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Abstract. Rotation numbers have played a central role in the study of (unforced)
monotone circle maps. In such a case it is possible to obtain a priori bounds of the
form » ¡ 1=n µ …1=n†…yn ¡ y0† µ » ‡ 1=n, where …1=n†…yn ¡ y0† is an estimate of the
rotation number obtained from an orbit of length n with initial condition y0, and » is
the true rotation number. This allows rotation numbers to be computed reliably and
e� ciently. Although Herman has proved that quasi-periodically forced circle maps
also possess a well-de®ned rotation number, independent of initial condition, the
analogous bound does not appear to hold. In particular, two of the authors have
recently given numerical evidence that there exist quasi-periodically forced circle
maps for which yn ¡ y0 ¡ »n is not bounded. This renders the estimation of rotation
numbers for quasi-periodically forced circle maps much more problematical. In
this paper, a new characterization of the rotation number is derived for quasi-
periodically forced circle maps based upon integrating iterates of an arbitrary
smooth curve. This satis®es analogous bounds to above and permits us to develop
improved numerical techniques for computing the rotation number. Additionally,
the boundedness of yn ¡ y0 ¡ »n is considered. It is shown that if this quantity is
bounded (both above and below) for one orbit, then it is bounded for all orbits.
Conversely, if for any orbit yn ¡ y0 ¡ »n is unbounded either above or below, then
there is a residual set of orbits for which yn ¡ y0 ¡ »n is unbounded both above and
below. In proving these results a min±max characterization of the rotation number is
also presented. The performance of an algorithm based on this is evaluated, and on
the whole it is found to be inferior to the integral based method.
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1. Introduction
1.1. Principal aims and results
Many applications of nonlinear dynamics involve forced systems. Whilst forcing by
a single frequency has long been extensively studied, that by two (or more) incom-
mensurate frequencies has received comparatively less attention and is in general
much more poorly understood. The simplest framework in which this can be studied
is that of skew products over a rigid irrational rotation, that is maps of the form

³n‡1 ˆ ³n ‡ ! mod1

yn‡1 ˆ g…³n; yn†:
…1†

Here ³n 2 1, the unit circle and ! is irrational, whilst yn is assumed to lie in some
®nite dimensional manifold Y (which in this paper will always be one-dimensional).
It will be convenient to write

f …³† ˆ ³ ‡ ! mod1

and

F…³; y† ˆ …f …³†; g…³; y†† …2†

for the overall skew product map on 1 £ Y . We shall furthermore de®ne g…n† by
Fn…³; y† ˆ …f n…³†; g…n†…³; y††. We use the notation g…n† as opposed to gn to remind the
reader that g cannot be composed with itself, so that in fact
g…n‡1†…³; y† ˆ g…f n…³†; g…n†…³; y††.

One particular interesting class of such systems is given by `quasi-periodically
forced circle maps’, which correspond to Y ˆ 1 (Ding et al. 1989a,b Chastell et
al. 1995, Feudel et al. 1995, 1997, Sturman 1999, Glendinning et al. 2000). It is usually
more convenient to work with the lift (to Y ˆ ) of such a map; this is given by a
g : 1 £ ! which satis®es g…³; y ‡ 1† ˆ g…³; y† ‡ 1. This gives rise to a circle
map in the usual way by taking ~gg : 1 £ 1 ! 1 to be g…³; y† ˆ g…³; y†mod1.
Then …f ; ~gg† is a map of the 2-torus 2 ˆ 1 £ 1. In this paper we shall additionally
restrict ourselves to the case where …f ; ~gg† is a homeomorphism (a continuous inver-
tible map with a continuous inverse) which in turn implies that ~gg…³; ¢† : 1 ! 1 is a
homeomorphism of 1 for each ³ 2 1, and that g is continuous in ³. One would
expect such maps to play as central a role for quasi-periodically forced systems as
circle maps do in the class of general systems. A paradigm example (Ding et al.
1989a, b, Chastell et al. 1995, Feudel et al. 1995, 1997, Sturman 1999, Glendinning et
al. 2000), comparable to the Arnold sine map (Arnold 1957, 1983), is given by

g…³; y† ˆ y ‡ « ‡ A

2º
sin 2ºy ‡ B sin 2º³: …3†

This is a homeomorphism as long as jAj µ 1. The condition that ~gg is a homeomorph-
ism can be expressed in terms of the lift g as a requirement that g be strictly mono-
tone, that is g…³; y† < g…³; y 0† for all y < y 0 and all ³ 2 1. In fact all of the results in
this paper hold without the strictness assumption and we therefore de®ne

De®nition 1. A quasi-periodically forced map …f ; g† on 1 £ is `monotone’ if for
all y µ y 0 and all ³ 2 1

g…³; y† µ g…³; y 0†: …4†
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This property will turn out to play a central role in our work. Note that by induction
we trivially have g…n†…³; y† µ g…n†…³; y 0† for all n 2 , all y µ y 0 and all ³ 2 1.

Monotonicity is of fundamental importance in the study of unforced circle maps and
we shall therefore ®rst review its consequences in this context. Thus, suppose that
h : ! is the lift of a monotone map of the circle, so that it satis®es
h…y ‡ 1† ˆ h…y† ‡ 1 and h…y† µ h…y 0† for all y µ y 0. Then it has a unique rotation
number de®ned by

» ˆ lim
n!1

hn…y† ¡ y

n

which is independent of the choice of y. This in fact turns out to still be the case if h is
not continuous; it is the monotonicity which ensures the existence and uniqueness of

» (Rhodes and Thompson 1986, 1991).
The rotation number can be used to classify monotone circle maps and to organize

their bifurcation diagram. Of particular interest are those regions for which » is
rational. For the classic Arnold sine map

h…y† ˆ y ‡ « ‡ A

2º
sin 2ºy …5†

these have a well-known `tongue’ shape and are usually referred to as `Arnold
tongues’. Note that if h has rotation number p=q then hq ¡ p has rotation number
0, and hence the » ˆ 0 tongue serves as an archetype for all the others.

A natural question to ask is how to compute the rotation number for a particular
map. A naõÈ ve approach is simply to take an initial point y0, iterate it some large
number n times and then compute …1=n†…hn…y0† ¡ y0†. This turns out to work sur-
prisingly well, largely due to the following bounds, which can easily be derived for all
monotone circle maps (Rhodes and Thompson 1986, 1991):

» ¡ 1

n
µ hn…y† ¡ y

n
µ » ‡ 1

n
…6†

for all y. This can also be expressed as

jhn…y† ¡ y ¡ »nj µ 1: …7†

This bound gives tight control of how the rotation of orbits around the circle
¯uctuates about its average. One immediate consequence is that if » ˆ 0 then
every orbit yn ˆ hn…y0† is bounded and in particular must remain in the region
j yn ¡ y0j µ 1. This can be used to provide rigorous error bounds in the numerical
estimation of ». Thus, for instance, in estimating the extent of the » ˆ 0 tongue, we
can immediately exclude parameter regions where jhn…0†j > 1 for any n.
Furthermore, if » 6ˆ 0, then we are guaranteed that jhn…0†j > 1 for all su� ciently
large n. Similar statements, using hnq…0† ¡ p instead of hn…0† apply to the general p=q
tongue. Finally, another immediate consequence of (6) is the continuity of » with
respect to parameters for continuous h.

Our main aim in this paper is to see to what extent these results can be generalized
to the quasi-periodically forced case. We now have two rotation numbers, one in the

³ direction and the other in the Y direction. The former is trivially equal to ! and will
not concern us further. The latter is de®ned by
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» ˆ lim
n!1

g…n†…³; y† ¡ y

n
…8†

whenever the limit exists. The principal di� culty is that we no longer have ordering
for arbitrary pairs of points. In other words, if ³ 6ˆ ³ 0, then we have no information
about the relative position of g…n†…³; y† and g…n†…³ 0; y 0†. This makes it impossible to
apply the standard proof for the existence of a rotation number in the unforced case.
Nevertheless, Herman shows that the monotonicity in each ®bre, combined with the
unique ergodicity of f are su� cient to prove Theorem 1.

Theorem 1 (Herman 1983). If F is a homeomorphism of the torus 1 £ 1 of the form
(2), then the limit (8) exists for all …³; y†, and is independent of …³; y†. Furthermore, the
limit converges uniformly in …³; y†.

Thus, as before, one can talk of the rotation map of the map F. We shall give an
elementary proof of this theorem as a corollary of our work below in section 3.3.
However, it no longer appears possible to derive bounds analogous to (6) in the
quasi-period case (see section 1.2 below). This makes the numerical estimation of »
by computing ~»»n ˆ …1=n†…g…n†…³0; y0† ¡ y0† for a single initial …³0; y0† potentially inac-
curate and certainly fraught with uncertainty. This is illustrated in ®gure 1 where we
see that indeed (6) is not satis®ed, and that large oscillations occur in ~»»n as n grows.
These make it di� cult to estimate the limit of ~»»n. One obvious improvement is to
average over a number of di� erent initial conditions, shown in ®gure 2. Whilst this
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Figure 1. Estimate of rotation number for the map (3), with parameter values
A ˆ 0:8, B ˆ 3:0 and « ˆ 0:01, obtained by iterating a single randomly chosen
orbit for n iterations and computing ~»»n ˆ …1=n†…g…n†…³0; y0† ¡ y0†. The solid line
indicates an accurate estimate »¤ ˆ 0:0173598 of the limit value, obtained using
Algorithm 4 (described below, with k ˆ 1000 points, a transient of m ˆ 1000, and
n ˆ 105 iterates). The dashed lines give the bounds »¤ § …1=n†, analogous to (6).



leads to a more accurate result, we see that it does not reduce the oscillations making
it di� cult to estimate both the limiting value and the accuracy of our estimates.

Instead, in this paper we present a new integral characterization of the rotation
number, for which we are able to derive a uniform estimate analogous to (6). This

5Rotation numbers for monotone circle maps

Figure 2. Estimate of rotation number for the same map as ®gure 1. (A) Average
calculated using 10 (light grey) and 100 (dark grey) randomly chosen orbits. The
limit value (solid line) and bounds (dashed line) are as in ®gure 1. (B) Detail of
(A), showing continuing oscillations in the estimate. Only the data for the aver-
age of 10 orbits are shown.



allows us to devise a family of algorithms for numerically estimating » for which we
can obtain explicit error bounds, exactly as in the unforced case. Furthermore, it
turns out that in many circumstances such algorithms have superior performance to
the simplistic ones outlined above. To explain our characterization, we begin by
examining how curves are iterated under maps of the form (2).

De®nition 2. The `graph’ of a function Á : 1 ! is the set

graph Á ˆ f…³; Á…³†† : ³ 2 1g:

If Á is continuous (which we shall assume throughout this paper) then this is a curve
winding once around the cylinder 1 £ . For n 2 , let Án : 1 ! be the function
whose graph is F n (graph Á):

Án…³† ˆ g…n†…³; Á…³††:

Our principal result is then Theorem 2.

Theorem 2. If F is a monotone continuous quasi-periodically forced circle map, Á a
continuous function Á : 1 ! and Án is de®ned as above then

» ¡ 1

n
µ 1

n

…
Án ¡ Á d³ µ » ‡ 1

n
: …9†

Observe the close analogy of this to the fundamental bound (6) for the unforced case.
A proof of this theorem is given in section 3 below.

Remark 1. Those familiar with the theory of skew products should note that Án is
not the standard graph transform of Á, which is given by ~ÁÁn…³† ˆ
g…n†…f ¡n…³†; Á…f ¡n…³†††. The latter gives the y coordinate of Fn (graph Á) at ³,
whilst Án…³† gives the coordinate at f n…³† (®gure 3). Since Lebesque measure is
invariant under f, we trivially have

…
’8f ¡nd³ ˆ

…
’ d³ …10†

for any integrable ’ : 1 ! and any n 2 . Hence in (9) we can replace Án by the
graph transform ~ÁÁn. In fact we can replace the integrand on the right-hand side of
(10) by ’8R¬, for any ¬ 2 , where R¬ : 1 ! 1 is the rigid rotation
R¬…³† ˆ ³ ‡ ¬ mod1.
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Figure 3. The function Án ˆ g…n†…³; Á…³†† and the graph transform ~ÁÁn…³† ˆ
g…n†…f ¡n…³†; Á…f ¡n…³†††:



1.2. Bounded and unbounded orbits
Recall that for an unforced circle map of rotation number », the quantity »n provides
a very tight estimate of how far an orbit has moved in n iterations. In particular (7)
implies that hn…y† ¡ y ¡ »n is bounded. Unfortunately, it seems that this is no longer
true in the quasi-periodically forced case, and in particular Feudel et al. (1995)
present strong numerical evidence that there exist parameter values for the map
(3) where yn grows approximately logarithmically. Furthermore, the system in
GodreÁ che et al. (1987) can be interpreted as a piecewise constant quasi-periodically
forced monotone map for which the authors rigorously demonstrate the existence of
logarithmic growth. Such growth is an example of a map for which » ˆ 0 but
g…n†…³; y† ¡ y is not bounded. It turns out that in general if this occurs for one
orbit, then it occurs for all typical orbits. Conversely if there exists an orbit for
which g…n†…³0; y0† ¡ y is bounded, then g…n†…³; y† ¡ y is unformly bounded for all
…³; y† 2 1 £ . An appropriate generalization holds for other rotation numbers.
Thus de®ne

De®nition 3. We say that the orbit of …³; y† is `»-bounded above’ if there exists a
constant K such that g…n†…³; y† ¡ y ¡ »n µ K for all n 2 and `»-bounded below’ if
g…n†…³; y† ¡ y ¡ »n ¶ ¡K for all n 2 . An orbit is `»-bounded’ if it is both »-
bounded above and below. It is `»-unbounded’ if it is not »-bounded and similarly
for `»-unbounded above’ and `»-unbounded below’.

If there exists a »-bounded orbit, then the map has rotation number », but the
converse does not necessarily hold. In section 4 below, we prove Theorem 3.

Theorem 3. Suppose that a monotone continuous quasi-periodically forced circle map
F has rotation number ». Then there exists at least one orbit that is »-bounded above
and one orbit that is »-bounded below. If there exists an orbit that is »-bounded (both
above and below), then all orbits are »-bounded. If there is no »-bounded orbit then
there exists a residual subset U » 1 such that the orbits of all …³; y† 2 U £ are »-
unbounded both above and below.

Numerical evidence suggests that the »-unbounded situation can occur (Feudel et al.
1995), however we know of no rigorous proof of this. In such a case the set U can
clearly be chosen to be f-invariant. Since Lebesgue measure is an ergodic f-invariant
measure (ineeed it is the only f-invariant measure) such a set must be of either zero or
full Lebesgue measure. The fact that all numerical orbits in the Feudel et al. (1995)
example appear to be unbounded suggests that U in fact has full measure, though we
can see no way of proving this.

As part of the proof of the above theorem we also derive the following `min±max’
characterization of the rotation number, which motivates a number of numerical
algorithms described in the next section.

Theorem 4. Suppose that a monotone continuous quasi-periodically forced circle map
F has rotation number » and let Á : 1 ! be a continuous function. Then

inf
³2 1

sup
n2

1

n
…g…n†…³; Á…³†† ¡ Á…³† ¡ 1† ˆ » ˆ sup

³2 1

inf
n2

1

n
…g…n†…³; Á…³†† ¡ Á…³† ‡ 1†:

This is proved under the guise of Corollary 8 below.
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1.3. Numerical methods for estimating the rotation number
We consider the following methods for numerically computing the rotation number
of a quasi-periodically forced circle map. The ®rst two have been widely used in the
literature (Feudel et al. 1995, 1997, Glendinning et al. 2000), whilst the remainder are
motivated by the theoretical results described above. A numerical evaluation of these
methods is given in section 2.

Algorithm 1. Choose an initial condition …³0; y0† 2 1 £ and some large n 2 .
Then an estimate for » is given by (®gure 1).

~»»1;n ˆ 1

n
…g…n†…³0; y0† ¡ y0†:

Somewhat better results can be obtained by choosing many di� erent initial con-
ditions.

Algorithm 2. Choose a random set of initial conditions f…³0; y0†; . . . ;
…³k¡1; yk¡1†g » 1 £ and some large n 2 . Estimate » using (®gure 2)

~»»2;n ˆ
1

k

Xk¡1

iˆ0

1

n
…g…n†…³i; yi† ¡ yi†:

The disadvantage of these methods is that we have no estimate of the error in
determining » for a particular choice of n and k. Theorem 2 on the other hand
o� ers error bounds that are explicit and apart from the inaccuracies involved in
evaluating an integral are also rigorous. It suggests the following algorithm.

Algorithm 3. Choose a smooth function Á : 1 ! ; in the absence of a priori
information we may as well take Á to be constant. Choose some k 2 and subdivide

1 into k equally spaced intervals, so that ³i ˆ i=k for i ˆ 0; . . . ; k ¡ 1. Iterate each
point …³i; Á…³i†† for n iterations and estimate the integral in (9) using the trapezoidal
rule. Thus

~»»3;n ˆ
1

k

Xk¡1

iˆ0

1

n
…g…n†…³i; Á…³i†† ¡ Á…³i††:

Note the close similarity to Algorithm 2: the only di� erence is in the choice of initial
points. Remarkably, not only does this lead to rigorous error bounds, but also
appears to give a more accurate estimate of ».

Strictly speaking, Á only needs to be continuous in this and the subsequent algor-
ithms based on Theorem 2. However, for periodic functions, the accuracy of the
trapezoidal rule improves with increasing smoothness (more precisely the higher the
degree of smoothness, the higher the order of the error estimates (Davis and
Rabinowitz 1984)). It thus seems sensible to take Á as smooth as possible, and in
particular Á constant is a good choice (though of course the smoothness of Án also
depends on the smoothness of g). Recall also that for smooth periodic functions, the
trapezoidal rule is about as accurate a method as one can get for the numerical
evaluation of an integral (Davis and Rabinowitz 1984). There is therefore no
point attempting to use more sophisticated quadrature formulas. There is, however,
a potential pitfall in that the derivatives of Án can grow without bound as n ! 1.
This appears to be the case if the system possesses a strange non-chaotic attractor
(Feudel et al. 1995). Hence, in principle, a numerical estimate of the integral of Án
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could be quite inaccurate. In practice, however, this does not seem to be a problem,
as we shall see when we evaluate this algorithm in the next section.

When the map F has an invariant or periodic curve, it seems natural to use this as

Á in the above scheme. Observe that if we knew the invariant curve precisely and
used it for Á then we would have

…
Án d³ ˆ

…
Á d³

and hence would have an exact evaluation of the rotation number (which of necessity
is 0 when there is an invariant curve) for any n. Similarly if the curve was periodic, we
would get an exact result for any n which was a multiple of the period.

Unfortunately, we will in general not know the invariant curve a priori. However,
if it is attracting (and typically inside a phase-locked tongue an attracting curve will
exist) we can approximate it by simply iterating an arbitrary curve for some initial
number of iterations m. In e� ect we incorporate a transient in Algorithm 3 leading to
Algorithm 4.

Algorithm 4. Choose a smooth function Á : 1 ! and k; m; n 2 . Subdivide 1

into k equally spaced intervals, so that ³i ˆ i=k for i ˆ 0; . . . ; k ¡ 1. Iterate each
point …³i; Á…³i†† for an initial transient of length m and then for a further n iterations.
This gives the following estimate of the rotation number.

~»»4;n ˆ 1

k

Xk¡1

iˆ0

1

n
…g…N‡m†…³i; Á…³i†† ¡ g…m†…³i; Á…³i†††:

We now turn to algorithms motivated by Theorem 4, and in particular by Lemma 9.

Algorithm 5. Choose a smooth function Á : 1 ! and k; n 2 . Subdivide 1

into k equally spaced intervals, so that ³i ˆ i=k for i ˆ 1; . . . ; k. Iterate each point
…³i; Á…³i†† n times and set

¬¡
n …³i† ˆ max

1µmµn

1

m
…g…m†…³i; Á…³i†† ¡ Á…³i† ¡ 1†

¬‡
n …³i† ˆ min

1µmµn

1

m
…g…m†…³i; Á…³i†† ¡ Á…³i† ‡ 1†

¬¡
n ˆ min

1µiµk
¬¡

n …³i†

¬‡
n ˆ max

1µiµk
¬‡

n …³i†:

As in Algorithm 4, we can also add an initial transient. We have no strong justi®ca-
tion of the need for Á to be smooth (as opposed to just continuous) in this algorithm,
though one might reasonably expect this to minimize the e� ects of discretizing 1 in
the estimation of the maximum and minimum over ³. Apart from the e� ects of this
discretization, which is analogous to the discretization involved in evaluating the
integrals in the previous two algorithms, we have

¬¡
n µ » µ ¬‡

n :

Furthermore, Lemma 10 shows that as we increase the number of iterations, the
width of the interval ‰¬¡

n ; ¬‡
n Š shrinks to zero: that is
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lim
n!1

¬¡
n ˆ » ˆ lim

n!1
¬‡

n :

Finally we remark that often we do not actually want to estimate »…F†, but rather
obtain bounds for it, for instance as part of a bracketing or root ®nding routine for
the edges of a tongue. Since Theorem 2 provides a priori bounds for Algorithms 3
and 4, it is easy to modify these for this purpose.

Algorithm 6. Choose a candidate », a smooth function Á : 1 ! and k; m; n 2 .
Subdivide 1 into k equally spaced intervals, so that ³i ˆ i=k for i ˆ 0; . . . ; k ¡ 1.
Iterate each point …³i; Á…³i†† for an initial transient of length m and then for a
maximum of n iterations. If at any j µ n we have

1

k

Xk¡1

iˆ0

g…j‡m†…³i; Á…³i†† > j» ‡ 1 ‡
1

k

Xk¡1

iˆ0

g…m†…³i; Á…³i†† …11†

then »…F† > », and similarly for an upper bound. If we reach n iterations without
satisfying this inequality then the algorithm does not give a bound on »…F†. Of
course in that case we can apply Algorithm 4 to estimate »…F† without further work.

The advantage of this approach over simply iterating for the full n iterates and then
seeing whether ~»»4;n > » ‡ 1=n is that when »…F† is signi®cantly larger than », we can
satisfy (11) with j much less than n, and hence deduce that »…F† > p with much less
work. A min±max approach to the same problem is suggested by Lemma 8. This
implies that if for each ³ 2 1 there exists a m…³† 2 such that
g…m…³††…³; Á…³†† ¡ Á…³† ¡ m…³†» > 1; then »…F † > ». Similarly if g…m…³††…³; Á…³††¡
Á…³†¡ m…³†» < ¡1 for all ³ 2 1, then »…F† < ». We can also incorporate an initial
transient. This leads to the following scheme.

Algorithm 7. Choose a smooth function Á : 1 ! and k; m; n 2 . Subdivide 1

into k equally spaced intervals, so that ³i ˆ i=k for i ˆ 0; . . . ; k ¡ 1. Iterate each
point …³i; Á…³i†† for an initial transient of length m and then for up to n iterations.
If at any j µ n we have g…j‡m†…³i; Á…³i†† > j» ‡ g…m†…³i; Á…³i†† ‡ 1, stop and go on to
the next point. If this happens for all i ˆ 0; . . . ; k ¡ 1, then »…F† > ». If for any i we
reach n iterations (i.e. g…j†…³i; Á…³i†† µ j» ‡ g…m†…³i; Á…³i†† ‡ 1 for all j ˆ 1; . . . ; n) then
stop; the algorithm fails to give a bound for »…F† in this case.

2. Numerical results
Since most readers will probably be mainly interested in the algorithms for estimat-
ing the rotation number, we present an evaluation of these ®rst, before giving rig-
orous proofs of the above theorems in subsequent sections. Our tests were performed
using the map (3), initially focusing on the parameter values A ˆ 0:8, B ˆ 3:0 and

« ˆ 0 where Feudel et al. (1995) suggest the system has a strange non-chaotic
attractor with unbounded orbits (because of the symmetry in the map, « ˆ 0 implies
that » ˆ 0 and hence `»-bounded’ and `bounded’ are synonymous). This represents
the most di� cult situation possible for which to estimate a rotation number. If the
map has a smooth invariant (or periodic) circle, then even Algorithm 1 can give an
excellent estimate of the rotation number, particularly when n is a convergent of !
(i.e. a Fibonacci number when ! is the golden mean). Even when the system has a
strange non-chaotic attractor, but all orbits are bounded, then such bounds imply
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bounds on the convergence of (8) and hence of Algorithm 1. On the other hand when
there exist »-unbounded orbits, then we expect (8) to converge particularly poorly.

Unfortunately, preliminary numerical investigations showed that because of the
symmetry of the map at « ˆ 0, some of the improvements in performance exhibited
by Algorithm 3 were caused by subtle cancellations (owing to the symmetry), and
were thus to some extent spurious. We therefore broke the symmetry by setting
« ˆ 0:01, and this is the value for the numerical work presented here.

The disadvantage of the choice « ˆ 0:01 is that we no longer know a priori the
rotation number, unlike the case « ˆ 0, where » ˆ 0. This makes it more di� cult to
evaluate the error in the various estimates of the rotation number. We overcame this
by using a much larger number of iterations than used in the remainder of our work
to compute an accurate estimate »¤ º 0:0173598 . . .. This was done using both
Algorithms 3 and 4, with k ˆ 1000 points, n ˆ 105 iterates, and a transient of
m ˆ 1000 in the case of Algorithm 4. A curve of the form ~»»n ˆ »¤ ‡ cn¡1 was then
®tted to estimate »¤.

We have already presented results for Algorithms 1 and 2, in ®gures 1 and 2,
respectively. We see that increasing the number of orbits used improves the accuracy
of the estimate, but does not reduce the oscillations in the convergence. We addi-
tionally tried using a transient, similar to that in Algorithm 4, in these algorithms but
found that it led to no signi®cant improvement (results not shown).

By contrast, using Algorithm 3 leads both to more accurate results, and to much
more regular convergence (®gure 4). The convergence in the case of 1000 orbits is
particularly smooth, making it very easy to ®t a line of the form ~»»n ˆ »¤ ‡ cn¡1 to
estimate »¤, in contrast to Algorithm 2. On the other hand, increasing the number of
orbits from 100 to 1000 actually makes little di� erence to accuracy. Note that the
bounds (9) are satis®ed even by Algorithm 2 when we take a large number of orbits.
It would be interesting to see whether this will always be the case in the limit of
taking a large number of points (i.e. k ! 1).

Figure 5 shows the e� ect of including a transient. Whereas we found that this had
little e� ect for Algorithm 2 (results not shown), it signi®cantly appears to improve
the accuracy of Algorithm 3, as shown in ®gure 5. Increasing the length of the
transient to m ˆ 1000 gave little signi®cant improvement to the results (not
shown). Figure 5B represents the best possible results we were able to achieve,
and comparison to ®gure 4B shows the dramatic improvement that is possible
over a random choice of orbits.

Next, we turn to the algorithms based on the min±max characterization of the
rotation number given by Theorem 4. Figure 6 shows that ¬¡

n and ¬‡
n provide

reasonably tight bounds for the rotation number. Observe that unlike the previous
algorithms, ¬¡

n and ¬‡
n converge to the rotation number in a monotone fashion, as is

obvious from their de®nition. This de®nition also implies that increasing the number
of orbits widens the interval within which we estimate the rotation number to be. We
thus get a less accurate, but presumably more reliable estimate of the rotation
number. This is apparent in ®gure 6 and is again in contrast to the previous algor-
ithms where using more points leads to improved accuracy. Including a transient in
Algorithm 5 leads to some improvement in performance, but this is not dramatic
(results not shown).

The results of Algorithm 5 are not directly comparable with those of Algorithm 3,
that is we cannot directly compare ®gure 6 with ®gure 4. This is because ¬§

n are
estimates of bounds for the rotation number, whilst ~»»3;n is an estimate of the rotation
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number itself. The appropriate comparison is therefore between ¬§
n and ~»»3;n § 1=n.

This is shown in ®gure 7.
We see that since ~»»3;n is such a good estimate, the bounds ~»»3;n § 1=n are close to

optimal, whilst those given by ¬§
n are signi®cantly wider. Furthermore, at least in our

implementation, Algorithm 3 is about 1.5 times faster than Algorithm 5 and hence it

12 J. Stark et al.

Figure 4. Comparison of Algorithm 2 (light grey) and Algorithm 3 (dark grey) for
the same map as ®gure 1, using (A) 100 orbits and (B) 1000 orbits. The solid line
gives the estimate »¤ ˆ 0:017 3598 and the dashed line gives the bounds

»¤ § 1=n, as in (9).



appears that for the purposes of numerical estimation of the rotation number the
integral representation given by Theorem 2 is superior to the min±max approach of
Theorem 4.

The situation is reversed when we compare Algorithm 6 with Algorithm 7, where
the min±max approach is much more e� cient. This is illustrated in ®gure 8 where we

13Rotation numbers for monotone circle maps

Figure 5. E� ect of including transient of length m ˆ 100 in Algorithm 3, that is
comparison between Algorithm 3 (light grey) and Algorithm 4 (dark grey) for
the same map as ®gure 1, using (A) 100 orbits and (B) 1000 orbits. The solid line
gives the estimate »¤ ˆ 0:017 3598.
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Figure 6. Evaluation of Algorithm 5 for the same map as ®gure 1, using 100 orbits
(light grey) and 1000 orbits (dark grey). The solid line gives the estimate

»¤ ˆ 0:017 3598 and the dashed line gives the bounds »¤ § 1=n, as in (9).

Figure 7. Comparison of the bounds derived from Algorithm 5 (dark grey, same
data as in ®gure 2) and those obtained from Algorithm 3 (light grey, derived
from data in ®gure 4). In both cases 1000 orbits with no transient were used. The
bounds for Algorithm 3 were obtained by computing ~»»3;n § 1=n. The solid line
and dashed lines are as in ®gure 6.



show the total number of iterations of the map (3) that each algorithm requires to
show that »…«† > 0, as a function of «, at the usual parameter values A ˆ 0:8 and
B ˆ 3:0: Note that there is evidence (Feudel et al. 1995, Glendinning et al. 2000) that
for these values of A and B, the tongue » ˆ 0 has zero width, that is »…«† > 0 for
« > 0 and this is con®rmed by ®gure 8.

It is interesting that the two algorithms exhibit di� erent scaling with «. The
relatively slow growth of Ntot as « ! 0 suggests that the computer sees only a few
orbits that are »-unbounded below, in apparent contradiction to the remark after
Theorem 3. This is similar to the apparent discrepancies between theory and numer-
ical experiment observed in Sturman (2000). Also observe that in the case of
Algorithm 6, 1=j ˆ k=Ntot is a good estimate for »…«†. Thus for « µ 10¡3, we
have a very good ®t to »…«† º «¡1. This is con®rmed by estimating »…«† directly
using Algorithm 4 with k ˆ 1000, n ˆ 105, m ˆ 1000, shown in ®gure 9. This gives an
almost perfect ®t to »…«† ˆ c«¡1 for « µ 10¡3, with c º 6:37 . . .. Other reasonable
choices of k, n and m yield identical results. It would be interesting to see whether
one can give a theoretical explanation of this.

3. Proof of Theorem 2
3.1. Elementary results
We begin with a number of elementary results, which are identical to their analogues
for unforced circle maps. Recall that we de®ne g…n† by Fn…³; y† ˆ …f n…³†; g…n†…³; y††.
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Figure 8. Comparison of Algorithms 6 and 7. We show the total number of iterates
Ntot of map (3), as a function of « required to show that the rotation number is
strictly positive, i.e. that we are not in the » ˆ 0 tongue. The other parameter
values A ˆ 0:8 and B ˆ 3:0 are as before. In both cases, k ˆ 1000 orbits were
used. For Algorithm 6, Ntot ˆ jk, where j is the ®rst iterate to satisfy (11), whilst
for Algorithm 7, Ntot ˆ j…1† ‡ j…1† ‡ . . . ‡ j…k†, where j…i† is the ®rst iterate such
that g…j…i†‡m†…³i; Á…³i†† > g…m†…³i; Á…³i†† ‡ 1.



Lemma 1. If F is a skew product of the form (2), then
g…n‡m†…³; y† ˆ g…m†…f n…³†; g…n†…³; y†† for all n; m 2 and all …³; y† 2 1 £ .

Proof. By de®nition we have …f n‡m…³†, g…n‡m†…³; y† ˆ Fn‡m…³; y† ˆ Fm…f n…³†,
g…n†…³; y†† ˆ …f m…f n…³††, g…m†…f n…³†; g…n†…³; y†††. Matching the second coordinates
gives the required result. &

Corollary 1. If F is a monotone quasi-periodically forced map then so is Fn, and hence
in particular

g…n†…³; y† µ g…n†…³; y 0†

for all y µ y 0, all ³ 2 1 and all n 2 .

Proof. This follows by straightforward induction using the previous lemma with
m ˆ 1. The result holds for n ˆ 1 by de®nition. Suppose it holds for some n > 1, so
that g…n†…³; y† µ g…n†…³; y 0† for all y µ y 0 and all ³ 2 1. Then if y µ y 0, the inductive
hypothesis implies that g…f n…³†; g…n†…³; y†† µ g…f n…³†, g…n†…³; y 0††. Hence by the pre-
vious lemma g…n‡1†…³; y† µ g…n‡1†…³; y 0†, as required. &

De®nition 4. Let ¹…n† : 1 £ ! be the function

¹…n†…³; y† ˆ g…n†…³; y† ¡ y:

The next lemma is also trivial, but when combined with Corollary 1 yields a key
estimate which in turn implies that ¹…n† is in a certain sense sub-additive. This latter
property underlies the whole proof of Theorem 2.

Lemma 2. If F is a monotone quasi-periodically forced circle map then ¹…n† is periodic
in y for any ³ 2 , that is

¹…n†…³; y ‡ k† ˆ ¹…n†…³; y†

16 J. Stark et al.

Figure 9. Estimate of the rotation number »…«† of map (3), as a function of « with
A ˆ 0:8 and B ˆ 3:0, using Algorithm 4 with k ˆ 1000, n ˆ 105, m ˆ 1000.



for all …³; y† 2 1 £ , all n 2 and all k 2 .

Proof. This follows by straightforward induction. It clearly su� ces to just prove
the result for k ˆ 1. Since g…³; y ‡ 1† ˆ g…³; y† ‡ 1, we have by de®nition that

¹…1†…³; y ‡ 1† ˆ g…³; y ‡ 1† ¡ y ¡ 1 ˆ g…³; y† ‡ 1 ¡ y ¡ 1 ˆ ¹…1†…³; y†. Now suppose
that for a given n, we have ¹…n†…³; y ‡ 1† ˆ ¹…n†…³; y† for all …³; y† 2 1 £ . Then
¹…n‡1†…³; y ‡ 1† ˆ g…n‡1†…³; y ‡ 1† ¡ y ¡ 1 ˆ g…f n…³†, g…n†…³; y ‡ 1†† ¡ y ¡ 1 by
Lemma 1. By de®nition and the inductive hypothesis, g…n†…³; y ‡ 1† ˆ ¹…n†…³; y‡
1† ‡ y ‡ 1 ˆ ¹…n†…³; y† ˆ y ‡ 1 ˆ g…n†…³; y† ‡ 1, and hence ¹…n‡1†…³; y ‡ 1† ˆ g…f n…³†,
g…n†…³; y† ‡ 1† ¡ y ¡ 1 ˆ g…f n…³†; g…n†…³; y†† ‡ 1 ¡ y ¡ 1 ˆ ¹…n‡1†…³; y†, as required. &

Corollary 2 (Herman 1979). If F is a montone quasi-periodically forced circle map
then for all ³ 2 1, y; y 0 2 and n 2

j¹…n†…³; y† ¡ ¹…n†…³; y 0†j µ 1: …12†

Proof. Since ¹…n†…³; y 0† ˆ ¹…n†…³; y 0 ‡ k† for all k 2 , and the result is trivial if
y ˆ y 0, we may assume without loss of generality that y < y 0 < y ‡ 1. Now
¹…n†…³; y† ˆ g…n†…³; y† ¡ y µ g…n†…³; y 0† ¡ y and since ¡y < ¡y 0 ‡ 1 we have

¹…n†…³; y† µ g…n†…³; y 0† ¡ y 0 ‡ 1 ˆ ¹…n†…³; y 0† ‡ 1. Hence

¹…n†…³; y† ¡ ¹…n†…³; y 0† µ 1: …13†

On the other hand, ¹…n†…³; y† ˆ ¹…n†…³; y ‡ 1† ˆ g…n†…³; y ‡ 1† ¡ y ¡ 1 ¶ g…n†…³; y 0†¡
y ¡ 1. Since ¡y > ¡y 0, this yields ¹…n†…³; y† ¶ g…n†…³; y 0† ¡ y 0 ¡ 1 ˆ ¹…n†…³; y 0† ¡ 1.
Hence

¹…n†…³; y† ¡ ¹…n†…³; y 0† ¶ ¡1: …14†

Combining (13) and (14) gives the required result. &

Applying this to ¹…n‡m† and unravelling the de®nitions leads to the following sub-
additive property for ¹…n†.

Corollary 3. If F is a monotone quasi-periodically forced circle map then for all

³ 2 1; y; y 0 2 and n; m 2 we have

j¹…n‡m†…³; y† ¡ ¹…m†…f n…³†; y 0† ¡ ¹…n†…³; y†j µ 1: …15†

Proof. By Lemma 1, we have

¹…n‡m†…³; y† ˆ g…n‡m†…³; y† ¡ y

ˆ g…m†…f n…³†; g…n†…³; y†† ¡ y

ˆ g…m†…f n…³†; g…n†…³; y†† ¡ g…n†…³; y† ‡ g…n†…³; y† ¡ y

ˆ ¹…m†…f n…³†; g…n†…³; y†† ‡ ¹…n†…³; y†:

But by (12) we have j¹…m†…f n…³†; g…n†…³; y†† ¡ ¹…m†…f n…³†; y 0†j µ 1 for any y 0 2 , im-
mediately giving the required bound (15). &

3.2. Iteration of curves
De®nition 5. Given any function Á : 1 ! , de®ne ¹n : 1 ! by
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¹n…³† ˆ ¹…n†…³; Á…³††:

Observe that this is the amount of vertical distance that the point …³; Á…³†† moves in n
iterations. If the rotation number exists, then we should have …1=n†¹n…³† ! » for all

³ 2 1. We ®rst show that in an appropriate sense f¹ng is both a sub- and super-
additive sequence of functions. More precisely we have the elementary estimate.

Lemma 3. If F is a monotone quasi-periodically forced circle map then for all ³ 2 1

and n; m 2 we have

j¹n‡m…³† ¡ ¹m…f n…³†† ¡ ¹n…³†j µ 1: …16†

Proof. Let y 0…³† ˆ Á…f n…³††, then ¹m…f n…³†† ˆ ¹…m†…f n…³†; y 0…³††. Thus by (15) we
have j¹n‡m…³† ¡ ¹m…f n…³†† ¡ ¹n…³†j ˆ j¹…n‡m†…³; Á…³†† ¡ ¹…m†…f n…³†; y 0…³†† ¡ ¹…n†…³; Á
…³††j µ 1, as required. &

De®nition 6. With ¹n as above, if Á and g are continuous (or some other condition
ensuring that ¹n is integrable) de®ne

»n ˆ
…

¹nd³

and

»‡
n ˆ »n ‡ 1

»¡
n ˆ »n ¡ 1:

Corollary 4. If F is a monotone continuous quasi-periodically forced circle map and

Á : 1 ! is a continuous function, then »‡
n is a sub-additive sequence and »¡

n a super-
additive one, that is

»‡
n‡m µ »‡

m ‡ »‡
n

»¡
n‡m ¶ »¡

m ‡ »¡
n :

Proof. Since Lebesgue measure is invariant under f, we trivially have
…

’8f ¡nd³ ˆ
…

’ d³

for any integrable ’ : 1 ! and any n 2 . Hence by (16) we have

¡1 µ »n‡m ¡ »m ¡ »n µ 1 …17†

and hence by de®nition »‡
n‡m ¡ 1 ¡ »‡

m ‡ 1 ¡ »‡
n ‡ 1 µ 1, so that p‡

n‡m µ p‡
m ‡ »‡

n as
claimed. Similarly »¡

n‡m ‡ 1 ¡ »¡
m ¡ 1 ¡ »¡

n ¡ 1 ¶ ¡1, so that »¡
n‡m ¶ »¡

m ‡ »¡
n . &

Now recall that by the sub-additive lemma (e.g. Katok and Hasselblatt (1995)) if
fang is a sub-additive sequence, then …1=n†an converges to a limit a (with possibly
a ˆ ¡1 if …1=n†an is not bounded below). Furthermore, a µ …1=n†an for any n 2 .
Hence we immediately have the following bounds, which are one of the key ingre-
dients in proving Theorem 2.

Lemma 4. If F is a monotone continuous quasi-periodically forced circle map and

Á : 1 ! is a continuous function, then »‡
n and »¡

n converge to a common limit »̂», and

»̂» ¡ 1

n
µ 1

n
»n µ »̂» ‡ 1

n
…18†
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for all n 2 .

Proof. By repeated application of Corollary 4 we have n»¡
1 µ »¡

n and »‡
n µ n»‡

1 . By
de®nition »¡

n < »‡
n , so that »¡

1 < …1=n†»‡
n and …1=n†»¡

n < »‡
1 . Thus …1=n†»‡

n is
bounded below and …1=n†»¡

n is bounded above. Hence both converge to ®nite
limits, say »̂»‡ and »̂»¡, respectively. Since »¡

n ˆ »‡
n ¡ 2, we have »̂»¡ ˆ »̂»‡ ˆ »̂».

Furthermore, by the sub-additive lemma, »̂» µ …1=n†»‡
n ˆ …1=n†…»n ‡ 1†. Hence

»̂» ¡ 1=n µ …1=n†»n. Similarly »̂» ¶ …1=n†»¡
n ˆ …1=n†…»n ¡ 1† so that

»̂» ‡ 1=n ¶ …1=n†»n. &

3.3. The rotation number
Observe that (18) is exactly the same bound as (9), except that it is in terms of »̂»
rather than ». All that remains to do to prove Theorem 2 is therefore to show that »̂»
is in fact the rotation number. This can readily be deduced from the uniform con-
vergence of …1=n†…g…n†…³; y† ¡ y† (Theorem 1). However, Herman’s proof of this
result is not easily accessible at an elementary level. For the bene®t of the reader,
we therefore present a direct argument based on the sub-additive bound (15). It turns
out that this gives a simultaneous proof of both Theorems 1 and 2. First recall (e.g.
see Katok and Hasselblatt (1995) or Arnold (1998)).

De®nition 7. Suppose that T : X ! X is a measurable map on a metrizable space
X. We say that a sequence of functions ’n : X ! is `sub-additive’ if

’n‡m…x† µ ’n…x† ‡ ’m…T n…x†† for all x 2 X .

Theorem 5 (sub-additive ergodic theorem, e.g. see Katok and Hasselblatt (1995) or
Arnold (1998)). Let T : X ! X be a measurable map, · a T-invariant measure and
f’ng an integrable sub-additive sequence. Then the limit

lim
n!1

1

n
’n…x† ˆ ·’’…x† …19†

exists for ·-almost every x. Furthermore, ·’’ is T-invariant, integrable and …1=n†’n ! ·’’
in L1.

Note that the T-invariance of ·’’ means that if · is ergodic then ·’’ is constant

·-almost everywhere. Given any initial Á, de®ne ’n…³† ˆ ¹n…³† ‡ 1. Then using
(16), we have ’n‡m…³† ¡ ’m…f n…³†† ¡ ’n…³† ˆ ¹n‡m…³† ‡ 1 ¡ …¹m…f n…³†† ‡ 1†¡
…¹n…³† ‡ 1† ˆ ¹n‡m…³†¡ ¹m…f n…³†† ¡ ¹n…³† ¡ 1 µ 0. Thus ’n‡m…³† µ ’m…f n…³††‡
’n…³†, so that ’n is sub-additive. Then for instance taking Á…³† ˆ y0 we see that
…1=n†…g…n†…³; y0† ¡ y0† converges to a constant for Lebesgue almost all ³. If, however,
we want to show convergence for all …³; y† 2 1 £ , we need some kind of unifor-
mity of convergence in Theorem 5. This is not unreasonable to hope for given that f
is uniquely ergodic and

Theorem 6 (see, e.g. Katok and Hasselblatt 1995). Suppose that T : X ! X is a
uniquely ergodic measurable map on a compact metrizable space X, and ’ : X !
is a continuous function. Then the time average

lim
n!1

1

n

Xn¡1

iˆ0

’…T i…x†† …20†

converges uniformly to
„

’ d· for all x (where · is the unique invariant measure).
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Unfortunately, it turns out that the generalization of this theorem to the sub-additive
case is false (Derriennic and Krengel 1981). In other words one does not get uniform
convergence in (19) even for uniquely ergodic systems. However, observe that in our
case (16) implies that ¹n ‡ 1 is sub-additive and ¹n ¡ 1 is super-additive (i.e. ¡¹n ‡ 1
is also sub-additive). It is thus su� cient to obtain uniformity from above for the
converence of …1=n†…¹n ‡ 1† and from below for that of …1=n†…¹n ¡ 1†. This is pro-
vided by the following theorem, which is essentially proved in Stark (1997), though
not explicitly stated there. Since the proof is an elementary estimate using Theorem
6, it is given here for the bene®t of the reader. The theorem can also be easily
deduced from the results of Slomczynski (1995, 1997). A subset of these results
was independently derived in Sturman and Stark (2000), where they are used to
characterize certain properties of invariant sets for quasi-periodically forced systems.

Theorem 7 (semi-uniform sub-additive ergodic theorem). Suppose that T : X ! X is
a uniquely ergodic measurable map on a compact metrizable space, X, and f’ng a sub-
additive sequence of continuous functions ’n : X ! . Then given " > 0, there exists
and N 2 such that for all n ¶ N we have

1

n
’n…x† µ ·’’ ‡ "

for all x 2 X, where ·’’ is the limit (19), which is necessarily constant almost every-
where with respect to the unique T-invariant measure.

Proof. Denote ·’’n ˆ …1=n†
„

’n d· and observe that ·’’n ! ·’’ as n ! 1. Hence given
" > 0, choose n such that ·’’n µ ·’’ ‡ ". Let K be the supremum of ’1; . . . ; ’n over X
(using the compactness of X). Then for any k 2 , and any 0 µ j < n, by repeatedly
applying the sub-additive condition we obtain

’kn…³† µ ’j…³† ‡ ’n¡j…f …k¡1†n‡j…³†† ‡
Xk¡2

iˆ0

’n…f in‡j…³††:

Summing over j ˆ 0; . . . ; n ¡ 1 we obtain

’kn…³† µ 1

n

Xn¡1

jˆ0

Xk¡2

iˆ0

’n…f in‡j…³†† ‡ 1

n

Xn¡1

jˆ0

‰’j…³† ‡ ’n¡j…f …k¡1†n‡j…³††Š

µ
X…k¡1†n¡1

jˆ0

1

n
’n…f j…³†† ‡ 2K :

Since ’n is continuous and T is uniquely ergodic, by Theorem 6 there exists an M
such that for all m ¶ M we have

1

m

Xm¡1

jˆ0

1

n
’n…f j…³†† µ

…
1

n
’n d³ ‡ ":

Note that ’n really does need to be continuous here, and hence this is the point in the
proof of Theorem 2 that we use the continuity of Á. Combining the above two
inequalities implies that for all k such that n…k ¡ 1† ¶ M we have
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’kn…³† µ …k ¡ 1†n…·’’n ‡ "† ‡ 2K

µ …k ¡ 1†n·’’ ‡ 2…k ¡ 1†n" ‡ 2K :

Finally, for any m ¶ M ‡ 2n, write m ˆ kn ‡ j, with 0 µ j < n. Thus …k ¡ 1†n ˆ
m ¡ j ¡ n > M. By sub-additivity, ’m…³† µ ’kn…³† ‡ ’j…f kn…³††, and hence

’m…³† µ …k ¡ 1†n·’’ ‡ 2…k ¡ 1†n" ‡ 3K :

Now, …k ¡ 1†n < m, and thus

1

m
’m…³† µ ·’’ ‡ 2" ‡ 3

m
K :

Hence for m ¶ maxfM ‡ 2n; …3K="†g we obtain

1

m
’m…³† µ ·’’ ‡ 3"

as required. &

As an immediate consequence we obtain proofs of both Theorems 1 and 2. Thus pick
an arbitrary y0. By (15), both ¹…n†…³; y0† ‡ 1 and ¡¹…n†…³; y0† ‡ 1 are sub-additive
sequences of functions (and are continuous if F is continuous). By Lemma 4, we have

lim
n!1

1

n

…
…¹…n†…³; y0† ‡ 1† d³ ˆ »̂»

lim
n!1

1

n

…
…¡¹…n†…³; y0† ‡ 1† d³ ˆ ¡»̂»:

Hence by Theorem 7, given " > 0, there exists N such that for all n ¶ N and ³ 2 1

we have

1

n
…¹…n†…³; y0† ‡ 1† µ »̂» ‡ "

1

n
…¡¹…n†…³; y0† ‡ 1† µ ¡»̂» ‡ ":

Hence

»̂» ¡ " ‡ 1

n
µ 1

n
¹…n†…³; y0† µ »̂» ‡ " ¡ 1

n

n ¶ N and ³ 2 1. By Corollary 2, ¹…n†…³; y0† ¡ 1 µ ¹…n†…³; y† µ ¹…n†…³; y0† ‡ 1 for any
y 2 and hence

»̂» ¡ " µ 1

n
¹…n†…³; y† µ »̂» ‡ "

for all n ¶ N and all …³; y† 2 1 £ . This shows both that »̂» ˆ », completing the
proof of Theorem 2 and that …1=n†…g…n†…³; y† ¡ y† converges uniformly to »̂», thus
giving a proof of Theorem 1. Note also that we have shown that »̂» is independent of
the choice of initial curve Á, which can also be done directly using (12). &
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4. Bounded and unbounded orbits
In this section we give a proof of Theorem 3. To simplify the notation, it is con-
venient to de®ne De®nition 8.

Defnition 8. For a ®xed », de®ne ±…n† : 1 £ ! to be the function

±…n†…³; y† ˆ g…n†…³; y† ¡ y ¡ »n:

A very similar calculation to that in the proof of Corollary 3 gives Lemma 5.

Lemma 5. With ¹…n† de®ned as above, we have

±…‡n†…³0; y0† ˆ ±…m†…³n; yn† ‡ yn ¡ y0 ¡ »n

ˆ ±…m†…³n; yn† ‡ ±…n†…³0; y0†

for all n; m 2 and …³0; y0† 2 1 £ .

Proof. By Lemma 1, we have

±…n‡m†…³0; y0† ˆ g…n‡m†…³0; y0† ¡ y0 ¡ »…m ‡ n†

ˆ g…m†…f n…³0†; g…n†…³0; y0†† ¡ y0 ¡ »…m ‡ n†

ˆ ±…m†…³n; yn† ‡ yn ‡ »m ¡ y0 ¡ »…m ‡ n†:

Furthermore, by de®nition yn ˆ g…n†…³0; y0† ˆ ±…n†…³0; y0† ‡ y0 ‡ »n, so that

±…m†…³n; yn† ‡ yn ¡ y0 ¡ »n ˆ ¹…m†…³n; yn† ‡ ±…n†…³0; y0†, as required. &

The next two lemmas establish the basic dichotomy between the »-bounded and the

»-unbounded situations. More precisely, they show that the sets of »-bounded, »-
unbounded above and »-unbounded below orbits are each either empty or residual.

Lemma 6. If there exists an orbit that is »-unbounded above then there exists a
residual subset U » 1 such that all …³; y† 2 U £ are »-unbounded above.
Similarly if there is a »-unbounded below orbit then there is a residual subset on
which orbits are »-unbounded below.

Proof. Suppose that for some …³0; y0† we have

lim sup
n!1

±…n†…³0; y0† ˆ 1:

Choose m 2 . Given any n 2 , we claim that there exists an m…n† such that

±…m…n††…³n; yn† ¶ M ‡ 2. This is because if not, so that ±…m†…³n; yn† < M ‡ 2 for all
m 2 , then by Lemma 5, ±…n‡m†…³0; y0† < M ‡ 2 ‡ yn ¡ y0 ¡ »n, and hence

±…k†…³0; y0† µ maxfy1 ¡ »; y2 ¡ 2»; . . . ; yn¡1 ¡ …n ¡ 1†»; M ‡ 2 ‡ yn ¡ »ng ¡ y0, for
all k 2 . This contradicts the assumption that the orbit of …³0; y0† is »-unbounded
above.

By the continuity of g, we can choose open intervals UM
n » 1 such that

±…m…n††…³; yn† ¶ M ‡ 1 for all ³ 2 UM
n . Then by Corollary 2, ±…m…n††…³; y† ¶ M for all

…³; y† 2 UM
n £ . De®ne

UM ˆ
[

n2
UM

n :
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Since f³ng is dense in 1, this is a dense open set, and clearly if ³ 2 UM, there exists
some m 2 for which ±…m†…³; y† ¶ M for all y 2 . Now de®ne the residual set
U by

U ˆ
\

M2
UM:

If ³ 2 U , then ³ 2 UM for all M 2 . Hence for each M 2 there exists an m such
that ±…m†…³; y† ¶ M for all y 2 . Thus

lim sup
n!1

±…n†…³; y† ˆ 1

for all …³; y† 2 U £ . &

Lemma 7. If there exists an orbit that is »-bounded then there exists a residual subset
U » such that the orbit of any …³; y† 2 U £ is »-bounded.

Proof. Suppose that for some …³0; y0† 2 1 £ we have

j±…n†…³0; y0†j µ C

for all n 2 for some constant C > 0. Then by Lemma 5, ±…m†…³n; yn† ˆ
±…m‡n†…³0; y0† ¡ ±…n†…³0; y0† and hence j±…m†…³n; yn†j µ 2C, for all m 2 . Hence, as
in Lemma 6 above, we can choose open intervals Umn » 1 such that
j±…m†…³; yn†j µ 2C ‡ 1 for all ³ 2 Umn. Then by Corollary 2, j±…m†…³; y†j µ 2C ‡ 2
for all …³; y† 2 Umn £ . De®ne

Um ˆ
\

n2
Umn:

Since f³mg is dense in 1, this is a dense open set, and j±…m†…³; y†j µ 2C ‡ 2 for all
…³; y† 2 Um £ . Now let

U ˆ
\

m2
Um:

This is a residual set, and if ³ 2 U, then ³ 2 Um for all m 2 . Hence
j±…m†…³; y†j µ 2C ‡ 2 for all m 2 for all …³; y† 2 U £ . In other words the orbit
of …³; y† is »-bounded for all …³; y† 2 U £ . &

The two lemmas together have the immediate corollary.

Corollary 5. If there exists a »-bounded orbit then all orbits are »-bounded.

Proof. Suppose not, so that there exists a »-bounded orbit, but not all orbits are »-
bounded. Thus there exists either a »-unbounded above or a »-unbounded below
orbit. Without loss of generality, assume the former. Then the above two lemmas
show that there exist residual sets U0; U1 » 1 such that if …³; y† 2 U0 £ then the
orbit of …³; y† is »-bounded, whilst if …³; y† 2 U1 £ then the orbit of …³; y† is »-
unbounded. The intersection of U0 and U1 is residual, and hence in particular non-
empty. But if ³ lies in the intersection then the orbit of …³; y†, for any y 2 , is both »-
bounded and »-unbounded above, which is clearly not possible. &

To prove Theorem 3, it remains to show that if there exists a »-unbounded above
orbit, then there exists one which is »-unbounded below, and vice versa. This follows
from the following characterization of the rotation number, which is the closest
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generalization of (6) that we have been able to derive in the quasi-periodically forced
case.

Lemma 8. Suppose that for all ³ 2 1 there exists a y…³† 2 and a m…³† 2 such
that ±…m…³††…³; y…³†† > 1. Then »…F† > ». Similarly if ±…m…³††…³; y…³†† < ¡1, then

»…F† < ».

Proof. Let "…³† ˆ …1=2†…±…m…³††…³; y…³†† ¡ 1†. By continuity, for each ³ 2 1 choose
an open interval U…³† » 1 such that ±…m…³††…³ 0; y…³†† > 1 ‡ "…³† for all ³ 0 2 U…³†.
The U…³† form an open cover of 1, so since 1 is compact we may choose a ®nite
sub-cover, say U…£l†; . . . ; U…£k†. For convenience, write Ui ˆ U…£i† and de®ne
" ˆ minf"…£l†; . . . ; "…£k†g and M ˆ maxfm…£l†; . . . ; m…£k†g.

Note that by Corollary 2, ±…m…£i††…³0; y0† ¶ ±…m…£i††…³0; y…³†† ¡ 1¡ > " for all
…³0; y0† 2 Ui £ . Hence ¹…m…£i††…³0; y0† ˆ ±…m…£i††…³0; y0† ‡ »m…£i† > " ‡ »m…£i†.
The union of all the Ui is the whole of 1 £ . We can thus follow a given orbit
m…£i† iterations at a time, depending on which Ui the ³ coordinate lies in. During
each such m…£i† iterations, the y coordinate increases by at least " ‡ »m…£i†. Since
m…£i† µ M for all i 2 f1; . . . ; kg, the rotation number of the given orbit must be at
least » ‡ "=M. To make this more precise, given any …³0; y0† 2 1 £ inductively
de®ne sequences fnig, fkig and fmig by n0 ˆ 0, ki is such that ³ni

2 Uki
, mi ˆ m…£ki

†
and ni‡1 ˆ ni ‡ mi. Since ³ni

2 Uki
we have ±…mi †…³ni

; y…³†† > 1 ‡ " and hence by
Corollary 2, ±…mi†…³ni

; yni
† > ". Now, by Lemma 5, ±…ni‡1†…³0; y0† ˆ ±…mi‡ni†…³0; y0† ˆ

±…mi†…³ni
; yni

† ‡ ±…ni †…³0; y0†. Hence ±…ni‡1†…³0; y0† ¶ ±…ni†…³0; y0† ‡ ". By induction

±…ni†…³0; y0† ¶ "i for all i 2 . On the other hand mi µ M for all i 2 , and hence
ni µ Mi. Thus

lim sup
n!1

1

n
±…n†…³0; y0† ¶ lim sup

i!1

1

ni

±…ni†…³0; y0†

¶ "

M
:

But by Theorem 1 we have for any …³0; y0† 2 1 £ that

»…F† ˆ lim sup
n!1

1

n
…g…n†…³0; y0† ¡ y0†

ˆ lim sup
n!1

1

n
…± …n†…³0; y0† ‡ »n†

¶ "

M
‡ »:

Hence »…F† > », as claimed. The case ±…m…³††…³; y…³†† < ¡1 is similar. &

We immediately get the following.

Corollary 6. If the rotation number of F is », then not all orbits can be »-unbounded
above (or below).

Corollary 7. If the rotation number of F is », and there exists a »-unbounded above
orbit, then there exists one which is »-unbounded below, and vice versa.

Proof. If there exists a »-unbounded above orbit then by Lemma 7, there cannot be
any »-bounded orbits. By Corollary 6 there must be an orbit that is not »-unbounded
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above. Since it cannot be »-bounded, it must be »-unbounded below, as
required. &

We thus see that if there is an »-unbounded orbit, then (by Lemma 6) there are
residual sets of orbits that are respectively »-unbounded above and »-unbounded
below. Taking the intersection, we obtain a residual set of orbits that are »-
unbounded both above and below, thereby completing the proof of Theorem 3.

5. Min±max characterizations of the rotation number
In this ®nal section, we show that Lemma 8 leads to a characterization of the
rotation number which can be used for numerical estimation. Like Theorem 2 this
provides rigorous bounds on ». Given a continuous function Á : 1 ! de®ne

¬¡
n …³† ˆ max

1µmµn

1

m
…g…m†…³; Á…³†† ¡ Á…³† ¡ 1†

¬‡
n …³† ˆ min

1µmµn

1

m
…g…m†…³; Á…³†† ¡ Á…³† ‡ 1†:

Observe that for each m the function g…m†…³; 0† is bounded below since g is contin-
uous and 1 is compact. Hence by Corollary 2, so is g…m†…³; Á…³†† ¡ Á…³†, and thus

¬¡
n …³† is also bounded below for each ®xed n. Similarly ¬‡

n …³† is bounded above.
De®ne

¬¡
n ˆ inf

³2 1
¬¡

n …³†

¬‡
n ˆ sup

³2 1

¬‡
n …³†:

As a straightforward consequence of Lemma 8, we obtain Lemma 9.

Lemma 9. If F and Á are continuous, F has rotation number », and ¬‡
n and ¬¡

n are
de®ned as above then

Proof. For each ³ 2 1 there exists an m…³† 2 such that

1

m…³† …g…m…³††…³; Á…³†† ¡ Á…³† ¡ 1† ˆ ¬¡
n …³†

¶ ¬¡
n :

Hence, given any " > 0

g…m…³††…³; Á…³†† ¡ Á…³† ¡ m…³†…¬¡
n ¡ "† > 1:

This holds for all ³ 2 1, and so by Lemma 8 we have » > ¬¡
n ¡ ". Since " was

arbitrary, we must have » ¶ ¬¡
n , as required. A similar argument gives » µ ¬‡

n . &

Of course, this is not particularly useful unless ¬‡
n and ¬¡

n converge to » as n ! 1.
First note that for each ³ 2 1, ¬¡

n …³† and ¬‡
n …³† are bounded monotone sequences

and hence converge to a limit. A similar argument to Lemma 8 gives Lemma 10.

Lemma 10. If F and Á are continuous, F has rotation number », and ¬‡
n and ¬¡

n are
de®ned as above then
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lim
n!1

¬¡
n ˆ » ˆ lim

n!1
¬‡

n :

Proof. Given " > 0, for each ³ 2 1 we must have
…1=n†…g…n†…³; Á…³†† ¡ Á…³† ¡ 1† ¶ » ¡ " for arbitrarily large n 2 . If not, so that
…1=n†…g…n†…³; Á…³†† ¡ Á…³† ¡ 1† < » ¡ " for all su� ciently large n, we would have

lim
n!1

1

n
…g…n†…³; Á…³†† ¡ Á…³† ¡ 1† µ » ¡ "

which contradicts the fact that the rotation number of F is ». Choose m…³† such that
m…³†" > 1 and

1

m…³† …g…m…³††…³; Á…³†† ¡ Á…³† ¡ 1† ¶ » ¡ ":

By Corollary 2 we have

1

m…³† …g…m…³††…³; 0† ¡ 1† ¶ » ¡ " ¡
1

m…³†

¶ » ¡ 2":

By continuity, for each ³ 2 1 choose an open interval U…³† » 1 such that

1

m…³†
…g…m…³††…³ 0; 0† ¡ 1† µ » ¡ 3"

for all ³ 0 2 U…³†. Applying Corollary 2 again, we ®nally obtain

1

m…³†
…g…m…³††…³ 0; Á…³ 0†† ¡ Á…³ 0† ¡ 1† ¶ » ¡ 4"

for all ³ 0 2 U…³†. The U…³† form an open cover of 1, so choose a ®nite subcover say
U…³1†; . . . ; U…³k†. For ³ 2 U…³k† we have ¬¡

n …³† ¶ » ¡ 4" for any n ¶ m…³k†. Hence if
we de®ne M ˆ maxfm…³1†; . . . ; m…³k†g, then ¬¡

n …³† ¶ » ¡ 4" for all ³ 2 1 for any
n ¶ M. Hence ¬¡

n µ » ¡ 4" for all n ¶ M and so

lim
n!1

¬¡
n ¶ » ¡ 4":

Since " is arbitrary, and by Lemma 9 we have ¬¡
n µ » for all n, this gives

lim
n!1

¬¡
n ˆ »

as required. The argument for ¬‡
n is identical. &

As a corollary, we obtain the proof of Theorem 4. First note that since
…1=n†…g…n†…³; y† ¡ y† converges (to ») for any …³; y† 2 1 £ , the sequence
…1=n†…g…n†…³; Á…³†† ¡ Á…³†† is bounded for any ³ 2 1, and hence we may de®ne

¬¡…³† ˆ sup
n2

1

n
…g…n†…³; Á…³†† ¡ Á…³† ¡ 1†:

Since ¬¡…³† ¶ ¬¡
n …³† ¶ ¬¡

n for all n, we see that ¬¡…³† is bounded below and we may
de®ne

¬¡ ˆ inf
³2 1

¬¡…³†:

Similarly, we set
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¬‡…³† ˆ inf
n2

1

n
…g…n†…³; Á…³†† ¡ Á…³† ‡ 1†

and

¬‡ ˆ sup
³2 1

¬‡…³†:

Given this notation, Theorem 4 can be stated as follows.

Corollary 8. If F and Á are continuous, F has rotation number », and ¬‡ and ¬¡ are
de®ned as above then

¬¡ ˆ » ˆ ¬‡:

Proof. By de®nition, we have ¬¡ µ ¬¡…³† and

¬¡…³† ˆ lim
n!1

¬¡
n …³†

for all ³ 2 1. Given " > 0 there thus exists N 2 such that ¬¡…³† ¡ " µ ¬¡
n …³†

for all n ¶ N . Thus ¬¡ ¡ " µ ¬¡
n …³†, and hence ¬¡ ¡ " µ ¬¡

n for all n ¶ N.
Conversely, ¬¡…³† ¶ ¬¡

n …³† ¶ ¬¡
n for all n and thus ¬¡ ¶ ¬¡

n for all n. Thus

¬¡
n µ ¬¡ µ ¬¡

n ‡ " for all n ¶ N. By the previous lemma ¬¡
n ! K as n ! 1 and

hence » µ ¬¡ µ » ‡ ". But " was arbitrary, and so » ˆ ¬¡, as required. The argu-
ment for ¬‡…³† is identical. &
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