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Abstract. – We consider a population of parametrically excited globally coupled oscillators in
a weakly nonlinear state. The instabilities of collective modes lead to a traveling-wave regime,
where intensities of oscillations of each oscillator vary periodically in time. For large excitation
amplitudes a frozen state with nearly uniform oscillation intensities is observed.

Ensembles of coupled oscillators demonstrate extremely rich behaviors [1–3]. They appear
in descriptions of Josephson junctions [4], multimode lasers [5], and charge density waves [6].
In the living world one uses similar models to describe chirps of grasshoppers [7], neurons [8–10]
and yeast cells [11]. One of the most interesting effect in these ensembles is the appearance
of collective modes, when at least a part of the oscillators is synchronized and the mean
field exhibits nontrivial dynamics. Probably, the most impressive demonstration of this is a
rhythmic flashing of fireflies [12]. In the theory, the onset of collective behavior is known as the
Kuramoto transition [1], and it is a prominent example of nonequilibrium phase transitions.

Recently, populations of parametrically excited oscillators attracted particular interest [13–
16]. One possible realization of such a system is an array of Josephson junctions [17]; below we
also describe a simple mechanical example of such an ensemble. In [13–15] a linear analysis of
instabilities in the ensemble has been performed in a model where the parametric modulation
is a piecewise function of time. Parametric excitation by a sinusoidal field in a linear chain of
overdamped oscillators was described in [16].

In this paper we study instabilities and collective modes in globally coupled weakly nonlin-
ear oscillators parametrically excited by a sinusoidal signal. Using the method of averaging,
we obtain equations for slowly varying amplitudes. The analysis of these equations allows
us to find linear instabilities as well as to analyse nonlinear modes developing from these
instabilities. The analytical results are confirmed by numerical experiments.

As a prototypic model we consider a population of N coupled weakly nonlinear oscillators
subject to a parametric excitation. The governing equations are

ẍi + 2γẋi + ω2
0(1 + ξi(t))xi + T (xi, ẋi) = − κ

N

N∑
j=1

(xi − xj) − 2σ

N

N∑
j=1

(ẋi − ẋj) . (1)
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Here terms ∼ κ and ∼ σ describe the conservative and dissipative coupling, respectively. The
nonlinear terms T (xi, ẋi) will be specified below.

We assume the parameters of oscillators in the ensemble to be identical, but the parametric
driving given by the term ω2

0ξi(t)xi has different phases for different oscillators: ξi(t) =
2A cos(ωpt + τi). The frequency of driving ωp must be close to 2ω0 in order to achieve the
strongest excitation, we take ω2

0 = ω2
p(1/4+ε), where ε is a small mismatch. Below we assume

that the phases of the driving τi are distributed uniformly on the interval [0, 2π). Because
there is no ordering of oscillators due to coupling, we can order them according to the phase
of the driving force, assigning label τ instead of index i to the variable x. Moreover, in the
thermodynamic limit N → ∞ we can replace the summation over i with integration over τ :

1
N

N∑
i=1

→ 1
2π

∫ 2π

0

dτ .

The main assumption for the theoretical analysis is that the oscillators are nearly harmonic,
i.e. that the damping, forcing, coupling, and nonlinearity are small. In this case a standard
averaging method (see, e.g., [18]) allows us to write equations for the slowly varying complex
amplitudes Xτ (t), where xτ (t) = Re

[
(2Xτ (t) exp

[
i
ωp

2 t
]]

:

Ẋτ = (−γ + iε)Xτ + AeiτX∗
τ + (−σ + iκ)(Xτ − 〈X〉) − (α + iβ)Xτ |Xτ |2 . (2)

Here the lowest-order nonlinear terms arising from the averaging of T (xi, ẋi) are written, in
general both conservative (∼ β) and dissipative (∼ α) nonlinearities are present.

Before proceeding in the analysis of eqs. (2) we show that such a system naturally appears
in the description of a particular model of coupled mechanical oscillators. Let us consider
an ensemble of N mathematical pendula (having the same length l and mass m) hanging on
a movable plate of mass M . The plate moves in a horizontal direction (variable y) with a
restoring force −ky, and its vertical bendings are organized according to a prescribed wavy
mode whose displacement at the pivot of the pendulum i is ξi(t) = Al cos(2ωt + θi), where ω
is close to the linear frequency of a pendulum

√
g/l. Denoting the angle of the i-th pendulum

by φi, we can write the Lagrangian

L =
Mẏ2

2
− ky2

2
+

N∑
i=1

m

2
((lφ̇i cos φi + ẏ)2 + (lφ̇i sin φi + ξ̇i)2) −

N∑
i=1

mg(l − l cos φi + ξi) .

The equations of motion, where we also introduce the damping terms ∼ R, r, read

(M + Nm)ÿ + 2Rẏ + ky = −ml
d2

dt2

N∑
i=1

sin φi ,

φ̈i + 2rφ̇i +

(
g + ξ̈i

l

)
sinφi = − ÿ

l
cos φi .

Assuming the oscillations with slowly varying amplitude φi = 1
2 (a(t)eiωt + a∗(t)e−iωt), y =

1
2 (B(t)eiωt + B∗(t)e−iωt) and neglecting nonlinearity in the coupling we obtain for each pen-
dulum, applying the method of averaging, the equations of motion

ȧi = −(r + i∆ω)ai − iωAia
∗
i − i

ω

16
|ai|2ai − i

ωB

2l
,
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where Ai = Aeiθi , ∆ω = ω − (g/l)1/2. The amplitude B can be expressed from the linearized
equation for y (it is required that this amplitude is small, and this condition should be checked
for a given set of parameters):

B =
Nmlω2

k − (M + Nm)ω2 + 2Riω
· 1
N

N∑
i=1

ai .

Substituting this in the equation for ai, we obtain finally the globally coupled equations of
motion in the form (2)

ȧi = −(r + i∆ω)ai − iωAia
∗
i − i

ω

16
|ai|2ai − i

ω3Nm

2k − 2(M + Nm)ω2 + 4Riω
〈ai〉 .

In the investigation of linear instability it is convenient to rewrite eq. (2) in terms of
“spatial” modes

Ck =
1
2π

∫ 2π

0

e−ikτXτ dτ .

Then, obviously, 〈X〉 = C0, and we obtain, neglecting the nonlinear terms,

Ċk = (−γ + iε)Ck + AC∗
1−k + (−σ + iκ)Ck(1 − δ0,k) . (3)

One can easily see that the whole system decomposes in pairs of coupled modes k ↔ (1 − k).
Moreover, the equations for all pairs with k �= 0 are the same, while for k = 0 we have an
extra term due to mean-field coupling. As a result we obtain from (3)

Ċ0 = (−γ + iε)C0 + AC∗
1 , Ċ1 = (−(γ + σ) + i(ε + κ))C1 + AC∗

0 , (4)

for the pair (0, 1) and

Ċk = (−(γ + σ) + i(ε + κ))Ck + AC∗
1−k , Ċ1−k = (−(γ + σ) + i(ε + κ))C1−k + AC∗

k , (5)

for all other pairs. Correspondingly, we obtain two regions of instability of the ground state
C = 0. The instability in eq. (4) is oscillatory and onsets for

A2 >

[
1 − σ2

(2γ + σ)2

](
ε +

κ

2

)2

+ γ(γ + σ) .

The linear system (5) has eigenvalues

λ1,2 = −(γ + σ) ±
√

A2 − (ε + κ)2

and the monotonous (i.e. with real growth rate) instability onsets for

A2 > (γ + σ)2 + (ε + κ)2 .

From the comparison of the two instability areas (fig. 1) one can see that the oscillatory
instability in the modes C0, C1 usually onsets for smaller values of parametric forcing A,
but for some frequency mismatches the instability of other modes (Ck, C1−k with k �= 0)
onsets first. Note also that above we have distinguished the monotonous and the oscillatory
instabilities on the base of the averaged equations (2), (3); in the original system (1) these
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Fig. 1 – The instabilities areas for γ = σ = 1/2 and κ = 1. The dark-gray area is the region of
monotonous instability, the light-gray is the region of oscillatory instability. In the black area both
instabilities are present.

two types correspond to instabilities exactly at the half of the modulation frequency and at
the shifted frequency.

In the next part of the paper we describe nonlinear regimes of parametric instability in the
ensemble. We consider first the region on the plane of parameters A, ε where only the modes
C0, C1 are unstable. We neglect the other stable modes and extract from (2) the nonlinear
equations for the modes C0, C1:

Ċ0 = (−γ + iε) C0 + AC∗
1 − (α + iβ)(|C0|2 + 2|C1|2)C0 ,

Ċ1 = (−σ − γ + i(ε + κ)) C1 + AC∗
0 − (α + iβ)(2|C0|2 + |C1|2)C1 .

(6)

The analysis of these equations significantly simplifies in the case σ = 0, i.e. when the
coupling between the oscillators is purely conservative. We restrict ourselves to this situation;
furthermore we assume that γ > 0, α > 0. Then it is easy to check that the following relation
is valid:

d
dt

(|C0|2 − |C1|2) = −(2γ + 2α(|C0|2 + |C1|2))(|C0|2 − |C1|2) .

This means that asymptotically for large times |C0|2 = |C1|2. Considering the dynamics
on this invariant manifold, we introduce the amplitude and the phases of the modes C0 =
ρ exp[i1

2 (θ − φ)], C1 = ρ exp[i1
2 (θ + φ)] and obtain

ρ̇ = −γρ + Aρ cos θ − 3αρ3 , (7)
θ̇ = 2ε + κ − 2A sin θ − 6βρ2 , (8)
φ̇ = κ . (9)

Equations (7), (8) constitute an autonomous two-dimensional system, where the phase
space volume for γ, α > 0 is everywhere decreasing (this can be easily seen if one rewrites the
equations in the variables ρ cos(θ/2), ρ sin(θ/2)). Thus, limit cycles are not possible, and the
only attractors are stable fixed points. From (7), (8) one can see that the trivial equilibrium
ρ = 0 becomes unstable for A2 > γ2 + (ε + κ

2 )2, and for αγ > β(ε + κ
2 ) the corresponding
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bifurcation is a supercritical pitchfork bifurcation. The stationary amplitude is

ρ0 =

(
β(ε + κ

2 ) − αγ +
√

(β(ε + κ
2 ) − αγ)2 + (α2 + β2)(A2 − γ2 − (ε + κ

2 )2)
3(α2 + β2)

)1/2

.

For αγ < β(ε + κ
2 ) the bifurcation is subcritical, and a stable equilibrium exists already for

A > |(ε + κ
2 )α + γβ|(α2 + β2)−1/2. Note that a stable equilibrium ρ0, θ0 in the subsystem

(7), (8) is combined with linearly growing phase φ according to (9). As a result, for the
original slowly varying amplitudes of the oscillators, we obtain a solution

Xτ = ρ0e
i( θ0−κt

2 )
(
1 + ei(κt+τ)

)
. (10)

The intensity of the oscillations

|Xτ |2 = 2ρ2
0(1 + cos(κt + τ))

is a wave propagating in the direction of decreasing τ with velocity κ. This collective mode is
confirmed by numerical simulations (fig. 2).

Now we consider a situation when the modes C0, C1 are stable within (4), but other modes
Ck, C1−k are unstable. Because the coupling is via the mean field C0, in this case we essentially
have an ensemble of uncoupled parametrically excited oscillators described by the equations

Ẋτ = (−γ − σ + i(ε + iκ))Xτ + AeiτX∗
τ − (α + iβ)Xτ |Xτ |2 . (11)
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Fig. 2 – The results of the numerical simulation of system (2) for γ = σ = ε = β = 1/2, κ = α = 1,
N = 1000. The field intensity |Xτ |2 is shown by a gray scale. For A = 1.6 (left panel) the propagating
wave of type (10) develops from random initial conditions. For A = 2.2 (right panel) all modes are
unstable and a static field with relatively small mean field emerges. Because the mean field does not
vanish, a small frozen modulation of the amplitude is observed.
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With the phase shift Xτ → X ′
τeiτ/2 we can make all the equations equivalent. As a result,

the amplitudes of oscillators are equal, and only the phases are different:

Xτ = ±X(0)eiτ/2 . (12)

Note that if such a field evolves from random initial conditions, than the signs in this solution
are distributed randomly and the mean field does not vanish exactly but is small (∼ 1/

√
N).

Such a small field can be taken into account in (11) as a small constant perturbation. As a
result, the amplitudes of oscillators are not equal, but are slightly statically modulated in τ ;
additionally the two solutions for each τ corresponding to different signs in (12) are no more
equal but slightly different. We illustrate such a “frozen” state in fig. 2, and it can be observed
also in the black area of fig. 1, where all modes are unstable. Near the border of black and
light gray areas of fig. 1 we have observed multistability: depending on initial conditions we
observed both the traveling wave and the frozen state.

In conclusion, we have described collective excitations in a population of parametrically
excited oscillators. The instability threshold for a collective mode can lie below the instability
threshold for single oscillators. In this case the two-mode weakly nonlinear description gives
a traveling-wave solution, which is confirmed in the numerics. In this regime a single oscil-
lator “fires” periodically in time, with the frequency proportional to the conservative part of
the coupling.
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