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Comment on ‘‘Simple approach to the creation of a strange nonchaotic attractor
in any chaotic system’’
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We address the problem of existence of strange nonchaotic attractors~SNAs! in quasiperiodically forced
dynamical systems. Recently, Shuai and Wong@Phys. Rev. E59, 5338~1999!# suggested a universal method
for constructing a SNA in an arbitrary system possessing chaos. We demonstrate here that, in general, this
method fails. For arbitrary systems, it gives a SNA only in a vicinity of transition to chaos. We discuss also a
special example, where the method by Shuai and Wong indeed produces a SNA.
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Strange nonchaotic attractors~SNAs! typically accom-
pany the transition from ordered to chaotic dynamics in q
siperiodically forced systems. SNAs share some propertie
simple and strange attractors. Similar to regular attract
they do not demonstrate any sensitivity to initial condition
all Lyapunov exponents are negative@1#. However, their
geometrical structure is fractallike of typical chaotic attra
tors. SNAs have been first described by Grebogiet al. @2#,
and since then investigated both numerically@3# and experi-
mentally @4#.

Criteria for the existence of SNA have been formulated
@5#. Below we use the following one: A SNA exists if ther
are trajectories with positive finite-time Lyapunov expone
for arbitrary large time. Such positive finite-time Lyapuno
exponents indicate that in the phase space there are uns
regions that are visited by a trajectory. In the average, c
traction dominates so that the time-averaged Lyapunov
ponent is negative, but the unstable pieces of a trajec
spoil regularity of the attractor and make it fractal.

Recently, Shuai and Wong@6# have proposed an approac
to produce a strange nonchaotic attractor in any system d
onstrating regular and chaotic dynamics. The propo
method is based on a control technique applied to a sys
parameterC; it can be described by the following steps:

~i! Take two values of the system parameterC, so that for
C1 the dynamics is chaotic, and forC2 it is regular.

~ii ! Add a small quasiperiodic forcing not destroying t
type of the dynamics at these parameter values. Then
observes a strange chaotic attractor forC1 and a smooth
quasiperiodic attractor~torus! for C2.

~iii ! Switch periodically between the chosen values ofC,
by operating the system for timeT1 with parameter valueC1
~chaotic epoch!, and then operating it for timeT2 with pa-
rameter valueC2 ~regular epoch!. Note that the timesT1 and
T2 are suggested to be chosen large enough to ensure th
Lyapunov exponents calculated for these time intervals
close to their asymptotic values@cf. Eq. ~3! below#.

Shuai and Wong claim that ifT1 and T2 are chosen in
such a way that the overall Lyapunov exponent is negat
then the attractor of the system will be strange nonchaotic
this Comment we show, in contrast to the results of@6#, that
this construction yields either a strange nonchaotic attra
or a smooth torus. We demonstrate that for existence
1063-651X/2001/64~5!/058201~5!/$20.00 64 0582
-
of
s,
:

-

s

ble
n-
x-
ry

m-
d
m

ne

the
re

e,
In

or
a

SNA, some additional conditions on the parameters of
method should be fulfilled. Qualitatively, our arguments a
the following: the criterion of the SNA formulated abov
requires that positive finite-time Lyapunov exponents m
exist for arbitrary large time. However, the method describ
provides only positive exponents for finite times of ordet
'T1. If these positive finite-time Lyapunov exponents~that
naturally appear during the chaotic stage! are fully compen-
sated by negative Lyapunov exponents during the reg
stage, then there are no positive finite-time Lyapunov ex
nents for timest5k(T11T2) with any k>1. Thus, the at-
tractor is not strange, but smooth.

For illustration we will use the system presented by t
authors of@6#. They considered a quasiperiodically force
logistic map,

x~ t11!5 f C@x~ t !,u~ t !#

5ax~ t !@12x~ t !#1A sin@2pu~ t !#1C, ~1!

u~ t11!5u~ t !1v ~mod 1!,

wherea53.6, A50.001, andv5(A521)/2 are fixed. Fig-
ure 1 shows the dependence of the dynamics of system~1!
on the value of the parameterC. It is chaotic for C.
20.012 and regular otherwise. According to the proced
of @6#, we switch the dynamics between two valuesC1 and
C2 in these domains. In order to check the existence
SNAs, we have to examine whether there are positive fin
time Lyapunov exponents for arbitrary large times as it h
been formulated in@5#. When applying this criterion to sys
tem ~1!, one should take into account that this system
inhomogeneous in time, because it is a combination of al
nating intervalsT1 andT2 having different dynamics. Thus
to apply the criterion above, one should first make the sys
homogeneous. This can be accomplished by looking at ev
T11T2 iteration, and therefore by writing out the map aft
T11T2 time steps. This mapF will give the overall dynam-
ics after visiting chaotic and regular domain, and can
treated like other quasiperiodically forced maps:

x~ t1T11T2!5F@x~ t !,u~ t !#5~ f C2

T2
• f C1

T1 !@x~ t !,u~ t !#,

~2!
©2001 The American Physical Society01-1
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u~ t1T11T2!5u~ t !1~T21T1!v ~mod 1!.

Below we discuss two representative cases, which di
in the choice of parameter valueC1.

Case A. C1
A520.01, C2520.02.

Case B. C1
B50, C2520.02.

In both cases we have switchings between regular
chaotic dynamics, the corresponding Lyapunov expone
are:l1

A50.03545,l1
B50.172, andl2520.114. The differ-

ence between cases A and B is in the topological structur
chaos: for A it has four bands, while for B it has two band
We will see that this results in different features of the co
bined dynamics.

We are going to show first that, in general, the propo
method of@6# is not able to construct a SNA in any chaot
system. In particular, Fig. 1 of@6# is not valid for an arbitrary
choice of parameter valuesC1 and C2. However, for some
special choice of parameter values the occurrence of a S
was found and also reported in@6#.

If one plots the attractors of system~2! in the phase plane
(x,u), they look for both cases A and B like smooth to
because the lastT2 iterations correspond to the contractin
dynamics. To determine the nature of the dynamical reg
in dependence on the iteration lengthsT1 and T2, further
investigations concerning finite-time Lyapunov expone
are necessary.

1. Case A

According to the step 3 of the proposed method, the tim
T1 andT2 of the expanding and contracting dynamics ha
to be adjusted so that the overall dynamics is contract
This means that the Lyapunov exponent must be nega
For largeT1 ,T2 one can neglect the transients at the swit
ings between the two dynamical regimes, and approxim
the largest Lyapunov exponent of Eq.~2! as

FIG. 1. The bifurcation diagram for the quasiperiodically forc
logistic map in dependence on the additive system parameteC
governing different kind of dynamics~quasiperiodic motion on a
torus or chaotic motion!. Two cases of switching the parameterC
are discussed in the text:~A! C1

A520.01, C2520.02, and~B!
C1

B50, C2520.02.
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T11T2
. ~3!

Consequently, there exists a transition line in the param
plane (T1 ,T2) separating the phases of chaos and SNA, w
was also found by the authors of@6#. This transition line is
obtained numerically~see Fig. 2! and its slope 0.311 is in a
good agreement with the theoretically expected one resul
from Eq.~3!. According to@6#, above this transition line only
strange nonchaotic behavior exists. We show now, tha
SNA exists only in a small band above the line of transiti
to chaos.

We use the criterion above, according to which a SNA
present if the Lyapunov exponent is negative, but posit
finite-time Lyapunov exponentslT do exist. Thus, we are
going to find an approximation for the maximum finite-tim
Lyapunov exponentlT11T2

max after T11T2 iterations. Similar

to Eq. ~3! we can write

lT11T2

max 5
T1lT1

max1T2lT2

max

T11T2
, ~4!

where lT1

max.0 and lT2

max,0 are maximal possible finite

time Lyapunov exponents of map~1! for times T1 ,T2 in
regimes withC1 ,C2, respectively. Numerically, we have es
timated these maximal finite-time exponents for 2000 r
domly chosen initial conditions (x,u). Now the condition
lT11T2

max .0 can be used as a condition for the existence o

SNA. This line, depicted in Fig. 2, is only a crude approx
mation of the transition line separating the regimes of
SNA and quasiperiodicity, because in Eq.~4! we neglect all

FIG. 2. Phase diagram for the system~2! in the T1-T2 plane
with C1

A520.01 andC2520.02. The slope of the transition lin
between the chaos and SNA is fitted to be 0.311, the transition
between the dynamical regimes of the SNA and torus is estim
roughly on the basis of the distribution of local Lyapunov exp
nents.
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FIG. 3. Phase portraits for the system~2! with C1
A520.01, C2520.02, andT15200. ~a!: chaos forT2548. ~b!: SNA for T2568. ~c!:

smooth torus forT25102.
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correlations and as a result the real finite-time exponents
smaller than those predicted by Eq.~4!. Nevertheless, we
demonstrated that the proposed method is not able to
struct a strange nonchaotic attractor, except for a finite reg
near the border to chaos.

To confirm that the phase diagram Fig. 2 is valid, w
investigated representative attractors from the three doma
for a fixed valueT15200 and appropriate values ofT2. As
already mentioned, the attractors of system~2! in any case
look like smooth tori, even for parameter valuesT1 andT2
inside the chaotic and the strange nonchaotic regime. To
solve the strange structure of those attractors one has t
into very small scales. The reason for this is the followin
because at the lastT2 iterations of map~2! the dynamics is
contracting, the size of the attractor in thex direction can be
estimated asDx'D exp(l2T2). Here D'0.1 is the size of
the band of the chaotic attractor withC1 ~see Fig. 1!, and
l2,0 is the Lyapunov exponent of the regular dynami
This estimate yieldsDx'1024. Thus, to see if the attracto
of the map~2! is strange or not, we have to zoom the pictu
resolving it at the levelDu'1024, or finer. This is done in
Fig. 3. In this resolution one can readily distinguish betwe
the strange@cases~a!,~b!# and smooth@case~c!# attractors.
Additional calculation of the Lyapunov exponent allows
to characterize Fig. 3~a! as chaos, Fig. 3~b! as SNA, and Fig.
3~c! as smooth torus.

The approximation of the line seperating the phases
strange nonchaotic behavior and quasiperiodic motion
obtained by estimating the maximum value of finite-tim
Lyapunov exponent after one periodT5T11T2 based on the
distribution of finite-time Lyapunov exponentslT1

and lT2

for an ensemble of 2000 randomly chosen initial conditio
while neglecting correlations between chaotic and regu
dynamics. However, the criterion for the SNA is the ex
tence of positive finite-time Lyapunov exponents for ar
trary large times. Now we are going to show that this cri
rion is fulfilled for any points of the parameter plane (T1 ,T2)
inside the region limited by the both numerically estimat
transition lines. Let us first introduce an alternative timek
according tot5k(T11T2), then the criterion for the SNA is
the existence of positive finite-time Lyapunov exponents
arbitrary largek. According to the thermodynamic formalism
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@5#, one expects that for largek the probabilityPk(L) that
the time-k Lyapunov exponent has valueL scales as
Pk(L);exp@kf(L)#. Heref(L) is a scaling function having
a maximumf50 at the negative time-̀ Lyapunov expo-
nent. According to this, the probability to observe a posit
time-k Lyapunov exponent is

P1~k!5E
0

`

Pk~L!dL;exp~2ak!, a52f~0!. ~5!

To check this relation, we calculatedP1(k) using the en-
semble of 4.243107 pieces of trajectories for the point (T1
5400,T25200) inside the region of the SNA on the param
eter plane (T1 ,T2) ~see Fig. 2!; the results are presented
Fig. 4. One can see that the numerics fits very well relat
~5! even for smallk, with a'0.84. This allows to estimate
with which probability one can observe a positive finite-tim
Lyapunov exponent for everyk. The check of the functiona

FIG. 4. The numerically estimated probabilityP1(k) to observe
a positive time-k Lyapunov exponent. For calculations an ensem
of 4.243107 pieces of trajectories was used at parameter val
T15400, T25200 with C1

A520.01 and C2520.02. The line
P150.38 exp(20.84k) is the best fit.
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FIG. 5. Illustration of the topological construction leading to strange nonchaotic behavior for case B withC1
B50.0, C2520.02, T1

5450, T25750. Only two branches out of four are shown for clarity. See text for description of the panels.
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relation~5! can be used as a numerical method for a prec
estimation of the border ‘‘SNA torus.’’ At this transitiona
tends to infinity.

2. Case B

In contrast to the case A, here the estimation of the ma
mum finite-time Lyapunov exponent by Eq.~4! gives erro-
neous results. This is due to a special topological propert
the dynamics, which we describe in the following: in th
derivation of Eq.~4!, we took finite-time Lyapunov expo
nents from the attractors of Eq.~1! at the parametersC1 and
C2, and neglected transients to these attractors. In the ca
it was justified, because durations of these transients w
limited. Now the situation is different, because a repe
comes to play in the stable regime with parameterC1

B . In-
deed, between the branches of stable tori in Fig. 1 there
unstable tori, separating the corresponding basins of att
tion. The crucial point is that the chaotic attractor of Eq.~1!
with C2 covers both the stable tori and the unstable to
~repeller!. This means, that some initial points in the regu
dynamics withC1

B have very long transients~if they lie near
the repeller!, or even remain on the repeller within the tim
T1. As a result, these trajectories have positive finite-ti
Lyapunov exponents, because both the finite-time Lyapu
exponent of chaos and that of the repeller are positive.
cording to the criterion above, we have to conclude tha
SNA exists here for arbitrary largeT1.

We illustrate the topological mechanism for existence
an SNA in Fig. 5. Here we restrict the picture to the tw
branches of the attractor~out of four!. Although the attractor
in Fig. 5 appears as a smooth one, we demonstrate th
fact a mixing of the points between the branches occ
meaning that it is a strange nonchaotic attractor. At the
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of the regular part of the iterations one obtains an attrac
consisting of two seemingly smooth branches~a!. In panel
~a! the points on the upper branch are selected and sh
with bold dots. The unstable torus is denoted by the das
line and the lower branch of the stable attractor by sm
dots. The bold points from the upper branch are iterated
cording to the chaotic dynamics, with parameter valueC1

B .
After 20 iterations the formerly smooth curve is wrinkle
@panel~b!# and intersects the unstable torus at various poi
Therefore, different bold dots belong to basins of differe
branches shown in panel~a!. Thus, after the chaotic epoch
over and the regular dynamics withC2 is switched on, the
bold dots will be spreaded between the two branches
shown in panel~c!. In principle, there should be also poin
in between the two branches—these are the points that
nearly exactly on the repeller. However, a probability
meet such a point is extremely small.

To summarize our results, in general it is not possible
construct a SNA by applying the method proposed by
thors of@6#. Only in the special case B it is possible to get
SNA because of the topological arrangement~the unstable
torus placed inside the chaotic band of the attractor! that is
not valid in general. We conclude that the proposed met
of Ref. @6# does not construct a SNA in any chaotic syste
The method works either near the transition to chaos~and it
follows from the general theory@5# that near the transition to
chaos one typically observes an SNA!, or requires a specia
topological arrangement. It remains an open question how
construct a SNA in any chaotic system.
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