashed curve gives the absolute value of the transverse multiplicator of
the period-1 coherent state. Paramater 2.9.
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The results above allow us to conclude that the transverse period-doubling bifurcation of the period-1 coherent
state of system aWV coupled map$1) can lead to the emergence of stable period-2 two-cluster states, provided that
the distribution between the cluste¥s : N satisfiesV; /N > 1/3,i = 1, 2, or, equivalently, 12 < N1/N, < 2.

Below we shall see that the critical ratiy /N> = 1/2 holds also for other cluster-splitting bifurcations induced
by other in-cluster cycles.

4, Two mechanisms of cluster splitting: period-doubling and transcritical

Inthis section, we describe two mechanisms of cluster-splitting transitions that occur in §}/stdran parameter
¢ decreases.

Suppose that systefi) has a stabl€€kPm(N1 : N2 : --- : Ng)-state, i.e., a -cluster state with period:
temporal dynamics and with the variable distribution among the clusters of theMfprnvy : NK In this case,
the systenfFi of the form(3) with parametersp(K)}l 1 pr) N; /N, has a stable perioa- cycleym 5 In-cluster

stability (i.e., stability with respect to th&-dimensional systeni’x) of th|s cycIe is determined b in-cluster
multlpllcatorSV( )i =1, K. The other set ok transverse muItlpllcatonss ,i =1, K, calculated in accordance

with (4) control the transverse stability (i.e., stability with respect to out-cluster perturbatiom,éf bfThe cycle

y,fzk) provides a stabl& -cluster states if all multlpllcatOhg(K) andu(K) i =1, K, are less than 1 in absolute value.

When the parameters and ¢ of system(1) vary, the multiplicators ofy(K) may leave the unit disk. In this
connection, we distinguish between two typical cases: Either one of the in-cluster multiplic%ﬁbm one of

the transverse multiplicatoys, (K) becomes larger than 1 in absolute value. In the first case, the in-cluster attractor

m K pifurcates within the cluster subspatk; changing in-cluster dynamics via, e.g., period-doubling, Hopf,
or saddle-node bifurcation. Transversal stability of the cluster state is preserved by continuity, provided that the
bifurcation above is supercritical. In the second case, which is a subject of our interest, the in—cluste,ff&cle
losses its stability in the transverse to the cluster subspace directions causing, as we shall see, cluster splitting.
Suppose that one of the transverse muItipIicaﬁdr@ leaves the intervaH 1; 1] as parameters vatywhile the
others do not; this is a general situation. Below we argue that at this transitiath tlaster of systenfil) can split
into two clusters. The other clusters remain unaffected as soon as the other transverse multiplicators remains inside
[—1; 1]. To investigate this cluster bifurcation, we consider tke+ 1)-dimensional systenfix ;1 of the form(3)
with parameter(sij“)}’“rl such tha{v(KH) (K) for j < i, p& 4+ pHY = p®) andp (KH) i for
j > i.Inotherwords, we seek fora solutlon whereztﬂrecluster splits into two, with stlll undetermlned parameters
p,(KH) and fffl). If this new systenFi .1 attains a stable cycl;eq(K“) (which is stable also transversely, i.e., all
its K + 1 transverse multiplicators are less than 1 in absolute value), then sijitéemonstrates a cluster-splitting
bifurcation.
In Fig. 3a—c, different mechanisms of cluster-splitting transition are shown schematically. They depend on the
value ofu(’() (—1 or +1) at the bifurcation: (a)L(K) passes through1, (b) and (c)u(K) passes through-1.
The vertical axis depicts the differengebetween the two newly split clustey,%K”) and fff D Bold curves
correspond to stable clusters, thin ones to unstable clusters.

4.1. Period-doubling splitting

In Fig. 3a, the period-doubling cluster-splitting transition is presenteds At eqp, the transverse multipli-

catorMEK) of the K-cluster cycley,ﬁ,K) becomes less thanl. The periods cycle y,ﬁ,K) undergoes transverse

2 For the systen(l), the transverse multiplicators(K) are real as follows fron), because the coupled maps are one-dimensional.
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Fig. 3. Different mechanisms of cluster-splitting which proceed (a) via period-doubling, (b) pitchfork, and (c) via transcritical bifurcation.

(K+1)

€

€

y(K+ ) is a difference between two newly spitted clusters. The thin solid and dashed curves correspond, respectively, to stable

and unstable W|th|n the corresponding cluster subspace, in-cluster cycles involved in the bifurcation. The bold solid curves correspond to stable
in the wholeN-dimensional phase space in-cluster cycles. Transverse pitchfork bifurcation (b) does not instantly lead to cluster stable clusters:
They stabilize later at = ¢t

period-doubling bifurcation giving birth to a stable periaa- chley““l)

spacelg 1. The splitting considered is said to be symmetric if two equal-size Clupﬁéfgl)
arise, and asymmetric . * ™Y = p (K+l) . While the in-cluster attractops® ™
cluster subspacHg 41, the transverse stability cyfzifﬂ) depends essentially on the measure of asymmetry, i.e.,

on the rat|0p(K+1)/p(K+l) From the consideration @ection 3it follows that the splitting is stable if 2 <

(K+1) , (K+1)
pi / 1+1 = 2.

which belongs to &K + 1)-cluster sub-
(K+1) _ 1 _(K)

=Piy1 = 2P

is born to be stable within the
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4.2. Pitchfork and transcritical splitting

Another cluster-splitting scenarios occur in systéih when the transverse multlpllcath“()

(K)

of the cycle

passes through 1. Then, the cyqzlg() losses its transverse stability in pitchfork or transcritical bifurcation
dependmg on whether symmetric or asymmetric splitting occurs (i.e., depending on thpl.(Fan'c))/ fffl)).
Indeed, after the bifurcation, there are two stable penmycleSy(K+1) andy(K“) for the corresponding system
Fk+1. These cycles are born via a transverse pitchfork blfurcathm,’& ate = epr if the splitting is symmetric

(p" T = pliP, Fig. ). If the splitting is asymmetricp* ™ 2 pX V) the cycles, XY andy, S are

born in a saddle-node bifurcationat= egp, followed by a transcritical bifurcation of the cycleé ) andy(K+l)

ate = ey = epf (Fig. 3, see also Ref33]). The transverse stability of the cyclerélj.“), i = 1,2 can be argued

as follows. First note that both pitchfork and transcritical bifurcations do not change temporal period. Consider
next the pitchfork bifurcation, one can easily see that here when a fixed point moves away from the diagonal in the
transverse direction, one of the variables decreases and the otherincreases. This implies that the transversal exponen
corresponding to these variables split: one increases and the other decreases. Thus, one of the new-born clusters wil
be transversally unstable, which causes the instability of the whole clustered state. The new-born clusters can stabilize
in the N-dimensional phase space only at some distance from the bifurcation point (bold curige8mstart from

£ = egt < £~ ). Atthe transcritical bifurcation, where one branch lies far away from the bifurcating solution, different

variants are possibl&ig. 3c demonstrates one possibility, where the cy&;j%“l) becomes transversely stable at

a distance from the transcritical destablllzatlorybf ) whereas the other cyc (K “) can be transversely stable

even prior to the transcritical bifurcation (bold curve$ig. 3c). In this case, the transverse transcritical bifurcation
of a periodicK -cluster attractor leads to an asymmetric cluster-splitting without change of temporal periodicity.

5. Cluster-splitting cascades

In this section, we follow the cluster-splitting cascades presenteéjirl and describe in detail the mechanisms
of the cluster-splitting bifurcations outlined in the previous section. /AZgiction 2we fix parameter value = 3.84
at which logistic mapf, has a stable period-3 cycle. We expect the bifurcation properties to be qualitatively similar
for other periodic windows of .

5.1. Cluster-splitting via period-doubling

Consider the two-dimensional systefha of the form(3) (i.e., K = 2 there) having two parametepéz) and
p§2)=1 — pf). Suppose, for definiteness, th@f) < 1/2, i.e., the first of the two clusters is not larger of the
second one. For anye (¢7; 1) (¢ are such as iection 3, systemF, has a stable period-3 cycyél) on the
diagonalD2 = {(y1, y2)|y1 = y2}. Ate = ¢—, the cycleyél) undergoes a transverse supercritical period-doubling
bifurcation (multlpllcatoru(l) passes through 1) giving birth to a stable period-6 cycj%z) which splits from the
diagonalD; ase further decreases.

InFig. 4, the bifurcation diagramin thip;™, ¢)-parameter plane is presented. The region of the in-cluster stability
of yéz) is obliquely hatched. It contains two sub-regioigP6Y andC2P65. In the regiorC 2P 6%, which is shaded
by dark gray, both transverse muItipIicatqurg) andu(zz) of the cycleyéz) are less than 1 in absolute value, i.e., this
state is transversally stable. The transitiom at ¢~ is an example of the cluster-splitting via period-doubling, as
described irSection 4

]
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Fig. 4. Cluster-splitting bifurcation diagram for the coherent (one-cluster) state of sysjeithe dark gray domain ABCD is the stability
region of two-cluster states with period-6 temporal dynamics and par(iﬁifﬁ, péz)}. The light gray domain DCEF is the stability region of

three-cluster period-12 states with partitigni”, p5>, pS”}, wherepl® = pS¥ = 1p? andps® = p?. Obliquely and vertically hatched

regions are for the stability of the two- and three-cluster periodic attractors within the corresponding cluster subspaces, respectively. Paramet
a = 3.84.

Although, in general, all values Q;f(lz) are possible, their relative probabilities are different, as shovifign5.
From the numerical experiments it follows that the most probable clusters to be captured at direct numerical
simulations with randomly distributed initial conditions are close to symmetric ones. If all partitions of elements
in two clusters were equally probable (equipartition), then the probabilities would be equal to the total number
of different two-cluster states, i.e., 16! /(N1! N2!). Asymptotically for largeN, with the use of Stirling formula,
this distribution density can be written ﬁpf) ~ eXKN[—p:(LZ) In p:(l_z) -(1- pf)) In(1- piz))]). However,
this simple estimation does not work (sEgy. ). In numerical experiments we indeed observe that for large
N the probability density scales @e{pf) ~ exp(Nqb(pf))), but the functionp is much stronger concentrated near
symmetric partition than one gets from the equipartition. One can conclude that the nearly symmetric clusters have
much larger basin of attraction in the whadledimensional phase space comparing to non-symmetric ones.

If ¢ further decreases beyond the bifurcation value e —, the( p:(lz), ¢)-parameter point leaves the regioa P6’

through its lower boundary, curve DCHg. 4. The transverse multiplicat(pr(lz) of the period-6 cycl@éz) (or both
the transverse multiplicato;zs(lz) and,ugz) if p§_2) = 1/2, point C inFig. 4) becomes less thanl. Here the next
cluster-splitting period-doubling bifurcation occurs; its features can be analyzed analogously to the consideration
above.
To evaluate stability of the new-born clusters, consider the sy#teof the form(3) with K = 3. There are
three parameterpi(3), i = 1,3 such thatpis) + p§3) + p§3) = 1. Consider the caspf) = pés) (= % pf)) and
p§3) = péz), i.e., the case where in the two-cluster s(aig), péz)) the first cluster splits into two equal parts. First,
in (pf) + pf), ¢)-parameter plane, we find a region, where systgrhas a stable period-12 cyc;kg’). In Fig. 4,
this region is vertically hatched being delineated by two thin dot-dashed curves. It contains a sultG#jidH,
where the cyclezl(g) is stable inV dimensions so as, in addition, all three transverse multiplicatﬁ)si =13

of y1<§> are less than 1 in absolute value. This regie®?12° is shaded by light gray iffig. 4 and bounded by
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Fig. 5. (a) Probability for a trajectory of systet) to be attracted by a two-cluster state with partit{q)l‘f), pf)} after transverse destabilization

the coherent state. The average has been done over 10,000 initial conditions randomly distributed in a small neighborhood (diarfeter is 10
of the unstable coherent state foslightly beyond its transverse period-doubling bifurcation. Paranaeter3.84. (b) The same probabilities

as densities in the scaled coordinates, where the vertical axis reprelsefits- 0.5 In N)/N, to reveal the scaling behavior for large The

scaling distribution resulting from the equipartition hypothesis is shown with dashed curve.

bold dashed curves. One can see that the regi@R6’ andC3P12° are fitted each to other along the arc DC.

Therefore, the transverse period-doubling bifurcation of the two-cluster period—e;é%leduces cluster splitting

of one of the two clusters leading to the appearance of stable three-cluster states of double temporal periodicity.
If p(lz) < pf) (the casepf) = p;2> will be consider later inSection 5.3, then the smallepf)-cluster of

the two-cluster state splits into two sub-clusters. After the bifurcation, sy§lgimas stable three-cluster states
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partition {pf3)} _, such thatp(a) = 0.532 is fixed QJ<3) + p(?’) 0.468).C4P245 is a stability region for period-24 four-cluster states with
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(3 3 2

with variables distribution among the clusters of the fgst N : pP N : pP N, wherepl® + p&¥ = p? and

p = p?. splitting is symmetric ifp\> = p&? (Fig. 4).

In Fig. 6, the region of stability of three-cluster states, denoted By 12%, is presented for the ca$€) < p(3)
where the surrpf) + pf) (2) is fixed, i.e., when the three-cluster states are born in period-doubling splitting of
a two-cluster state with some fixed pal’tltIQlI?I:(l_z), 1-— pf)}. As one can conclude, the cluster-splitting bifurcation
of the two-cluster state runs in the same way as for the coherent (one-cluster) state. It results in a variety of stable
three-cluster states of period-12 temporal periodicity. In this casez,ifheluster can split via period-doubling into
either two equal sub-cluste - pf) (symmetric splitting) or non-equal sub-clust@rg) < p§3) (asymmetric
splitting).

With further decrease of the coupling parametdine parameter pointon the pla@:‘f), ¢) leaves regio@3P125
through its lower boundary (the bifurcation curve FEEig. 4or the curve AB irFig. 6). The three-cluster attractor
VS) losses its stability in transverse to the cluster subspaadirections. Depending on the values of the parameters
p,.(3), the transverse bifurcation @fg) may develop differently as it is demonstratedrig. 3a and c. There are
two possibilities related to two arcs FE and EC of the bifurcation curve FEC bounding the &g’ from
below inFig. 4. The critical bifurcation value for the paramepegg) p(3) + pf) is given by the point E for which

p{? ~ 0.47. Then clearlypy ~ 0.53.

ConS|der first the casp(z) < 047, thenp(3) > 0.53. Forp(?’) = 0.532, the stability regiotC3P125 of the
three-cluster periodic attractgnf is delineated by solid bold curves Fig. 6. Along the bifurcation curve AB,
the transverse multiplicator ¥ of the cycley.> (or two multiplicators;\¥ and s if pi> = p&?, point B in
Fig. 6, this case will be considered later 8ection 5.3 becomes equal te-1. The cycle undergoes transverse
period-doubling bifurcation. In addition, it remains stable within the cluster subdpaceherefore, we can apply
the above-described cluster-splitting procedure for the transition from three to four clusters.

Consider a systemi, of the form(3) with K = 4 and parameterﬁ(‘” i = 1,4, such tha{o("') = (4) 1p§3),

pgl) = pf), and p(4) = (3) . At the transverse period-doubling bifurcation of the cyyzg) Fy attams a stable



O. Popovych et al./ Physica D 168-169 (2002) 106-125 119

period-24 cycley24) (vertically hatched region |mp(4) + p§4), ¢)-parameter plangsig. 6). For the considered
case of symmetric splitting, i. epf) = p;“), the four-cluster cycl%(j) is born to be also stable in the whole

N-dimensional phase space of systéih The regionC4P24° of the N-dimensional stability is shaded by light
gray inFig. 6. Thus, we again observe cluster-splitting bifurcation: ‘ﬂfé—cluster, which is the smallest in the
partition {pf), pf), pf)} splits into two sub-clusters via temporal period-doubling producing stable four-cluster
period-24 states.

In the case of asymmetric splittlrlgf) #* p(4) the transverse stability of the cyc}g‘f depends essentially
on the level of asymmetryp(4)/p(4) between the two newly split sub-clusters. The situation is analogous to that

described above for the splitting of coherent and two-cluster stateBjgeet and Grespectively.
5.2. Transcritical cluster splitting

The transcritical cluster-splitting bifurcation scenario (8&e 3c) occurs for the three-cluster stai@P12 in
the caSQa(3) < 0.53. Thenp(z) > 0.47 and the destabilization gwﬁ’) is caused by crossing the bifurcation curves
CE inFig. 4by the parameter poirﬂv(z) ¢). Along this bifurcation curve, the transverse muItipIicamé?) of the
three-cluster cycle@ isequaltol,i.e. thp(s) cluster splits as parametedecreases via a pitchfork/transcritical
bifurcation.

In Fig. 7, we present a typical diagram of this bifurcation for a fixed vayhé% < 0.53. The multiplicator is

Mé?’) = 1 along the bifurcation curve AB. Below the curve, the four- dlmen5|onal systeof the form (3) with

parametersaf‘”, i = 1,4, such thatof) pf), pg‘) p(s) and p(4) pf) (3) (symmetric splitting) has

two period-12 cycle$/1(42)1 and Vl(g,)z- Both cycles are born in a transverse pltchfork bifurcation of the three-cluster

cycleyl(g) and are stable for the systefy, i.e., within the cluster subspaé¢#. In Fig. 7, in-cluster stability region
of V1(4z)i is hatched by vertical lines.

Sub-region of theV-dimensional stability of the four-cluster cyclgg?i, i =1, 2is shaded by light gray and de-
noted byC4P12% in Fig. 7. As one can see, there is a gap between the bifurcation curves AB and@@D7a, where
the four-cluster states considered are transversely unstable. The gap becomes less visible as asymmetry between th
clusters decreases, deig. 7b. Therefore, the transverse pitchfork bifurcation of a periodic in-cluster attractor does
not directly results in a stable cluster splitting: All newly born clusters appear first to be unstable. Nevertheless,
soon after the bifurcation they stabilize. Cluster-splitting occurs but with “a parameter delay”, seé@aZn

Consider now the generic case, where the splitting is asymmp@ﬁ)CJr p(4) pé?’), pé4) < p(4) For fixed

(4) =0.22 andp(4) = 0.26, the reg|0n€4P12f andC4P12§ of stability in N dimensions of the cycle;s_fg?l and
7/122’ respectively, are delineatedHig. 8. In the subplot, the dotted rectangle is enlarged, where the thin dot-dashed

horizontal line at the valugy = —0.167443 indicates the moment at which the three-cluster period-12 ;z@le
losses its transverse stability in a transcritical bifurcation. The three-cluster partifi@a2s0.26, 0.52}.

One can see ifrig. 8that, at the moment when period-12 three-cluster St&812 losses its stability in the
transcritical bifurcation, the onIy12 , cycle can be stable (iv dimensions), which occurs whqyf) is smaller
than the abscissa of the poifit(shown in the subplot). Therefore, the transverse transcritical bifurcation of periodic
in-cluster attractor leads to asymmetric cluster splitting as was also observied la and c.

5.3. Symmetric cluster-splitting

Here we discuss a situation mentioned alreadyention 5. 1name|y the case, where the coherent period-3 state
symmetrically splits into two-cluster states with partiti{:;rﬁz), Py )} such thatp(z) = péz) 1/2. This splitting



120 O. Popovych et al. / Physica D 168-169 (2002) 106-125

-0.155

—_ 4
&
—

-0.16

-0.165 1o A

e E
(=] (= AT |

-0.175

LI B B B S B

58—t —r

-0.16

-0.165

-0.17

o

-0.175

E L
olgl— 1
0.1 0.137 0.174 0.211 0.248

3
pl( )

LI s s s s e s L B B B
=

Fig. 7. Cluster-splitting bifurcation diagram for pitchfork transverse destabilization of the generativyz@u[é%PlZs andC4pP 125 are stability
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pS) = 0.506 is fixed anpy” = py” = 1pSY = 0.253. Parameter = 3.84.

proceeds via temporal period-doubling. After the bifurcation, a stable symmetric period-6 two-clustet 2faes
appears, sekEig. 4. Both the transverse multiplicato;q(z), i = 1,2 of C2P6 are equal to each other and, with
decreasing:, become less thar 1 (bifurcation pointC in Fig. 4). Therefore, at this bifurcation, both clusters
split simultaneously via temporal period-doubling bifurcation giving rise to stable four-cluster states with variable
distribution among the cluste[é“)N : pé‘DN : p§4)N : pfl4)N,wherep§4>+p§4) = p:(LZ) andp§4)+p§4) = péz).At

this transition, each of two cluste, 2),1' =1, 2, may split symmetrically;(i(4) = 1/4,i = 1, 4) or asymmetrically

(pl.(4) # p§4), i # j)independently of the splitting of the other cluster. Symmetric splitting is always stable,
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whereas the asymmetric splitting is stable 121 pi¥/ps? < 2 and ¥2 < piP/p? < 2. The stability regions
of C4P12-states are denoted 6P 125 in Fig. %a.

With further decreasing, the four-cluster states bifurcate either within its cluster subsffaeé Hopf bifurcation
(the bifurcation curve CD iifrig. 9a) or via transverse period-doubling when the clup@r (the bifurcation curve

DE) or pf(‘) (the bifurcation curve EF) splits, resulting in stable period-24 five-cluster states.
Fig. 9 shows the situation when a period-12 three-cluster state with a distribution among qié@mrSpf)N :
e _ 3

p§3)N suchthaip;™ = p,”, bifurcates via transverse period-doubling (the bifurcation curve Efgirdor point B
in Fig. 6). (Such a three-cluster state has arisen before from the period-6 two-cluster state with n@éﬁﬁqvéz)}
via symmetric period-doubling splitting of the(lz)-cluster into two equal sub-clustepf’) = pf’) = %pf), see
Fig. 4, point C.) Then period-24 five-cluster states arise. Their region of stability is preseritied % and denoted

by C5P24%. Each of these clustered states are born at the moment of loss of transverse stability by the three-cluster
O of C3P12 split simultaneously

statexC3P12 ate ~ —0.1702. At the bifurcation, two equal clusteﬁg) andp,
via transverse period-doubling resulting in the appearance of a variety of stable period-24 five-cluster states.

With further decreasing, the five-cluster states bifurcate within the cluster subspace via period-doubling (bifur-
cation curve EF ifrig. 9) or via Hopf bifurcation (bifurcation curve CD). Moreover, the five-cluster states may also
bifurcate with cluster splitting (bifurcation curves DE and FG) Wbé%-cluster splits via temporal period-doubling

giving birth to stable period-48 six-cluster states.

5.4. Cluster transition tree
We summarize our findings Fig. 10, where the cluster transitions up to five-cluster states are collected schemat-
ically.
With decreasing the coupling parametethe coherent period-3 staf&l P3 splits into two-cluster states2P6

with partition{pf), pf)} via temporal period-doubling (bifurcation curve ABHig. 4, transition | inFig. 10. The



122 O. Popovych et al. / Physica D 168-169 (2002) 106-125

~0.16 : , .
4
L (a) — pP=025,pP=025] -
i Pl p#=020,p7=030 ]
~0.164 Pl p®=017,p9=033|
_0.168 - C4pP128 ]
€ i ]
-0.172F —
Y e A -
i F
018+ Lo b v b by
0.1 0.13 0.16 0.19 0.22 0.25
(&)
P
017 ——
(b i\ ' B
L A ]
L 7 [|— p{E0.115, pP0.115] -
H --- pJ=0.10, pP=0.13 |
=071 Ay pP=0.09, p=0.14 |7
€

-0.172

0173
E
L D C|
T 7 P B RS R R B
0.04 0.055 0.07 0.085 0.1 0.115

5
p®

Fig. 9. (a) Stability regions of period-12 four-cluster states with parti{ip)lﬁ)}j‘:l that arise after cluster-splitting bifurcation of symmetric
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of period-12 three-cluster state with two equal cluspéfé = p(23) and with p§3) =054= p(ss). Parameten = 3.84.

splitting can be symmetriq{z) = pf)) or asymmetric ,()(12) # pf)). In the latter case, the two-cluster stat2P6
splits via period-doubling into three-cluster staf&sP 12 with partition{pl.(‘g)}i.i1 such thatvf’) + p;s) = piz) and
pés) = péz) (bifurcation curve CD irFig. 4, transition Il inFig. 10. If the splitting of the coherent state has been
symmetric, the two cluster staté2P6 splits via temporal period-doubling into four-cluster staf®sP12 with
partition{pi(“)};‘:l such tha[vf) +p§4) = p(lz) andpg“) +pfl4) = pf) (bifurcation point C irFig. 4, transition Ill in
Fig. 10. The stataC4P12 can then bifurcate within the cluster subspace via Hopf bifurcation (curve €i.i8a,

transition VIl inFig. 10 or it can split via temporal period-doubling into five-cluster stai&# 24 (transition VIII
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by periodic coherent stat€kPm denotesc-cluster states with perio@-temporal dynamics@ is for quasiperiodic motion).

in Fig. 10 with partition{pfS)}?:l such thalpf) + p§5) = pf) andp§?1 = pi(4), i = 2,3, 4 (bifurcation curve DE
in Fig. 9a) Ol’pl.(s) = pf4), i=1,23 andpf) + pés) = pf(‘) (bifurcation curve EF irFig. %).

The three-cluster state3P 12 with partition{ pl-(S)}?=l losses its transverse stability either via transverse period-
doubling or transcritical (pitchfork) bifurcation. In the latter case, the ste@8®12 asymmetrically splits into

four-cluster state€4P12 of the same temporal periodicity and with partiti{:;»‘f4)}f:l such thatp(l4) = pf),

pg") = pf), andpé“) + pf) = p§3) (seeFigs. 7 and 8transition V inFig. 10. The four-cluster stat€4P12, in its

turn, can bifurcate within the cluster subspace via Hopf bifurcation (curve Gyin/b, transition VIl inFig. 10

or split into five-cluster states via temporal period-doubling bifurcation (curve Gbging, thepf‘)—cluster splits,

transition VIl in Fig. 10 or via transverse transcritical bifurcation (bifurcation curve AFig. 8, the pf)—cluster
splits, transition IX inFig. 10.

If the partition{pl@}?:l of the three-cluster stat€é3P12 admits period-doubling cluster splitting (s&ection
5.1), then the clustered stat&3P 12 bifurcates either into four- or into five-cluster states. In the latter case which
occurs Wherpf’) = pf), the stateC3P12 splits into five-cluster stat&s5P24 with partition{ p}S)}?:l such that
pf) + pés) = pf), pé‘r’) + pf) = pf), andpés) = p§3) (the bifurcation curve EF ifrig. 4and the bifurcation point
B in Fig. 6, transition VI inFig. 10. The five-cluster stat€ 5P 24 can then bifurcate within its cluster subspace via
Hopf or via period-doubling bifurcations (curves CD and EF, respectivelyign%; transition XII inFig. 10, or
split into six-cluster states via temporal period-doubling (curves DE and F8yirtb; transition is not shown in
Fig. 10.

Inthe casq;&s) < p;g), i.e., where the staté3P12 is born via asymmetric splitting of the two-cluster sStagP6,
the cluster transition proceeds also through a temporal period-doubling. Th€8iRie splits into four-cluster
statesC4 P24 (bifurcation curve ABirfFig. 6, thepf)-cluster splits; transition IV ifrig. 10. With further decreasing
the control parametet, the stateC4P24 bifurcates intoC5P24-states via transcritical bifurcatiofi@. 6, the
bifurcation curves BC and AF, Whey%“)-cluster splits, and the bifurcation curves CD and EF, wfpﬁ‘l}écluster
splits; transition XirFig. 10. The state"4 P24 can also bifurcate into period-48 five-cluster statg#£ 48 (transition
Xlin Fig. 10 or six-cluster state€§6 P48 (bifurcation curve DE if¥ig. 6, pf)-cluster or bottpf)- andpg‘)-clusters
split via temporal period-doubling, respectively).

With regards to the transitions presentedfig. 10, the bifurcations shown iRig. 1 can be classified as follows:

Fig. la: The transitions+ Il — V — VIII.
Fig. 1Ib: The transitions > Il — VII.

Fig. 1c: Thetransitions > Il - IV — X,
Fig. 1d: The transitions + Il — VI — XII.
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6. Conclusion

In this paper, we have described cluster-splitting bifurcations in globally coupled identical chaotic maps. We
have focused on the simplest case, where the underlying dynamical regime is periodic. The main difficulty in the
description of the cluster-splitting is in the enormous degeneracy of the linearized dynamics: If a cluster consisting of
N; elements becomes transversally unstalile; 1 directions in the phase space become unstable simultaneously.

Our approach was to look for possible stable regimes that can result from the bifurcation in the simple classes
of new-born solutions. In most cases stable supercritical regimes corresponding to splitting of unstable cluster in
two new ones do exist. Nevertheless, a great amount of degeneracy still remains due to different possible partitions
of elements between new-born clusters. We have demonstrated that in the case of period-doubling splitting only
partitions with ratios between/2 and 2 are stable, although statistically seen more probable are partitions with
ratios close to 1. This statistical feature of the cluster splitting requires the bifurcation diagram to be manifold: the
later bifurcations depend essentially on the partitions in the previous ones. This multiplicity in bifurcation diagrams
makes the population of coupled systems very complex even if the dynamics is not chaotic.
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