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Clustering in ensembles of globally coupled identical chaotic oscillators is reconsidered using a twofold
approach. Stability of clusters towards “emanation” of the elements is described with the evaporation
Lyapunov exponents. It appears that direct numerical simulations of ensembles often lead to spurious
clusters that have positive evaporation exponents, due to a numerical trap. We propose a numerical
method that surmounts the spurious clustering. We also demonstrate that clustering can be very sensitive

to the number of elements in the ensemble.
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Many systems in physics and natural sciences can be
represented as ensembles of coupled nonlinear elements.
Such models arise in the study of Josephson junctions,
multimode lasers, and charge density waves [1]. A par-
ticular interest attracted ensembles of chaotic oscillators
[2]. Recently, an experimental investigation of 64 glob-
ally coupled chaotic electrochemical oscillators have been
performed [3]. These studies have revealed that already
coupling of identical chaotic oscillators demonstrates non-
trivial synchronization patterns.

One of the intriguing effects in ensembles of globally
coupled identical chaotic oscillators is clustering [4-8],
observed also in experiments [3]. It appears that initially
randomly chosen initial states in the course of evolution
come close to each other and eventually become identi-
cal. The final configuration consists of several (or many)
clusters of equal states; these clusters may vary in time
regularly or in a chaotic manner. As have been numeri-
cally demonstrated in [4,5,8], typically for large couplings
there exist one or few clusters.

Typically, clustered states have been studied by means of
direct numerical simulation of large ensembles [4—7,9]. In
these studies two important aspects are usually not taken
into account. From one side, spurious clusters can ap-
pear due to a numerical procedure of simulations. Indeed,
because the interacting elements are identical, their indi-
vidual dynamics are identical as well, provided that their
states coincide within the computer representation of real
numbers. This means that if two states differ by a distance
less than the numerical precision, these states form a clus-
ter. To check if the appeared cluster is an eventual state,
one has to study the stability of it, and this is the second
aspect of cluster dynamics that is barely discussed in the
literature (cf. [7,10,11]).

In this paper we investigate the clustering in ensembles
of coupled maps surmounting the drawbacks of direct nu-
merical simulations. First, we show that the stability of
clusters can be characterized with the evaporation Lyapu-
nov exponent that measures the stability of clusters towards
“emanation” of individual elements. Only clusters with
negative evaporation exponents can be considered as stable
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objects, and we demonstrate that in many cases direct nu-
merical simulations can lead to unstable clusters. Second,
we suggest a numerical method that overcomes the prob-
lem of numerical precision and yields only stable clusters.
Furthermore, applying these methods we describe an in-
teresting effect of ensemble size sensitivity: for some pa-
rameter values one observes clusters for certain specific
numbers of elements in the ensemble, and does not ob-
serve any clustering for other ensemble sizes.

Our basic model is the ensemble of N globally coupled
maps [4,5,10,11]

N
xi(e+ 1) = (= e)f () + 1 D ). 1)
j=1

Here & is the coupling constant; throughout the paper
we consider the coupled parabolic (logistic) maps f(x) =
a — x2. If the states in the ensemble form M clusters, then
we can write

Xyt otmy+1 = 0 = Xy = Xy,

where my, ma, ..., my are the sizes of the clusters. Surely,
Zjlu m; = N. Following the dynamics of the clusters, we
reduce N-dimensional system (1) to the M-dimensional
system for the cluster variables X;:

M
Xt + 1) =1 — &) f(X(0) + & > pef (X (1), ()
k=1

where p; = m;/N is the portion of the elements belonging
to the /th cluster; > | p; = 1.

The stability of the ensemble dynamics is twofold. From
one side, one can investigate dynamical properties of the
M -dimensional mapping (2). This investigation naturally
leads to M Lyapunov exponents that characterize the dy-
namics. These exponents, however, do not give the full
description of the stability in the original ensemble (1), as
they do not describe perturbations that destroy the cluster-
ing partition. These perturbations lead to other Lyapunov
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exponents, which we call “evaporation exponents” (EE)
(sometimes one speaks on split or transversal ones [6,11]).
They show whether the cluster is stable towards emana-
tion of some of its elements [12]. From the mathematical
viewpoint these exponents characterize perturbations that
are transversal to the invariant subspace corresponding to
the clustering partition.

To define the EEs, let us consider two variables x; and
x; belonging to one cluster x; = x; = X;. If we make a
perturbation that does not change the sum x; + x;, namely
if we take x; + A, x; — A, then this perturbation does not
induce any perturbations in other clusters. Thus, it is an
eigenmode corresponding to the evaporation. For A we
obtain A(z + 1) = (1 — &)f'(X;(r))A(z) and the growth
rate of A is given by the EE

A = (log|(1 — &)f' X)) 3

Clearly, due to the degeneracy of the system (1), all
m; — 1 EEs of the cluster [ are equal to (3).

The evaporation Lyapunov exponents provide a tool to
characterize the internal stability of the cluster states. Only
clusters with negative EEs correspond to the attractors of
the ensemble (although these attractors can be Milnor at-
tractors if, despite negative EEs, some trajectories on them
are unstable with respect to evaporation). Now, we can find
possible M-cluster states by numerically simulating map-
ping (2) and picking out the attractors that have negative
EEs. The results of such an analysis for M = 2 are pre-
sented in Fig. 1. On the plane (&, p) (for 2-cluster state we
denote p; as p, because p, = 1 — p is uniquely defined)
we see regions of existence of stable (towards evaporation)
2-clusters.

From the structure of the stable regions in Fig. 1 fol-
lows an interesting effect of system size sensitivity, it oc-
curs for some ranges of the coupling parameter . Let us
fix a = 2 and the parameter of the coupling ¢ = 0.45. As
it results from Fig. 1a, for this coupling there are several
tiny regions (windows) of stable 2-clusters at small values
of p; i.e., the stable clusters are highly asymmetric. The
largest of the windows is 0.04106 < p < 0.04289. Con-
sider an ensemble of some fixed size N, then the parame-
ter p can take not all possible values, but only the ratios
1/N,2/N,...,(N — 1)/N; i.e., this parameter is quan-
tized. If for given N none of these possible values falls into
the stability regions, no stable 2-clusters can be observed.
If we restrict ourselves to ensemble sizes less than 100,
then the only possible values N allowing stable 2-clusters
for e = 0.45 are N = 24,47,48,70-73,81,94-97; there
are no stable 2-clusters for N = 100.

The results of the analysis of 2-cluster states above are
not confirmed by direct numerical simulations of the en-
semble (1), due to the effect of finite precision of calcu-
lations. In the simulations performed for ensembles of
N = 100 maps for ¢ = 0.45, a = 2, we always observed
a convergence (although slow, cf. [9]) to a 2-cluster state;
see Fig. 2. The reason unstable states are observed in
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FIG. 1. Regimes with two clusters that are stable towards
evaporation (i.e., having negative evaporation exponents) on the
plane (g, p), (a) a = 2, (b) a = 1.6. Some of these states are
regular (black), and some are chaotic or quasiperiodic in time

(grey).

direct simulations is the numerical trap (cf. [11,13]). Sup-
pose that during the evolution two elements in the en-
semble come so close to each other that their states are
represented in the computer by the same numbers. Then
they form a cluster and never diverge. This is how fake
clusters are formed.

We now propose a numerical method allowing us to
overcome the numerical trap and to confirm the theory
based on the evaporation exponent. The main idea is in the
use of logarithmic variables when two (or more) elements
are nearly equal. More precisely, if |x; — x;| < 10, we
introduce the difference y;; = x; — x; and write in the first
approximation y;;(t + 1) = (1 — &)f'(x;(¢))y;i(t). For
the logarithm of this difference z;; = log,,| ;| we obtain
an equation that does not contain any numerical peril:

zji(t + 1) = logol(1 — &)f (i) + z;i(t)  (4)

(of course, we have also to calculate in parallel the sign of
yji to be able to restore y from z when |x; — x;| becomes
not small again). After this transformation we, instead of
iterating x; and x;, are iterating the variable x; and the
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FIG. 2. Evolution of an ensemble of 100 coupled logistic maps
for € = 0.45, obtained via direct simulations with quadruple
precision. Thirty independent runs for randomly chosen ini-
tial conditions are shown. Two elements are united in a clus-
ter if their states coincide within the numerical precision of
calculations.

logarithmic variable z. This goes on until z either reaches
a large value 6, and then we return to the usual variables x;
and x; and system (1) or z becomes so small (z < &3) that
we identify x; and x; in a real cluster and do not follow the
perturbation y;; any more. Practically, we use quadruple
precision and 6, = —15, 6, = —13, 63 = —3000. To
summarize, in the proposed method we switch from time to
time between the initial system (1) and the system (1),(4)
where a part of variables is replaced with the logarithms.
Comparing to the direct simulations, we lose in accuracy
due to linearization when transforming to (4), but we win
in the ability to resolve the states as close as 10%.

Performing the calculations with the new method for the
same parameters as in Fig. 2 (N = 100, e = 0.45, we note
that at these parameter values there is no stable 2-cluster
in the ensemble), we obtain Fig. 3. Now the spurious clus-
ters do not appear and the state of the ensemble remains
fully desynchronized. However, we can see that during the
evolution the distance d between the elements can be very
small, up to 1079, Clearly, such a distance cannot be re-
solved with the direct simulations even with the quadruple
precision.

To demonstrate how the insufficient numerics may af-
fect the observed clustering, we simulated the system of
N = 100 in two cases: (i) with a = 1.6 and ¢ = 0.3 and
(i1) with @ = 1.9 and &€ = 0.3. The case (i) is most dan-
gerous; here only the 2-cluster 50:50 is stable. In cal-
culations with double precision this true cluster appears
with probability ~0.06, while unstable 1-cluster appears
with probability =0.79 (the rest are unstable 2-clusters).
The situation improves with the quadruple precision: here
no 1-clusters are observed, but the stable 2-cluster appears
with probability 0.32 only. In calculations with our method
we always observed the stable 2-cluster 50:50, although
sometimes it sets on after very long transients (=107 itera-
tions). The case (ii) is less numerically dangerous: here

044102-3

0(3)

-10§

(]
’I I
gL IR Il

log,d
|

S

| | | l
4e+06  6e+06  8e+06  le+07

time

0 2e+06

FIG. 3. The same calculations as in Fig. 2, but performed us-
ing the method described in the text. (a) The minimal over
the ensemble distance between the states d = min;»;|x; — x;l;
(b) the number of quasiclusters (see text). Evolution for one set
of randomly chosen initial conditions is shown. After 107 it-
erations no clusters are observed, in agreement with the stability
theory developed. The dashed line shows the accuracy of the
quadruple precision calculations.

stable clusters are abundant (cf. Fig. 1a). Nevertheless, in
the calculations with the double precision the probability
to be trapped by unstable clusters is nonzero, although
rather small (0.1%); no such clusters appeared in calcu-
lations with the quadruple precision.

In the course of application of the numerical method
it is natural to define quasiclusters as the groups of ele-
ments which are closer than 10% to each other and which
therefore are represented by one usual variable and by the
logarithms of small deviations. The number of quasiclus-
ters vs time is shown in Fig. 3b. One can see that some-
times there are only two quasiclusters, which, however,
after some time are destroyed due to “evaporation.” This
agrees with the stability properties discussed above.

If we perform the same computation with the “resonant”
size of the ensemble (e.g., N = 95 for ¢ = 0.45), then
after some long transient a stable cluster with m; = 4,
my = 91 appears. During the transient time many other
quasiclusters with “wrong” partitions m, m, appear and
then disappear, but only for one with the “correct” partition
will the logarithmic variable eventually become less than
03 = —3000 (Fig. 4).

Here we compare our numerical technique with the
other, rather simple method to avoid fake clusters — just
by adding some small noise to each mapping in (1). Noise
destroys perfect clustering, but one may hope to observe
“nearly clustered states” if the system without noise pos-
sesses stable clusters. This, however, is true only if the
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FIG. 4. The same as Fig. 3, but for an ensemble of N = 95
elements. Here the 2-cluster state with p; = 4, p, = 91 is
stable towards evaporation; it establishes after 51 000 iterations.
Note that after 12 500 iterations another quasicluster state with
a “wrong” partition p,, p, appears as a temporary event.

stability of clusters is uniform. If, on the other hand, the
attractors are of Milnor type, i.e., their basin of attraction is
riddled (what is often encountered in coupled chaotic oscil-
lators, see [14]), then even a very small noise will produce
declustering. Thus, adding noise does not allow one to
distinguish unstable and Milnor-stable (riddled) clusters,
while our numerical method does. Another drawback of
the addition of noise is that it can change the statistical
properties of the system, because it influences not only the
transversal dynamics, but also the longitudinal one.

In conclusion, we have analyzed the clustering in the
ensembles of chaotic oscillators using a twofold approach,
based on the stability analysis of clusters with the evapo-
ration exponents, and on the special numerical technique
of the ensemble simulations. This study reveals that many
cluster states that appear in the course of direct simulations
are spurious, because they are unstable towards evapo-
ration. This has nothing to do with the possible Milnor
stability of the corresponding M -cluster attractors of map-
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ping (2), but just corresponds to the fact that in the highly
symmetrical ensemble of globally coupled maps under
consideration the differences between the elements can
attain extremely small values. Thus, a correct numerical
investigation of complex cluster states, e.g., of glassy states
[4,5,9], necessarily requires the application of the special
numerical method. An interesting feature of the ensemble
of coupled logistic maps is the system size sensitivity,
where the clustering appears for some resonant numbers
of elements.

We thank P. Grassberger, M. Hasler, J. Hudson, and
E. Mosekilde for useful discussions. The work was sup-
ported by the German Science Foundation (DFG). O.P.
thanks Alexander-von-Humboldt Foundation for support.

[1] P. Hadley, M. R. Beasley, and K. Wiesenfeld, Phys. Rev. B
38, 8712 (1988); K. Wiesenfeld et al., Phys. Rev. Lett. 65,
1749 (1990); S.H. Strogatz et al., Physica (Amsterdam)
36D, 23 (1989).

[2] H. Bohr et al., Parallel Comput. 12, 113 (1989); A. Pikov-
sky, M. Rosenblum, and J. Kurths, Europhys. Lett. 34, 165
(1996); D.H. Zanette and A.S. Mikhailov, Phys. Rev. E
57, 276 (1998); 58, 872 (1998).

[3] W. Wang, I.Z. Kiss, and J.L. Hudson, Chaos 10, 248
(2000).

[4] K. Kaneko, Phys. Rev. Lett. 63, 219 (1989); Physica
(Amsterdam) 41D, 137 (1990).

[5] A. Crisanti, M. Falcioni, and A. Vulpiani, Phys. Rev. Lett.
76, 612 (1996).

[6] K. Kaneko, Phys. Rev. Lett. 78, 2736 (1997); Physica
(Amsterdam) 124D, 322 (1998).

[7] N.J. Balmforth, A. Jacobson, and A. Provenzale, Chaos 9,
738 (1999).

[8] S.C. Manrubia and A. S. Mikhailov, Phys. Rev. E 60, 1579
(1999).

[9] S.C. Manrubia and A.S. Mikhailov, Europhys. Lett. 50,
580 (2000); 54, 451 (2001).

[10] O. Popovych et al., Phys. Rev. E 63, 036201 (2001).

[11] O. Popovych, Y. Maistrenko, and E. Mosekilde, Phys.
Rev. E (to be published).

[12] In a particular case of two clusters these exponents have
also been considered in [7].

[13] A.S. Pikovsky, Phys. Rev. Lett. 73, 2931 (1994).

[14] Y.L. Maistrenko, V.L. Maistrenko, O. Popovych, and
E. Mosekilde, Phys. Rev. E 60, 2817 (1999).

044102-4



