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Locking-Based Frequency Measurement and Synchronization of Chaotic Oscillators
with Complex Dynamics
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We propose a method for the determination of a characteristic oscillation frequency for a broad class
of chaotic oscillators generating complex signals. It is based on the locking of standard periodic self-
sustained oscillators by an irregular signal. The method is applied to experimental data from chaotic
electrochemical oscillators, where other approaches of frequency determination (e.g., based on Hilbert
transform) fail. Using the method we characterize the effects of phase synchronization for systems with
ill-defined phase by external forcing and due to mutual coupling.
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direct calculation of the phase and the frequency could be
performed so far.

_��k � !k 
 R
1
k "X�t� sin�k. Noting that for small "

the amplitude R is close to unity and neglecting its
Phase synchronization has been demonstrated for basic
models of chaotic dynamics [1,2] and observed in labo-
ratory experiments with electronic generators, gas dis-
charge, lasers, and electrodissolution of metals [3,4]; for
reviews, see [5,6]. The usual approach is based on the
introduction of a phase ��t� of a continuous-time autono-
mous (self-sustained) chaotic oscillator; this allows one
to detect phase locking and frequency entrainment where
the frequency is calculated as the mean velocity of phase
rotation. Essential is the separation of the phase dynamics
from those of the amplitudes: the phases of two or many
systems can be locked due to a weak coupling, whereas
the amplitudes remain weakly correlated. However, as yet
there is no general way to introduce a phase for an
arbitrary irregular oscillator; existing approaches can be
exploited only for ‘‘good’’ systems with a rather simple
topology of the attractor.

Phase can be straightforwardly introduced if one can
find a two-dimensional projection of the attractor in
which all trajectories revolve around some origin. For
such projections one can, e.g., define phase as an angle in
polar coordinates or using the Hilbert transform. Some-
times, a proper projection can be achieved with a
coordinate transformation (e.g., using the symmetry pro-
perties of the attractor, as in the Lorenz system) [2,6].
Estimation of the average frequency of individual oscil-
lators h _��i then allows one to characterize the degree of
synchronization. Contrary to these cases of well-defined
phase, chaotic oscillators with ‘‘wild,’’ nonrevolving tra-
jectories are often termed as those with ill-defined phase.
Here only indirect indications for phase synchronization
exist (based, e.g., on the ensemble averages [2,7]), but no
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In this Letter, we propose a method that allows one to
reveal synchronization of systems with ill-defined phases
by estimating the average frequency of the observed
signals. This method, based on the use of auxiliary limit
cycle oscillators, can characterize synchronization of two
or many coupled systems; we demonstrate it below on
numerical examples and experimental data.

To introduce the method, let us consider an ensemble of
uncoupled limit cycle oscillators with natural frequencies
!k distributed in an interval �!min; !max�. Let each os-
cillator of this ensemble be driven by a common periodic
force of a frequency � 2 �!min; !max�. It is well known
that the force synchronizes those elements of the en-
semble which have frequencies close to �. This can be
demonstrated by plotting the frequencies of the driven
limit cycle oscillators �k, called hereafter the observed
frequencies, vs the natural frequencies !k: the synchro-
nization manifests itself in the appearance of a horizontal
plateau (more precisely, one expects to observe a devil’s
staircase structure with infinitely many plateaus), where
the frequency of entrained elements is equal to �. Hence,
an unknown frequency of the drive can be revealed by the
analysis of the �k vs !k plot. The idea of our approach is
to use the ensemble of auxiliary oscillators as a device for
measuring the frequency of complex signals.

A simple implementation of the method is to drive the
array of Poincaré oscillators with a signal X�t�

_AAk � �1	 i!k�Ak 
 jAkj
2Ak 	 "X�t�: (1)

Separating the real amplitude R and the phase� from the
complex amplitude A � Rei�, we obtain for the phase
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FIG. 1. (a) Funnel attractor in the Rössler system (3).
(b) Power spectrum of x�t�. The arrow shows the characteristic
frequency as determined from (c). (c) Output of the frequency
measuring device (2) with " � 0:5 as a function of the natural
frequencies !k at three forcing amplitudes. Thin lines show the
corresponding results obtained without subtraction of the mean
value from x�t�; the difference is less then 0:1%.
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fluctuations, we can write equations for our measuring
oscillators as pure phase equations:

_��k � !k 
 "X�t� sin�k;

�k � lim
t!1

��k�t� 
�k�0��=t:
(2)

In calculations below, we normalize the signal X�t� to
have zero mean and unit variance so that the coupling
constant " is the only parameter of the method [8].

To show how the method works, we consider a
model quasiharmonic process with mean frequency !0

and slowly varying amplitude and phase: X�t� � 2�1	
a�t�� cos�!0t
 ��t��. Substituting this in (2) and averag-
ing over the period of fast oscillations 2�=!0, we obtain
for the slowly varying phase difference  � �
!0t	
� the equation _  � !
!0 	 _���t� 
 "�1	 a�t�� sin ;
for a harmonic signal ( _�� � a � 0) it has for " � j!

!0j the synchronized solution  0 � arcsin��!
!0�="�.
For weak modulation we can linearize around this state
and obtain for the deviations � :

d�� �
dt

� _�� 
 a�t��!
!0� 


���������������������������������
"2 
 �!
!0�

2
q

� :

Assuming that � and a are independent random process-
es, we can express the power spectrum of the phase
fluctuations through the spectra of these processes:

S� ��� �
�2S���� 	 �!
!0�

2Sa���

"2 
 �!
!0�
2 	 �2 :

One can see that the fluctuations are small only in the
middle of the synchronization region (for ! � !0); here
only the phase fluctuations S� contribute. Modeling S� by
the Lorentzlike spectrum S� � �2�V��=���

2 	�2���,
where V� and � are the variance and the characteristic
maximal frequency of fluctuations of �, we obtain V� �R
1
0 S� ���d� � V���"	 ��
1. This final formula

shows that good synchronization (i.e., small variance of
� ) can be achieved if " is sufficiently larger than �, i.e.,
if the coupling constant is larger than the characteristic
frequency of phase fluctuations.

To illustrate the approach, we consider the Rössler
system with a funnel attractor [Fig. 1(a)].

_xx � 
y
 z; _yy � x	 0:4y;

_zz � 0:25	 z�x
 8:5�:
(3)

Clearly, we cannot find an origin around which all tra-
jectories revolve. The power spectrum for the variable x
[Fig. 1(b)] is broad; it does not contain a dominating
maximum. Because of these properties, there is no direct
way to introduce the phase for this system and to char-
acterize its synchronization [2]. The frequencies of the
oscillators in the measuring device driven by X�t� � x�t�
are shown with the solid curve (E � 0) in Fig. 1(c). The
resulting plateau in the �k vs!k plot gives �p � 0:94 [9].
One can see that this characteristic frequency cannot be
directly associated with a peak in the power spectrum
[Fig. 1(b)]. We also see that Fig. 1(c) does not show the
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devil’s staircase structure, but only one, smeared plateau.
This is due to the chaotic nature of the process x�t�, so
that, similar to the case of narrow-band noisy signals, the
high-order phase-locked regions are not observed [6,10].

Next we study a synchronization of the system (3) by a
periodic forcing. The first equation of (3) now reads _xx �

y
 z	 E sin��t�. Performing measurements with ‘‘de-
vice’’ (2) for different values of the forcing amplitude E,
we see that the measured frequency �p approaches the
external frequency � � 0:9, giving a clear picture of
frequency entrainment [Fig. 1(c)]. This adjustment of
the oscillator frequency with increase of the forcing is
exactly what is observed for oscillators with well-defined
phase [2]; here we have been able to demonstrate it for the
case of an ill-defined phase as well. It is important to
mention that the shift of the plateau is due to the entrain-
ment of the chaotic oscillations and is not an effect of the
presence of a periodic component in the signal X�t�. This
was checked by using a mixture of an unforced oscilla-
tion x�t� and a periodic force E sin��t� for X�t� in (2); in
this case no shift of the plateau has been observed.

We have applied the method to the experimental data
obtained from the ensemble of 64 globally coupled cha-
otic electrochemical oscillators [4,11]; see [11] for the
details of the experiment. The oscillators have been sub-
jected to a mutual coupling stronger than that required
for phase synchronization but weaker than that necessary
for complete synchronization. The array was forced pe-
riodically and the oscillations have been recorded for
several values of the forcing amplitude. Because of the
coupling, several of the oscillators in this parameter
range demonstrate complex patterns of oscillations so
that with the Hilbert transform method it was impossible
to define the phase straightforwardly (see the inset in
Fig. 2). Nevertheless, with applying our method we
were able, without any special adjustment, to determine
the frequencies of all oscillators in the array and to show
that with increasing of the forcing amplitude they become
phase synchronized with the external force, Fig. 2.

Our next application is the analysis of two coupled
oscillators with ill-defined phases. The scalar signals
264102-2
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FIG. 2. Frequencies of all 64 chemical oscillators for differ-
ent amplitudes of the forcing (the frequency of the external
force is shown with a horizontal line). The dashed line shows
the frequency averaged over the ensemble. The inset shows the
representation of one of the oscillators in the coordinates
‘‘signal—its Hilbert transform,’’ for the forcing amplitude
20 mV.
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FIG. 3. Output of the frequency measuring device for two
Rössler systems (4). (a) No coupling, (b) coupling, � � 0:05.
Note that the common frequency in (b) lies below both fre-
quencies in (a); such a frequency shift is usual for diffusive
coupling; it appears due to dependence of the frequency on the
amplitudes, the latter being reduced due to coupling.
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FIG. 4. Synchronization transition in system (4) traced by
means of the frequency difference �� � �p

2 
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and by counting the number of rotations in the projection of the
attractor onto the � _xx; _yy� plane (bold line). Four largest Lyapunov
exponents �j are shown with solid lines.
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x1;2 from these systems are used as inputs for two mea-
suring devices, i.e., x1;2 drive two identical ensembles (1)
or (2). The outputs of the devices are two frequencies
�p

1;2. The onset of the equality �p
1 � �p

2 with the in-
crease of coupling will reflect the synchronization of the
complex systems under consideration. As a particular
example, we consider two weakly coupled Rössler sys-
tems with funnel attractors:

_xx1;2 � 
!1;2y1;2 
 z1;2 	 ��x2;1 
 x1;2�;

_yy1;2 � !1;2x1;2 	 0:22y1;2 	 ��y2;1 
 y1;2�;

_zz1;2 � 0:1	 z1;2�x1;2 
 8:5�;

(4)

where !1 � 0:98, !2 � 1:03. Application of the method
(Figs. 3 and 4) reveals synchronization for coupling pa-
rameter � * 0:05.

The particular parameter values in (4) allow us to
compare our approach with direct phase measurements.
Indeed, for most � (except for an interval 0:04 * � *

0:03), the trajectory in the coordinates � _xx; _yy� rotates
around the origin and the phase � � arctan� _yy= _xx� is well
defined [12]; the resulting frequencies are also shown in
Fig. 4. Some discrepancy with our techniques is seen for
the coupling below synchronization threshold due to two
reasons: the failure of the direct phase measurement and
not well-expressed plateaus in �k vs !k plots. Never-
theless, synchronous regimes are perfectly revealed by
our method.

To get an insight in the properties of phase synchroni-
zation in systems with an ill-defined phase, we computed
the Lyapunov exponents (LEs) as a function of the cou-
pling (Fig. 4). For systems with a well-defined phase and
weak phase diffusion, the frequency locking transition is
known to occur approximately at the value of coupling at
which one of zero LEs becomes negative. As follows from
Fig. 4, for coupled systems (4) synchronization sets in for
essentially larger coupling, but nevertheless prior to the
coupling at which one of the positive LEs becomes nega-
tive. Thus, we indeed have an interval of coupling values
where the phase synchronization takes place (in the sense
264102-3
that the phases are adjusted while there exist two positive
LEs corresponding to the amplitudes). To explain why the
locking sets in for relatively large coupling, we note that
the phase dynamics in chaotic systems is qualitatively
similar to those in noisy systems, and in the systems with
ill-defined phase, fluctuations of the latter are extremely
strong. Thus, one needs strong stability of the phase
difference to suppress the divergence of the phases—as
a result the synchronization onsets for finite negative LE.
In other words, for systems with ill-defined phase the
synchronization should be interpreted as a statistical
effect that does not directly correspond to changes in
the LEs.

Summarizing this example, we can say that the cal-
culation of the LEs and the calculation of the frequencies
deliver complementary characteristics of the dynamics.
LEs characterize intrinsic microscopic organization of a
strange attractor; they are difficult to obtain from experi-
mental data. The frequency is a macroscopic statistical
measure of the process; it can be easily obtained from
experimental observations and characterizes only the
oscillatory aspect of the dynamics. It is therefore not
surprising that transitions in these two measures in gen-
eral do not coincide. Only when some macroscopic vari-
ables can be directly associated with certain LEs (e.g., in
264102-3
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systems with well-defined phases, the latter correspond to
the zero LEs), the correspondence between the two char-
acteristics is good.

We expect that for chaotic systems with very compli-
cated topology of the phase space the plateau may be not
seen at all and hence the frequency may be not found. This
limitation of the presented method is due to the fact that
systems with strong effective noise do not have a charac-
teristic frequency and are not capable of synchronization.
Like noisy systems, chaotic oscillators with ill-defined
phase do not allow an unambiguous definition of synchro-
nization; therefore, the distinction between the systems
that can and cannot synchronize is smeared. Note also
that with our method we define frequency of a signal, not
of an oscillator. So, frequencies for different observables
from one system can differ.

In a general context, we can interpret the ensemble of
uncoupled oscillators with a common input [Eqs. (1) or
(2)] as a nonlinear filter that picks up a certain frequency
from a broad-band input. Indeed, the average velocity of
the phase point rotation around the limit cycle in a single
oscillator (1) is determined by some average properties of
the aperiodic driving force. In particular, the system
filters out the action when the signal X�t� is nearly zero,
because the point of the oscillator continues to rotate with
the natural frequency. In this respect, our device is similar
to the phase-locked loop [13]. The latter provides a phase
of an input even during epochs when the amplitude of the
input is small, of the same order as the underlying noise.
This suggests that the method described can be used for
estimation of the phase during the dynamic evolution. In
particular, taking the natural frequency in (2) in the
middle of the plateau, one can use the corresponding
phase �k�t� as an ‘‘estimate’’ to the signal’s phase. We
checked this for the signal from the Lorenz attractor
where a comparison with the ‘‘true’’ phase obtained by
other methods is possible [2]. The results show that the
phase �k�t�, although it does not coincide with the true
one, follows the same pattern of deviations from the
uniform rotation.

An important issue is how the above defined frequency
is related to the power spectrum of the signal. As we have
shown in Fig. 1(b), it does not coincide with the maximal
peak frequency of the spectrum (although we expect
closeness for narrow-band signals). The reason is that
the calculation of the power spectrum can be represented
as signal filtering by a set of linear selective resonators;
thus, the spectrum measures the ability of the signal to
excite resonantly linear oscillators. Our device performs
nonlinear filtering of the signal by an array of self-
sustained oscillators, and it measures the ability of the
signal to synchronize such oscillators. It is noteworthy
that one can use not only self-sustained oscillators, but
also other nonlinear elements capable of locking, e.g.,
Josephson junctions (cf. [14]).

In summary, we have proposed a locking-based
method for frequency determination from complex sig-
264102-4
nals. With this technique, we succeed in detecting syn-
chronization between systems that do not allow direct
estimation of their phases and frequencies. The method
can be used in case of many interacting systems; it can be
easily implemented for experimental data.
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