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We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase
synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases re-
main positive even in the synchronous regime. Such frequency locked dynamics with different ratios of
frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show that
this transition to phase synchronization occurs via a crisis transition to a band-structured attractor.
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Phase synchronization of chaotic oscillators, first de-
scribed in [1,2], has attracted large interest recently [3–6]
(for a review, see [7]). It has been found that due to a pe-
riodic external forcing or to coupling with another chaotic
oscillator, the phase of a chaotic system can be locked,
very much similar to the phase locking of periodic oscil-
lations. This effect has been observed in several experi-
ments ranging from electronic circuits via plasma tube to
laser systems [8–10].

The main feature that makes the synchronization of the
phase in a chaotic oscillator feasible is that the Lyapunov
exponent corresponding to the phase is zero. This means
that the phase shifts are neutral (as should be indeed the
time shifts in an autonomous system) and are therefore
rather sensitive to external pacing. This is in contrast to
the other main type of chaotic synchronization —complete
synchronization. The latter occurs when the states of two
chaotic systems coincide due to coupling; the interaction
should be strong enough to suppress the chaotic instability
and to make one of the Lyapunov exponents of the system
negative [11–13].

Contrary to this, the entrainment of the phase can hap-
pen already for relatively small coupling or forcing. Based
on the qualitative arguments presented above, it has been
argued that phase synchronization of driven oscillators is
impossible. Indeed, chaos in a nonautonomous driven sys-
tem in general possesses no zero Lyapunov exponent. This
means that the phase of such an oscillator is not free but is
connected to the forcing and thus cannot be entrained.

In this Letter, we describe a class of systems that provide
a counterexample to these arguments: here the phases are
chaotic with a positive Lyapunov exponent but can never-
theless be entrained. These systems are chaotic rotators;
i.e., the dynamical variable here is the angle variable.
Typical examples of this class are a periodically driven
pendulum, a periodically driven Josephson junction (see,
e.g., [14,15] for study of chaos in these systems), and
also phase-locked loops can be described as driven rotators
[16]. We argue below that the synchronization of chaotic
phases is a novel phenomenon that cannot be reduced ei-
ther to phase synchronization of autonomous chaotic os-
cillators or to complete or generalized synchronization of
2-1 0031-9007�02�88(5)�054102(4)$20.00
general chaotic systems. In particular, it does not cor-
respond to a change in the Lyapunov spectrum, but to a
change in topological structure of the chaotic attractor.

Qualitatively, the possibility of phase synchronization of
coupled chaotic rotators can be understood as follows. If
the angle variable in these systems (hereafter called phase)
is chaotic, its dynamics can be generally represented as
a biased random walk: the mean velocity corresponds to
the mean frequency, and the stochastic variations can be
characterized via the diffusion constant. This dynamically
generated biased diffusion has been intensively studied for
different chaotic rotators [14], as well as for the corre-
sponding discrete system, the circle map [17,18]. For syn-
chronization it is essential that the mean frequency in a
continuous way depends on the system parameters (e.g.,
on the torque for the driven pendulum and on the external
current for the Josephson junction) [19]. This means that
the mean frequency can be easily adjusted with a small
variation of these parameters or due to a small interaction
with another chaotic rotator. Thus, phase synchronization
in the sense of the adjustment of mean frequencies is pos-
sible. Note that this phase synchronization does not neces-
sarily mean the appearance of a stable relation between the
phases through the change of the sign of one of the Lya-
punov exponents in the system. Both phases can remain
chaotic, but their mean rotation velocities are entrained.

To illustrate the possibility of phase synchronization of
chaotic phases, we analyze a simple system of two coupled
rotators

c̈1 1 g1
�c1 1 f1�c1� � F1�t� 1 ´� �c2 2 �c1� , (1)

c̈2 1 g2
�c2 1 f2�c1� � F2�t� 1 ´� �c1 2 �c2� . (2)

Here f1,2 are 2p-periodic functions and ´ is the coupling
constant. Both rotators are driven periodically F1,2�t� �
a1,2 1 b1,2 sin�v1,2t 1 w1,2�. In general, all the parame-
ters of the two systems, including the frequencies of the
periodic forces v1,2, can be different. In the context of
the Josephson junctions [20,21], system (1),(2) describes
resistively coupled junctions, which are driven by the
external currents having dc components a1,2 and ac com-
ponents with amplitudes b1,2. In the calculations below
© 2002 The American Physical Society 054102-1
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we use functions f1,2�c� � exp�10�cosc 2 1�� sin�8c�
which model localized in the phase space nonlinearities.

In Fig. 1 we show the dependence of the difference be-
tween the variables c1 2 c2 on different couplings. One
can see that sufficiently large coupling results in a nearly
constant phase difference. Notably, in all the regimes
shown in Fig. 1 the two largest Lyapunov exponents are
positive. Thus, this example demonstrates the existence of
synchronization of chaotic phases.

To get a deeper insight in this effect, it is convenient
to study a discrete in time model. The simplest model
yielding chaotic rotations is the circle map

f�t 1 1� � f�t� 1 b 1 F���f�t����, t � 0, 1, 2, . . . .
(3)

Here F�?� is a 2p-periodic function, and b is a parame-
ter governing the frequency of rotations. The mean rota-
tion frequency in map (3) is nothing else but the rotation
number

r � lim
T!`

f�T� 2 f�0�
T

. (4)

In our consideration below we take, following [22], the
piecewise linear nonlinearity: F�f� � cf,2p , f , p.
The advantage of this choice [compared to the other popu-
lar map with F�f� � c sinf] is that it ensures chaos for
all c . 1 without periodic windows. Our numerical simu-
lations show that the choice of the nonlinearity is not cru-
cial: similar regimes can be observed with other functions
F�f� as well.

We describe symmetrically coupled circle maps (3), i.e.,
the two-dimensional system
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FIG. 1. Phase dynamics in coupled chaotic rotators (1),(2) for
g1,2 � 0.1, v1,2 � 0.5, a1,2 � 0.01, b1 � 1.4, and b2 � 1.
The phase difference grows slower with increasing of the cou-
pling and is bounded for ´ � 0.25. The largest Lyapunov expo-
nent in the system does not essentially depend on the coupling
and for all presented regimes is l1 � 0.12. The second Lya-
punov exponent decreases with the coupling and is l2 � 0.04
for ´ � 0.15 and l2 � 0.02 for the synchronous regime at
´ � 0.25.
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f1�t 1 1� � f1�t� 1 b1 1 F1���f1�t����
1 ´G1���f1�t�, f2�t���� , (5)

f2�t 1 1� � f2�t� 1 b2 1 F2���f2�t����
1 ´G2���f2�t�, f1�t���� . (6)

Here ´ is the coupling constant, and the parameters of two
maps b1,2 and c1,2 are, in general, different. To charac-
terize synchronization, we calculate the rotation numbers
r1,2 for both phases according to (4). If both rotation
numbers coincide and both Lyapunov exponents of the
system (5),(6) are positive, then we have synchronous
chaotic rotations.

We study first the case of dissipative coupling, when
G1 � F2�f2� 2 F1�f1�,G2 � F1�f1� 2 F2�f2�. For
the piecewise linear maps the Lyapunov exponents in the
coupled system can be found analytically:

l1,2 � log j1 1 �1 2 ´�c1 6
p

´2c2
1 1 �1 2 2´�c2

2 j ,

where c6 � c1 6 c2. Determining the rotation numbers
r1,2 numerically, we identify an interval of coupling ´

where these numbers coincide (Fig. 2). In this syn-
chronization region both phases are chaotic and obey an
irregular motion consisting of regular bias and diffusion.
Because of the coupling, the mean velocities are adjusted
yielding synchronization, while the diffusion is not
suppressed (Fig. 3).

We have found synchronization of chaotic rotators
for different types of coupling. As an illustration we
also present results for the nonlinear coupling functions
G1�f1,f2� � 2G2�f2, f1� � sin�f2 2 f1�. In this
case the Lyapunov exponents cannot be found analytically
and should be determined numerically. An example of a
synchronous regime where both Lyapunov exponents are
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FIG. 2. Lyapunov exponents and the difference between the
rotation numbers for the dissipative coupled circle maps (5),(6)
with parameters b1 � 0.57, b2 � 0.55, c1 � 0.2, and c2 �
0.12. In the interval of couplings 0.33 , ´ , 0.4 the rotation
numbers coincide and the phases are synchronous.
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FIG. 3. Diffusion of the phases in the synchronous regime
(the same parameters as in Fig. 2 and ´ � 0.38) demonstrates
coherence on the large scale.

positive is shown in Fig. 4. We encounter here not the
simplest coincidence of the frequencies, but a high-order
3:1 synchronization; i.e., in the synchronous state the ratio
between the rotation numbers is r1�r2 � 3.

It is instructive to study which structural changes in the
phase space correspond to this synchronization transition.
As this transition is not accompanied by a change of the
sign of Lyapunov exponents, it is a transition inside chaos.
In Fig. 5 we show the phase portraits inside and some-
what outside (to see some remnants of the bands) of the
3:1 synchronization region of Fig. 4. We find that in the
synchronous regime the attractor consists of a few bands,
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FIG. 4. The 3:1 synchronization region in chaotic circle maps
coupled by sinus functions G1,2. Both Lyapunov exponents in
this region are positive. The parameters are b1 � 2, b2 � 0.6,
and c1,2 � 0.05.
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while with the loss of synchronization these bands disap-
pear. Hence, the transition between these states is an inte-
rior crisis [23].

If analyzed in the extended phase space 2` , f1,2 ,

`, the banded structure corresponds to a diffusion along
a strip f1 ~ 3f2. The system performs a biased random
walk along the strip, accompanied with bounded chaotic
fluctuations in the transverse direction. It is clear that the
mean frequencies of the two rotations coincide. Outside
the synchronization region, the diffusion is unbounded in
both directions; thus there is no limitation on the mean
velocities and they are different.

This effect of synchronization of chaotic rotators can
be understood in the framework of the general synchro-
nization theory [7]. The main idea is that chaotic rotations
have two scales in the phase space (this separation has been
successfully used in the theory of chaotic diffusion; see
[22,24]). The small scale is related to the motion within
one periodicity cell 0 # f , 2p; here the dynamics is
essentially chaotic. On the large scale (¿2p) the motion
consists of random transitions between the cells, and here
only the transitions rates are important. Thus, on the large
scale the phase dynamics is equivalent to the dynamics of
the phase of a noise-driven periodic oscillator, where one
also encounters a biased random walk. Consequently, on
the large scale the synchronization of chaotic rotators ap-
pears very much similar to the phase locking of periodic
rotators or oscillators in the presence of noise. In particu-
lar, the banded structure of Fig. 5 can be interpreted as a
smeared stable periodic orbit on the torus that represents
the 3:1 phase locking. We also note that a similar separa-
tion between chaos on a small scale and noisy dynamics
on a large scale has been discussed for certain examples of
self-organized criticality [25].

In conclusion, we have demonstrated the existence of
phase synchronization of chaotic rotators, at which both
phases are chaotic [26]. It can be observed both in
continuous-time systems and discrete models. In the syn-
chronous state both phases exhibit a random walk with,

FIG. 5. The phase portraits of the system of two coupled circle
maps for the same parameters as in Fig. 4. Left panel: syn-
chronous state at ´ � 0.3. Right panel: outside of the synchro-
nization region ´ � 0.275.
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in general, a rational relation between mean velocities.
We have presented particular examples of 1:1 and 3:1
synchronizations. In the phase space the synchronous
regime corresponds to a banded structure of the attractor.
This synchronization transition occurs via an interior
crisis, at which the bands disappear. We have shown that
this novel type of synchronization relies heavily on the
existence of two time scales in the phase dynamics: a
short time scale is responsible for chaos, while the longer
one is responsible for a biased phase diffusion. The
synchronization occurs at this longer time scale and can
thus be considered as a “coarse grained” phenomenon.
It gives therefore an interesting example of nontrivial
interaction between microscales and macroscales, what is
now of great interest in the context of irreversible statis-
tical mechanics [24], self-organized criticality, etc. The
observed phenomenon could potentially be investigated
experimentally in many practically important systems of
coupled chaotic rotators, e.g., Josephson junctions, and
continuous and digital phase-locked loops. Moreover, we
expect that synchronization of chaotic phases can happen
in forced interacting oscillators, in particular, in neural
relaxation oscillators. Investigation of the presented effect
in networks of such elements should be the focus of a
future study.
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