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Detecting direction of coupling in interacting oscillators
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We propose a method for experimental detection of directionality of weak coupling between two self-
sustained oscillators from bivariate data. The technique is applicable to both noisy and chaotic systems that can
be nonidentical or even structurally different. We introduce an index that quantifies the asymmetry in coupling.
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Development of nonlinear dynamlps essemally coqtrlb— 1= w1+ qy(b1) +e1f1( by, do) + E4(D),
uted to assortment of contemporary time series anaf{sis 1)

Still, the analysis of multivariate data remains a challenge. A
problem of particular interest is to assess the interaction be-
tween two(subsystems by means of the analysis of interre-
lation between two signals at their outputs. An important

applicatio_n_is, eg. the a_nalysis of no_rmal and pathologic pace of the model is the two-dimensional torus; parameters
brain activity from multichannel noninvasive electro- or w1, govern the natural frequencies of oscillatéasthough
magnetoencephalography measuremp2xsi]. . do not coincide with them fog, ,# 0). To take into account
One approach to this problem is based on the idea ofoisy perturbationgthat are always present in natural sys-
dynamical interdependence, or generalized synchromzau%ms we include in Egs(1) random termst; ,. System(1)
of unidirectionally coupled systen(8,5,6. The measures of describes the phase dynamics of weakly coupled noisy limit
driver-response relationships obtained by means of this agycle oscillators, Josephson junctions, and phase locked
proach are not always reliable for noisy data; they mainly
reflect the different degrees of complexity of the two sys- (a)

B2=wot o bo) +eaf o2, 1) + Ex(D).

Here ¢,,¢, are phase variables, so that the functions
12,f1, are 2r-periodic in all arguments, and the phase

tems, and the interpretation of this information is difficult 2n é1(¢1a¢2)

[7]. Another approach exploits the notion(phasé synchro-
nization of irregular oscillator§8,9]; it is based on the as-
sumption that the system under study can be modeled b
coupled self-sustained systeni®,9,10. This approach
makes use of the well-known fact that weak coupling first
affects the phases of the oscillators, not their amplitudes.
Hence, in order to reveal and quantify the strength of inter- 0
action one has to analyze relation between the phases of th
systems. Nevertheless, up to now, there exists no methods {c, . . ‘ .
estimate the direction of coupling from such data. TR R Uy Y B S TR
In this contribution we develop a technique that allows us ﬁfﬁ’\‘\f'*ﬁm\ﬁwﬂw‘W’M’i’ﬁ‘jﬂﬁi‘ﬂ/%?\ﬁ?‘f{;’VMWAf“;‘kf*‘#@“,‘ﬁdx;‘w\;‘ ﬁA
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to reveal whether the interaction is bi- or unidirectional and < o
uantify the degree of asymmetry in the coupling. The merits< 130}, , N TR T R NTI Bhodh b A
quantify g y y pling W‘WNWMWMWM@’MMW’*WW‘W{ ‘vWN”’{‘(‘f*s’W#N\f "

0, mod 27
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of the method aréa) its ability to detect and quantify rather

weak interaction between oscillators, even if it is too weak to 110 ,
induce synchronization, an¢b) its applicability to both 0 1 2 3 4 5
noise-perturbed and chaotic systems. Thus, we avoid mair. i x 10"
limitations of the methods based on the notion of generalized
synchronization.

Our assumptlon IS that the two obS(_erved signals represeég)mbols evolve with time to positions shown by closed ones; for
two weakly mteraptmg oscillators. Using standard met_hOd%Iarity, only one trajectory is shown by the arrowed line. In the
[11] one can estimate from these data the time series Qfyample shown heréschematically, the increment ofg;, A,
phasesp, i), wheret,= tk, 4t is the sampling interval,  — 4 (t+ )~ ¢,(t), depends onp,, hence, the phase of the first
k=1,... N. The principal idea, illustrated in Fig(d), isto  oscillator is influenced by the second one. On the contrary, the
look whether the phase dynamics of one oscillator is influincrementa, is constant, what indicates that there is no coupling in
enced by the phase of the other. To explain the proposeghe direction from 1 to 2(b) Phases of coupled oscillatdi&q. (1)]
technique we start with a simple model of two coupled phasgor ¢,=0.02,7=40r. (c) The dependence df; , (upper and lower
oscillators, curves, respectivejyon indexi.

FIG. 1. (a) Evolution of neighboring trajectories on the torus
1,¢,) during the time interval. The points denoted by open
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loops [12], as well as phase dynamics of weakly coupled (a)
continuous-time chaotic systerff®. o
For w,~w, and vanishing noise systefl) has a limit 149 - :
cycle solution on the torus, which corresponds to the syn-
chronous statémode locking. Outside of the synchroniza-
tion region on the parameter platiee., for large| w, — w,| or
for smalle, ,) the state is quasiperiodic with ergodic dynam- u™ 148
ics on the torus. With sufficiently large noise one cannot
distinguish between these cases. We emphasize that in the
synchronous state there is a definite relation between the
phases determined by , as well as byw; ,, 015, andfy ;. ‘47; '
Thus, in case of perfect synchrony, we are not able to sepa-
rate the effect of interaction from the internal dynamics of
autonomous systems. In order to obtain the information on
the direction of coupling we need to observe deviations from
the synchrony, either due to noise or due to onset of quasip-
eriodic dynamics outside the synchronization region. Below
we give examples of both situations.

Our goal is to estimate the ratio of the coupling terms
from the time series of the phases t,) only [the phases
are unwrapped, i.e., not reduced to the inte\@l 2m)].
First, we compute for each time point the increments u®™ {25
Aq AK) =y At + 7)— @1 Atk); the choice of the constant
is not very important, as shown below. These increments can
be considered as generated by some unknown two-
dimensional noisy map A; (k) =F1 4 ¢1 AK), P21(K)] 124
+ 71AK). Next, we fit(in the least mean square sentiee
dependencies af on ¢, and ¢, using a finite Fourier series
as the probe function:

126

0o 2 4, mod 2n
F1’2=2 Am,|eim¢1+”¢2; FIG. 2. Estimated functionB,(¢;,®,) (@) andF,(d1,¢,) (b)

m,| for the same parameters as used in Figls) and Xc) clearly reveal
. . . asymmetry in coupling. Increment of; strongly depends on both
in the following computations we take the terms with ¢, having the formF;~F(¢,— 1), as it should be for the
<3 form=0,|m[<3 for|=0, andm|=|[I[=1. The smooth  nqdel considered. For the second phase, the dependence is weaker.
functionsF, , are estimates of the deterministic pafts, of  Note that fitting plays the role of averagirigoise reductionand
the above map. A similar procedure was used for noise reprovides smooth functionk, , starting from the irregulai ; i)
duction in discret¢13] dynamical systems an@vith 7—0)  [cf. Fig. 1(c)]
for extracting model equation from experimental noisy data
[14]. The results of fitting are used to quantify the cross-

dependencies of phase dynamics of two systems by means glz{t)glvz(t )= 812 2D10(t=1"), with Dy,=0.2 [16].
the coefficients, , defined as ne coupling coefficient was fixed,;=0.1, and the other

one, g,, was varied from 0 to 0.15. The casg=0.02 is

5 2m( 9F 1 5|2 illustrated in Figs. tb) and Xc); the corresponding approxi-
Cl,zzf f 3 d¢,dey,. (2 mating functionsF; , are shown in Fig. 2. The results of the
0o \day : 2T > RN
calculation of the directionality index are summarized in Fig.
Finally, we calculate thelirectionality indexas 3(a_). Because of strong noise in the system, rather large sta-
tistics is required. In Fig. ®) we report the effect of the time
(12_C2—C1 constantr on the directionality index. One can see that this
T Ci+Cy ©) dependence in a broad ran@em =~ 0.5 to~ 50 periods of

oscillation is very weak.

Normalized in this way, the index varies from 1 in the case As the next example, we consider noise-free oscillators,
of unidirectional coupling (1-2) to —1 in the opposite case ¢;=0.05,D;,=0 with g, ,=b cos(, ;), and the other pa-
(2—1); vanishing indexd>?=0 corresponds to symmetric rameters the same as above. For these parameters, the
bidirectional couplind 15]. coupled system performs a quasiperiodic motion. As is seen

We Illustrate the described technique with the simplesfrom Fig. 4, the information on the asymmetry in coupling is
example, where we simulate the coupled phase oscillatorgerfectly recovered.
system (1) with ;,=1+0.1, q;,=0, fy,=sin(p, For further illustration we take two coupled van der Pol
— ¢1), and Gaussia@-correlated noisy perturbatior ,, oscillators:
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0, mod 27

0 > 4 6
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FIG. 5. Phases of two 1:2 synchronizedsRler oscillator<6).
The noise in the system is bounded and weak, and therefore the
points form a stripe so that the global fitting is not effective. Qua-
siperiodic states allows better estimation, see text.

X=-y-—z,

coupled noisy phase oscillatof®). d*? should be zero if the driv-

ing is symmetric, and-1 if it is unidirectional(from 2 to 1). The

y=x+0.15+¢u,

dependence on the length of the time series is showa) jnvhereas (5)

the influence of the parameteris illustrated in(b). Solid line
shows the dependenge=(e,—¢4)/(e,+ ;). One can see that for

z=0.24+z(x—10),

sufficiently large data sets the ratio ©f/c, correctly provides the

ratio of g4 /e5.

. 2 .. 2
X127 0.21—=X] p)Xq ot 0] X1 5= 81 AXp 1~ X12) + &1,

wherew; ,=1+0.02. The application of the method to this
case is essentially the same; the only difference is that first
the phases of the systems are estimated from respective si
nals[11]. Fore , varying in the range from 0 te- 0.05 and
noise level varying fromD~0.08 to D~0.12 we clearly
detect the direction of coupling for this model, both for iden-
tical and different intensities of noise terms.

The next example shows that the method also works i
the case of two structurally different systems, namely, the

Rossler and the van der Pol oscillators:

0.02

0.06

1—0.1(1—u?)u+ wiu=&,y.

Here the unidirectional coupling witlk;=0.05, ¢,=0 or
(4)  £,=0,e,=0.05 givesd®?=—1.0 andd*»=0.95, respec-
tively; wy=0.98; the bidirectional couplings,;=0.05, ¢,
=0.003, yieldsd*?= —0.02. Note that because the systems
are intrinsically different, the asymmetry here is not deter-
Sined directly by the ratio of, ande,.

We emphasize that the method requires that the trajectory
fills the surface of the ¢4,¢,) torus. Indeed, only in this
case we can fit the dependencies,= F; A ¢ 2, ¢ 1) Using
r¢1,¢>2 as independent variables. This requirement is fulfilled
either if the oscillators are in the quasiperiodic state, or if the
noise in the system is sufficiently strong. If the oscillators are
noise-free, then in case of synchronization the trajectory on
(¢1,¢,) is one line, sop, and ¢, are not independent and
the functions of two variable§; , cannot be estimated.

In the case of weakor boundedl noise, when the trajec-
tories form smeared stripdsf. Fig. 5), the above approach
must be slightly modified: one should perform local fits only
for nonempty regions on the torug{, ¢,). The feature of
the method not to work for strictly synchronous regimes does
not essentially limit practical applications. Indeed, in case of
physical experiments, it is usually possible to adjust some
parameters and thus to tune the system out of the synchroni-
zation region, i.e., to a quasiperiodic state. In biological ex-
periments the system cannot usually be controlled, but the

FIG. 4. Directionality index for coupled noise-free phase oscil-noise inherent to such systems helps. Besides, typically the
lators(1) in the quasiperiodic regime for different valuestofSolid ~ synchronous regimes are not so probable as the quasiperiodic
line shows the dependenge- (e,—&1)/(g,+¢4).

ones.
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Finally, we briefly discuss the case when two systems are In summary, we have proposed a technique of data analy-
close to the state oh:m synchronization. We consider sis that provides information on the directionality of cou-
coupled Rssler systems pling between two self-sustained oscillatory systems. The
technique is applicable to nonidentical, or even structurally
different, oscillators, noisy or chaotic; it can be extended to
the case of more than two interacting units. As many natural
phenomena can be successfully modeled by coupled self-
sustained oscillators, we foresee many practical applications
of the technique. Good examples are synchronization of elec-
trochemical and salt-water oscillatof47,18 and mode-
locking in laserd19]. Indeed, in these cases synchronization

case the method based on a global approximation fails. NeJ$ OPserved, whereas the coupling between(tusystems

ertheless, as the stripes here are rather broad and there Sannot be determi_ne_d a}nd pontrolled (_jirectlly. With our
method thea posterioriestimation of coupling direction be-

two wrappings of the torus in one direction instead of one teasible. Th d hod be widel di
wrapping for 1:1 locking, we at least correctly estimate theCOmes feasible. The proposed method can be widely used in
iomedical studiese.g., of cardiorespiratory interaction and

direction of coupling. This is a rough estimate, since only theg ) it h ih : ¢ ; wvoicall
sign of the coefficient is correctd®?=—0.15 for ¢, rain activity where the parameters of systems typically

=0.02,5,=0, andd-?=0.18 fore; =0, £,=0.2. Synchro- rct?r?r?iﬁt gsnc?ifizizsgfe aggsiggyA?iizug?Einéﬁre%?igﬁrs ff;?e_
nous states with largen,m are more favorable, because 9 "ep L -
further study we outline an optimization of the fitting proce-

many revolutions almost cover the surface of the torus. In_dure As another direction we mention the detailed compari-
deed, for largem,n the motion resembles a quasiperiodic ) P

one, where the method is mostly effective. So, the case wher" of the proposed technique with _statis_t_ical methods based
the frequency mismatch in E¢6) is large enough, and the on the computation of mutual predictability or transfer en-
coupling is not too strong to cause synchronization, admitérOpy [20]

much better estimation of the directionality index!?= We gratefully acknowledge discussions with R. Friedrich
—0.94 fore;=0.05, e,=0, andd*?=0.89 fore;=0, e, and P. Tass. This work was supported by the EU Network
=0.05. COSYS of SENS.

X1 o= w1 —Y12- 212 &1 A% 17 X1 2),
Y1.2= 01 X1 2+ 0.15/ 5), (6)
2y 7= w14 0.2+ 21 AX; ,—10)],

with w;=1 andw,~ w4/2. First, we describe the case when
the systems are 1:2 lockddee Fig. 5. Generally, in this
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