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Detecting direction of coupling in interacting oscillators
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We propose a method for experimental detection of directionality of weak coupling between two self-
sustained oscillators from bivariate data. The technique is applicable to both noisy and chaotic systems that can
be nonidentical or even structurally different. We introduce an index that quantifies the asymmetry in coupling.
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Development of nonlinear dynamics essentially contr
uted to assortment of contemporary time series analysis@1#.
Still, the analysis of multivariate data remains a challenge
problem of particular interest is to assess the interaction
tween two~sub!systems by means of the analysis of inter
lation between two signals at their outputs. An importa
application is, e.g., the analysis of normal and patholog
brain activity from multichannel noninvasive electro-
magnetoencephalography measurements@2–4#.

One approach to this problem is based on the idea
dynamical interdependence, or generalized synchroniza
of unidirectionally coupled systems@3,5,6#. The measures o
driver-response relationships obtained by means of this
proach are not always reliable for noisy data; they mai
reflect the different degrees of complexity of the two sy
tems, and the interpretation of this information is difficu
@7#. Another approach exploits the notion of~phase! synchro-
nization of irregular oscillators@8,9#; it is based on the as
sumption that the system under study can be modeled
coupled self-sustained systems@2,9,10#. This approach
makes use of the well-known fact that weak coupling fi
affects the phases of the oscillators, not their amplitud
Hence, in order to reveal and quantify the strength of int
action one has to analyze relation between the phases o
systems. Nevertheless, up to now, there exists no metho
estimate the direction of coupling from such data.

In this contribution we develop a technique that allows
to reveal whether the interaction is bi- or unidirectional a
quantify the degree of asymmetry in the coupling. The me
of the method are~a! its ability to detect and quantify rathe
weak interaction between oscillators, even if it is too weak
induce synchronization, and~b! its applicability to both
noise-perturbed and chaotic systems. Thus, we avoid m
limitations of the methods based on the notion of generali
synchronization.

Our assumption is that the two observed signals repre
two weakly interacting oscillators. Using standard metho
@11# one can estimate from these data the time series
phasesf1,2(tk), wheretk5dtk, dt is the sampling interval,
k51, . . . ,N. The principal idea, illustrated in Fig. 1~a!, is to
look whether the phase dynamics of one oscillator is in
enced by the phase of the other. To explain the propo
technique we start with a simple model of two coupled ph
oscillators,
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ḟ15v11q1~f1!1«1f 1~f1 ,f2!1j1~ t !,
~1!

ḟ25v21q2~f2!1«2f 2~f2 ,f1!1j2~ t !.

Here f1 ,f2 are phase variables, so that the functio
q1,2, f 1,2 are 2p-periodic in all arguments, and the pha
space of the model is the two-dimensional torus; parame
v1,2 govern the natural frequencies of oscillators~although
do not coincide with them forq1,2Þ0!. To take into account
noisy perturbations~that are always present in natural sy
tems! we include in Eqs.~1! random termsj1,2. System~1!
describes the phase dynamics of weakly coupled noisy l
cycle oscillators, Josephson junctions, and phase loc

FIG. 1. ~a! Evolution of neighboring trajectories on the toru
(f1 ,f2) during the time intervalt. The points denoted by ope
symbols evolve with time to positions shown by closed ones;
clarity, only one trajectory is shown by the arrowed line. In t
example shown here~schematically!, the increment off1 , D1

5f1(t1t)2f1(t), depends onf2 , hence, the phase of the firs
oscillator is influenced by the second one. On the contrary,
incrementD2 is constant, what indicates that there is no coupling
the direction from 1 to 2.~b! Phases of coupled oscillators@Eq. ~1!#
for «250.02,t540p. ~c! The dependence ofD1,2 ~upper and lower
curves, respectively! on indexi.
©2001 The American Physical Society02-1
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loops @12#, as well as phase dynamics of weakly coupl
continuous-time chaotic systems@8#.

For v1'v2 and vanishing noise system~1! has a limit
cycle solution on the torus, which corresponds to the s
chronous state~mode locking!. Outside of the synchroniza
tion region on the parameter plane~i.e., for largeuv12v2u or
for small«1,2! the state is quasiperiodic with ergodic dynam
ics on the torus. With sufficiently large noise one cann
distinguish between these cases. We emphasize that in
synchronous state there is a definite relation between
phases determined by«1,2 as well as byv1,2, q1,2, and f 1,2.
Thus, in case of perfect synchrony, we are not able to se
rate the effect of interaction from the internal dynamics
autonomous systems. In order to obtain the information
the direction of coupling we need to observe deviations fr
the synchrony, either due to noise or due to onset of qua
eriodic dynamics outside the synchronization region. Bel
we give examples of both situations.

Our goal is to estimate the ratio of the coupling term
from the time series of the phasesf1,2(tk) only @the phases
are unwrapped, i.e., not reduced to the interval@0, 2p!#.
First, we compute for each time point the increme
D1,2(k)5f1,2(tk1t)2f1,2(tk); the choice of the constantt
is not very important, as shown below. These increments
be considered as generated by some unknown t
dimensional noisy map D1,2(k)5F1,2@f1,2(k),f2,1(k)#
1h1,2(k). Next, we fit ~in the least mean square sense! the
dependencies ofD on f1 andf2 using a finite Fourier serie
as the probe function:

F1,25(
m,l

Am,le
imf11 i l f2;

in the following computations we take the terms withu l u
<3 for m50, umu<3 for l 50, andumu5u l u51. The smooth
functionsF1,2 are estimates of the deterministic partsF1,2 of
the above map. A similar procedure was used for noise
duction in discrete@13# dynamical systems and~with t→0!
for extracting model equation from experimental noisy d
@14#. The results of fitting are used to quantify the cros
dependencies of phase dynamics of two systems by mea
the coefficientsc1,2 defined as

c1,2
2 5E E

0

2pS ]F1,2

]f2,1
D 2

df1df2 . ~2!

Finally, we calculate thedirectionality indexas

d~1,2!5
c22c1

c11c2
. ~3!

Normalized in this way, the index varies from 1 in the ca
of unidirectional coupling (1→2) to 21 in the opposite case
(2→1); vanishing indexd(1,2)50 corresponds to symmetri
bidirectional coupling@15#.

We illustrate the described technique with the simpl
example, where we simulate the coupled phase oscilla
system ~1! with v1,25160.1, q1,250, f 1,25sin(f2,1
2f1,2), and Gaussiand-correlated noisy perturbationsj1,2,
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^j1,2(t)j1,2(t8)&5d1,2•2D1,2d(t2t8), with D1,250.2 @16#.
One coupling coefficient was fixed,«150.1, and the other
one, «2 , was varied from 0 to 0.15. The case«250.02 is
illustrated in Figs. 1~b! and 1~c!; the corresponding approxi
mating functionsF1,2 are shown in Fig. 2. The results of th
calculation of the directionality index are summarized in F
3~a!. Because of strong noise in the system, rather large
tistics is required. In Fig. 3~b! we report the effect of the time
constantt on the directionality index. One can see that th
dependence in a broad range~from ' 0.5 to' 50 periods of
oscillation! is very weak.

As the next example, we consider noise-free oscillato
«150.05, D1,250 with q1,25b cos(f1,2), and the other pa-
rameters the same as above. For these parameters
coupled system performs a quasiperiodic motion. As is s
from Fig. 4, the information on the asymmetry in coupling
perfectly recovered.

For further illustration we take two coupled van der P
oscillators:

FIG. 2. Estimated functionsF1(f1 ,f2) ~a! andF2(f1 ,f2) ~b!
for the same parameters as used in Figs. 1~b! and 1~c! clearly reveal
asymmetry in coupling. Increment off1 strongly depends on both
f1,2 having the formF1'F1(f22f1), as it should be for the
model considered. For the second phase, the dependence is w
Note that fitting plays the role of averaging~noise reduction! and
provides smooth functionsF1,2 starting from the irregularD1,2( i )
@cf. Fig. 1~c!#
2-2



is
fir
s

n

th

s
er-

tory

ed
the
re
on

d

-

ly

es
of

me
roni-
x-
the
the

iodic

r

cil

the
a-

RAPID COMMUNICATIONS

DETECTING DIRECTION OF COUPLING IN . . . PHYSICAL REVIEW E64 045202~R!
ẍ1,220.2~12x1,2
2 !ẋ1,21v1,2

2 x1,25«1,2~x2,12x1,2!1j1,2,
~4!

wherev1,25160.02. The application of the method to th
case is essentially the same; the only difference is that
the phases of the systems are estimated from respective
nals@11#. For «1,2 varying in the range from 0 to' 0.05 and
noise level varying fromD'0.08 to D'0.12 we clearly
detect the direction of coupling for this model, both for ide
tical and different intensities of noise terms.

The next example shows that the method also works
the case of two structurally different systems, namely,
Rössler and the van der Pol oscillators:

FIG. 3. Dependence of the indexd(1,2) on «2 for fixed «1 for
coupled noisy phase oscillators~1!. d(1,2) should be zero if the driv-
ing is symmetric, and21 if it is unidirectional~from 2 to 1!. The
dependence on the length of the time series is shown in~a!, whereas
the influence of the parametert is illustrated in ~b!. Solid line
shows the dependencey5(«22«1)/(«21«1). One can see that fo
sufficiently large data sets the ratio ofc1 /c2 correctly provides the
ratio of «1 /«2 .

FIG. 4. Directionality index for coupled noise-free phase os
lators~1! in the quasiperiodic regime for different values ofb. Solid
line shows the dependencey5(«22«1)/(«21«1).
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ẋ52y2z,

ẏ5x10.15y1«1u,
~5!

ż50.21z~x210!,

ü20.1~12u2!u̇1v0
2u5«2y.

Here the unidirectional coupling with«150.05, «250 or
«150, «250.05 givesd(1,2)521.0 andd(1,2)50.95, respec-
tively; v050.98; the bidirectional coupling,«150.05, «2

50.003, yieldsd(1,2)520.02. Note that because the system
are intrinsically different, the asymmetry here is not det
mined directly by the ratio of«1 and«2 .

We emphasize that the method requires that the trajec
fills the surface of the (f1 ,f2) torus. Indeed, only in this
case we can fit the dependenciesD1,25F1,2(f1,2,f2,1) using
f1 ,f2 as independent variables. This requirement is fulfill
either if the oscillators are in the quasiperiodic state, or if
noise in the system is sufficiently strong. If the oscillators a
noise-free, then in case of synchronization the trajectory
(f1 ,f2) is one line, sof1 andf2 are not independent an
the functions of two variablesF1,2 cannot be estimated.

In the case of weak~or bounded! noise, when the trajec
tories form smeared stripes~cf. Fig. 5!, the above approach
must be slightly modified: one should perform local fits on
for nonempty regions on the torus (f1 ,f2). The feature of
the method not to work for strictly synchronous regimes do
not essentially limit practical applications. Indeed, in case
physical experiments, it is usually possible to adjust so
parameters and thus to tune the system out of the synch
zation region, i.e., to a quasiperiodic state. In biological e
periments the system cannot usually be controlled, but
noise inherent to such systems helps. Besides, typically
synchronous regimes are not so probable as the quasiper
ones.

-

FIG. 5. Phases of two 1:2 synchronized Ro¨ssler oscillators~6!.
The noise in the system is bounded and weak, and therefore
points form a stripe so that the global fitting is not effective. Qu
siperiodic states allows better estimation, see text.
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Finally, we briefly discuss the case when two systems
close to the state ofn:m synchronization. We conside
coupled Ro¨ssler systems

ẋ1,25v1,2~2y1,22z1,2!1«1,2~x2,12x1,2!,

ẏ1,25v1,2~x1,210.15y1,2!, ~6!

ż1,25v1,2@0.21z1,2~x1,2210!#,

with v151 andv2'v1/2. First, we describe the case whe
the systems are 1:2 locked~see Fig. 5!. Generally, in this
case the method based on a global approximation fails. N
ertheless, as the stripes here are rather broad and ther
two wrappings of the torus in one direction instead of o
wrapping for 1:1 locking, we at least correctly estimate t
direction of coupling. This is a rough estimate, since only
sign of the coefficient is correct:d(1,2)520.15 for «1

50.02,«250, andd(1,2)50.18 for«150, «250.2. Synchro-
nous states with largern,m are more favorable, becaus
many revolutions almost cover the surface of the torus.
deed, for largem,n the motion resembles a quasiperiod
one, where the method is mostly effective. So, the case w
the frequency mismatch in Eq.~6! is large enough, and th
coupling is not too strong to cause synchronization, adm
much better estimation of the directionality index:d(1,2)5
20.94 for e150.05, e250, andd(1,2)50.89 for e150, e2
50.05.
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In summary, we have proposed a technique of data an
sis that provides information on the directionality of co
pling between two self-sustained oscillatory systems. T
technique is applicable to nonidentical, or even structura
different, oscillators, noisy or chaotic; it can be extended
the case of more than two interacting units. As many natu
phenomena can be successfully modeled by coupled
sustained oscillators, we foresee many practical applicat
of the technique. Good examples are synchronization of e
trochemical and salt-water oscillators@17,18# and mode-
locking in lasers@19#. Indeed, in these cases synchronizati
is observed, whereas the coupling between the~sub!systems
cannot be determined and controlled directly. With o
method thea posterioriestimation of coupling direction be
comes feasible. The proposed method can be widely use
biomedical studies~e.g., of cardiorespiratory interaction an
brain activity! where the parameters of systems typica
cannot be assessed and only measurements under
running conditions are possible. As one of the directions
further study we outline an optimization of the fitting proc
dure. As another direction we mention the detailed comp
son of the proposed technique with statistical methods ba
on the computation of mutual predictability or transfer e
tropy @20#.
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