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We address the problem of existence of strange nonchaotic attré8fé/s) in quasiperiodically forced
dynamical systems. Recently, Shuai and WRDys. Rev. E59, 5338(1999] suggested a universal method
for constructing a SNA in an arbitrary system possessing chaos. We demonstrate here that, in general, this
method fails. For arbitrary systems, it gives a SNA only in a vicinity of transition to chaos. We discuss also a
special example, where the method by Shuai and Wong indeed produces a SNA.
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Strange nonchaotic attractofSNASs) typically accom- SNA, some additional conditions on the parameters of the
pany the transition from ordered to chaotic dynamics in quamethod should be fulfilled. Qualitatively, our arguments are
siperiodically forced systems. SNAs share some properties ¢he following: the criterion of the SNA formulated above
simple and strange attractors. Similar to regular attractorggquires that positive finite-time Lyapunov exponents must
they do not demonstrate any sensitivity to initial conditions:€eXist for arbitrary large time. However, the method described
all Lyapunov exponents are negatiy&]. However, their provides only positive exponents for finite times of order
geometrical structure is fractallike of typical chaotic attrac-~T1. If these positive finite-time Lyapunov exponeitisat
tors. SNAs have been first described by Grebeigal. [2], ~ haturally appear during the chaotic stagee fully compen-

and since then investigated both numericé8yand experi- Satéd by negative Lyapunov exponents during the regular
mentally[4]. stage, then there are no positive finite-time Lyapunov expo-

Criteria for the existence of SNA have been formulated in"€NtS for timest=k(T,+T5) with any k=1. Thus, the at-

[5]. Below we use the following one: A SNA exists if there tralc:t(())rr ilﬁuggtalzgsnv%g’vsmt jsrgotohtg's stem presented by the
are trajectories with positive finite-time Lyapunov exponents ; ystem prese y

; ) AL authors of[6]. They considered a quasiperiodically forced
for arbitrary large time. Such positive finite-time LyapunovI istic map
exponents indicate that in the phase space there are unstab?g ’
regions that are visited by a trajectory. In the average, con-

traction dominates so that the time-averaged Lyapunov ex- X(t+1)=fclx(®),6(1)]

ponent is negative, but the unstable pieces of a trajectory =ax(t)[1-x(t)]+AsinN276(t)]+C, (1)
spoil regularity of the attractor and make it fractal.
Recently, Shuai and Wor{§] have proposed an approach O(t+1)=0(t)+w (mod 1),

to produce a strange nonchaotic attractor in any system dem-

onstrating regular and chaotic dynamics. The propose%herea:36 A=0.001, andw=(5—1)/2 are fixed. Fig-

method is based on a control technique applied to a systellls 1 shows the dependence of the dvnamics of s $tem
parametelC; it can be described by the following steps: on the value of thg parameteZ. It isychaotic foryC>

(i) Take two values of the system parameleso that for —0.012 and regular otherwise. According to the procedure

Cs F.he dynamics is chaqtic,_an_d far, ?t is regular. . of [6], we switch the dynamics between two vali@s and
(if) Add a small quasiperiodic forcing not destroying the C, in these domains. In order to check the existence of

gyt?seer?/fe;hz (jsilpaim:ecscr?éggssaettfggp?Gta?ra\:m?jlussérrrgc?tr;] onaeNAs, we have to examine whether there are positive finite-
9 time Lyapunov exponents for arbitrary large times as it has

quasiperiodic attractoftorus for C,. been formulated ifi5]. When a X AT
. S . pplying this criterion to sys-
(iii) Switch periodically between the chosen value<of tem (1), one should take into account that this system is

by operating the system for time, with parameter valu€, inhomogeneous in time, because it is a combination of alter-

(chaottlc ep;o%] and tr|1en opera';llngt] 'tﬂ:O: tt;]mf? Wg_h pac; nating intervalsT, and T, having different dynamics. Thus,
rameter valueC, (regular epoch Note that the time§', an o apply the criterion above, one should first make the system
T are suggested to be chosen large enough to ensure that mogeneous. This can be accomplished by looking at every
Lyapunov gxponents c_alculated for these time intervals ar§l+ T, iteration, and therefore by writing out the map after
close to their asymptotic valugst. Eq. (3) below]. T,+T, time steps. This map will give the overall dynam-

Shual and Wong claim that i, and T, are ch_osen N ics after visiting chaotic and regular domain, and can be
such a way that the overall Lyappnov exponent IS Negativeyq e fike other quasiperiodically forced maps:
then the attractor of the system will be strange nonchaotic. In

this Comment we show, in contrast to the result§6df that T, Ty
this construction yields either a strange nonchaotic attractor X(t+T1+T2) =F[x(1),0(0)]=(f’-TIIX(D),6(1)],
or a smooth torus. We demonstrate that for existence of a (2
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FIG. 1. The bifurcation diagram for the quasiperiodically forced Chaos
logistic map in dependence on the additive system parantter
governing different kind of dynamic&uasiperiodic motion on a 0200 400 600 800 1000 1200
torus or chaotic motion Two cases of switching the parameter T1
are discussed in the textA) C1=—0.01, C,=—0.02, and(B)
c?=0, C,=-0.02. FIG. 2. Phase diagram for the systd@) in the T,-T, plane
with C’f= —0.01 andC,= —0.02. The slope of the transition line
O(t+T,+T,)=6(1)+(Ty+T)w (mod 1). between the chaos and SNA is fitted to be 0.311, the transition line

between the dynamical regimes of the SNA and torus is estimated
roughly on the basis of the distribution of local Lyapunov expo-
Below we discuss two representative cases, which diffenents.
in the choice of parameter val(@;.
Case A. ¢=—-0.01,C,=—0.02. LTI,
Case B. §=0, C,=—0.02. A==, )
In both cases we have switchings between regular and
chaotic dynamics, the corresponding Lyapunov exponent§€onsequently, there exists a transition line in the parameter
are:\}=0.035452=0.172, and\,= —0.114. The differ- plane (T1,T) separating the phases of chaos and SNA, what
ence between cases A and B is in the topological structure dfas also found by the authors [8]. This transition line is
chaos: for A it has four bands, while for B it has two bands.obtained numericallysee Fig. 2 and its slope 0.311 is in a
We will see that this results in different features of the com-good agreement with the theoretically expected one resulting
bined dynamics. from Eq.(3). According to[6], above this transition line only
We are going to show first that, in general, the proposedtrange nonchaotic behavior exists. We show now, that a
method of[6] is not able to construct a SNA in any chaotic SNA exists only in a small band above the line of transition
system. In particular, Fig. 1 ¢6] is not valid for an arbitrary 0 chaos.

choice of parameter valug3, and C,. However, for some We use the criterion above, according to which a SNA is
special choice of parameter values the occurrence of a SNAresent if the Lyapunov exponent is negative, but positive
was found and also reported [if]. finite-time Lyapunov exponents; do exist. Thus, we are

If one plots the attractors of syste(®) in the phase plane going to find an approximation for the maximum finite-time
(x,6), they look for both cases A and B like smooth tori, Lyapunov exponenk %y after T,+T, iterations. Similar
because the last, iterations correspond to the contracting to Eq.(3) we can write
dynamics. To determine the nature of the dynamical regime
in dependence on the iteration lengths and T,, further LERS Sl PY e
investigations concerning finite-time Lyapunov exponents )\{asz:?' (4
are necessary. 1hrz

where )\rTnlaX>O and )\?:‘X<0 are maximal possible finite-

1. Case A time Lyapunov exponents of mafi) for times T;,T, in

According to the step 3 of the proposed method, the time&9imes withC; ,C,, respectively. Numerically, we have es-
T, and T, of the expanding and contracting dynamics havelimated these qulmal fln_lt.e-t|me exponents for 20.0.0 ran-
to be adjusted so that the overall dynamics is contractingdomly chosen initial conditionsx(6). Now the condition
This means that the Lyapunov exponent must be negative:,+t,>0 can be used as a condition for the existence of a
For largeT,, T, one can neglect the transients at the switch-SNA. This line, depicted in Fig. 2, is only a crude approxi-
ings between the two dynamical regimes, and approximateation of the transition line separating the regimes of the
the largest Lyapunov exponent of E®) as SNA and quasiperiodicity, because in E4) we neglect all
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FIG. 3. Phase portraits for the systé®) with C’f: —0.01,C,=—0.02, andT,=200.(a): chaos forT,=48. (b): SNA for T,=68. (c):
smooth torus foiT,=102.

correlations and as a result the real finite-time exponents afé], one expects that for largethe probabilityP,(A) that
smaller than those predicted by E@). Nevertheless, we the time-k Lyapunov exponent has valug scales as
demonstrated that the proposed method is not able to comr, (A)~exdke(A)]. Hereg(A) is a scaling function having
struct a strange nonchaotic attractor, except for a finite regioa maximum¢=0 at the negative time- Lyapunov expo-
near the border to chaos. nent. According to this, the probability to observe a positive
To confirm that the phase diagram Fig. 2 is valid, wetimek Lyapunov exponent is
investigated representative attractors from the three domains,
for a fixed valueT,;=200 and appropriate values @f. As
already mentioned, the attractors of systénin any case _ |7 _
look like smooth tori, even for parameter valuBsand T, Py (k)= Jo Pu(A)dA~exp(—ak), a==¢(0). (5
inside the chaotic and the strange nonchaotic regime. To re-
solve the strange structure of those attractors one has to go
into very small scales. The reason for this is the following:To check this relation, we calculatd®l, (k) using the en-
because at the |adt, iterations of map2) the dynamics is semble of 4.2% 10" pieces of trajectories for the poinT{
contracting, the size of the attractor in thelirection can be  =400,T,=200) inside the region of the SNA on the param-
estimated af\x~D exp(\,T,). Here D~0.1 is the size of eter plane T,,T,) (see Fig. 2, the results are presented in
the band of the chaotic attractor wit®; (see Fig. 1, and  Fig. 4. One can see that the numerics fits very well relation
\,<0 is the Lyapunov exponent of the regular dynamics.(5) even for smalk, with a~0.84. This allows to estimate,
This estimate yield&x~10"*. Thus, to see if the attractor with which probability one can observe a positive finite-time
of the map(2) is strange or not, we have to zoom the picture,Lyapunov exponent for evety. The check of the functional
resolving it at the level\ §~10 4, or finer. This is done in
Fig. 3. In this resolution one can readily distinguish between . , : , . :
the strangdcases(a),(b)] and smootH case(c)] attractors. E
Additional calculation of the Lyapunov exponent allows us  10'F E
to characterize Fig.(®) as chaos, Fig.(®) as SNA, and Fig. B 3
3(c) as smooth torus. 3 E
The approximation of the line seperating the phases of 3L N
strange nonchaotic behavior and quasiperiodic motion was~  f 3
obtained by estimating the maximum value of finite-time =+ 107 3
Lyapunov exponent after one peride= T, + T, based on the SE ]
distribution of finite-time Lyapunov exponenksy and A1, 10
for an ensemble of 2000 randomly chosen initial conditions, ~ 10°F 3
while neglecting correlations between chaotic and regular af
dynamics. However, the criterion for the SNA is the exis- 10°F
tence of positive finite-time Lyapunov exponents for arbi- 4L - ' - ' - ' : '
. . . . 5 10 15 20
trary large times. Now we are going to show that this crite-
rion is fulfilled for any points of the parameter plang (T,) k
inside the region limited by the both numerically estimated F|G. 4. The numerically estimated probabilRy. (k) to observe
transition lines. Let us first introduce an alternative time g positive timek Lyapunov exponent. For calculations an ensemble
according taa=Kk(T,+T5,), then the criterion for the SNA is of 4.24x 10" pieces of trajectories was used at parameter values
the existence of positive finite-time Lyapunov exponents forT,=400, T,=200 with C;=-0.01 andC,=—0.02. The line
arbitrary largek. According to the thermodynamic formalism P, =0.38 exp(-0.84) is the best fit.

_2;_
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FIG. 5. lllustration of the topological construction leading to strange nonchaotic behavior for case Bﬁmmo, C,=-0.02, T,
=450, T,=750. Only two branches out of four are shown for clarity. See text for description of the panels.

relation(5) can be used as a numerical method for a precisef the regular part of the iterations one obtains an attractor
estimation of the border “SNA torus.” At this transitiom  consisting of two seemingly smooth branchas In panel
tends to infinity. (a) the points on the upper branch are selected and shown
with bold dots. The unstable torus is denoted by the dashed
2 Case B line and the lower branch of the stable attractor by small
L dots. The bold points from the upper branch are iterated ac-
In contrast to the case A, here the estimation of the max'f:ording to the chaotic dynamics, with parameter valife

?euomusﬂrneltsilttznﬁ'klﬁgailg%Z%Vtg);pggeegglbt){) ;)Eo(llpgg?é\éle;rggg;ty O,Ce\fter 20 iterations the formerly smooth curve is wrinkled
the dynamics, which we describe in the following: in the panel(b)] and intersects the unstable torus at various points.

derivation of Eq.(4), we took finite-time Lyapunov expo- Therefore, different bold dots belong to basins of different
nents from the attractors of E() at the parameter8, and branches shown in pan@). Thus, after the chaotic epoch is

. over and the regular dynamics wit, is switched on, the
C,, and neglected transients to these attractors. In the case 9 y @,

. L . . Id dots will be spreaded between the two branches, as
it was justified, because durations of these transients Werg swn in panelc). In principle, there should be also points

limited. NO\;V th_e shltuatlotr,ul 'S dl_fferent_,hbecause a repeller;, between the two branches—these are the points that fall
comes to play in the stable regime wit pe}rameﬁén I nearly exactly on the repeller. However, a probability to
deed, between the branches of stable tori in Fig. 1 there arg ot such a point is extremely small.

unstable tori, separating the corresponding basins of attrac- 1, summarize our results, in general it is not possible to
tiqn. The crucial point is that the ch.aotic attractor of En. construct a SNA by applying the method proposed by au-
with C, covers both the stable tori and the unstable torusy s of[6]. Only in the special case B it is possible to get an
(repelley. This means, that some initial points in the regulargna pecause of the topological arrangeméhe unstable
dynamics withCY have very long transientif they lie near  torys placed inside the chaotic band of the attradioat is

the repelle}, or even remain on the repeller within the time not valid in general. We conclude that the proposed method
T1. As a result, these trajectories have positive finite-timeyf Ref. [6] does not construct a SNA in any chaotic system.
Lyapunov exponents, because both the finite-time LyapunoYhe method works either near the transition to chiwsl it
exponent of chaos and that of the repeller are positive. Acfllows from the general theori] that near the transition to
cording to the criterion above, we have to conclude that g&hz0s one typically observes an SNAr requires a special

SNA exists here for arbitrary largg;. _ topological arrangement. It remains an open question how to
We illustrate the topological mechanism for existence ofconstruct a SNA in any chaotic system.

an SNA in Fig. 5. Here we restrict the picture to the two
branches of the attractéout of four. Although the attractor

in Fig. 5 appears as a smooth one, we demonstrate that in
fact a mixing of the points between the branches occurs, We thank U. Feudel and S. Kuznetsov for useful discus-
meaning that it is a strange nonchaotic attractor. At the endions.
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