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Scaling of Lyapunov exponents of coupled chaotic systems
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We develop a statistical theory of the coupling sensitivity of chaos. The effect was first described by Daido
[Prog. Theor. Phys72, 853 (1984 ]; it appears as a logarithmic singularity in the Lyapunov exponent in
coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled
systems we derive a scaling relation for the largest Lyapunov exponent. The singularity is shown to depend on
the coupling and the systems’ mismatch. Generalizations to the cases of asymmetrical coupling and three
interacting oscillators are considered, too. The analytical results are confirmed by numerical simulations.

PACS numbe(s): 05.45.Xt

[. INTRODUCTION tions of Lyapunov exponents by random noise has already
been undertaken by Daid@]. In contrast to our approach, it
The dynamics of coupled chaotic systems attracted largstarted from discrete-time equations and was limited to the
interest recently. Many interesting phenomena, in particulagase of coupled identical one-dimensional maps.
different kinds of synchronization, can already be observed
in the simplest cases of two interacting chaotic attractors Il. ANALYTICAL APPROACH
[1-3]. While the synchronization occurs for couplings large
enough to suppress a chaos-induced tendency to desynchro-
nization, an interesting anomality in the dynamics happens In this section we formulate and investigate a stochastic
for very small couplings already. This is the effect of cou-continuous-time model for coupled chaotic systems. First,
pling sensitivity of chaos, first observed by Daidb-7] (see  we neglect the high dimensionality of the interacting chaotic
also[8,9)): the dependence of the largest Lyapunov exponensystems and describe linear perturbations in each system
on the coupling parameter has a singularity~ 1/ Ine| for ~ with a scalar variable. In other words, we are following the
small couplingss—0. The largest Lyapunov exponent thus perturbation corresponding to the largest Lyapunov exponent
increases when weak coupling is introduced. This counterinenly. Second, we model the fluctuations of the growth rate
tuitive effect has been described as a coupling-induced instavith a stochastic multiplicative term in the equations of mo-
bility [9,10]. tion. This approach has been succesfully applied in studies of
The largest Lyapunov exponent measures the growth ratdifferent statistical properties of chaf$,11]. Summarizing,
of infinitesimal perturbations to chaotic trajectories andwe propose the two-dimensional system of Langevin equa-
serves as one of the most important characteristics of chaoti®ons
motion, in numerics it is a standard tool for proving the du
existence of chaos. Moreover, many physically relevant e P _
properties of chaos, such as the cor?/elgti())/n tim)é, entropy, gt XU Aguite(uz—uy), @
and synchronization threshold, depend on the largest
Lyapunov exponent. Therefore, the coupling sensitivity is 2
not only of theoretical interest. Tt~ Lxa()FAzJuzte(uy—uy) ()
In this paper we study this effect in detail. We apply an
analytical approach based on the modeling of the perturbaas a continuous-time model for the linearized equations of
tion dynamics in coupled systems with a set of linear stocoupled chaotic systems. The following three groups of pa-
chastic equationgrecently such an approach has been aprameters describe three important ingredients of the dynam-
plied to coupled map latticd4.0], see Sec. Il H for details ics.
For this set we get an analytical expression for the largest (i) Lyapunov exponentsf uncoupled systems are de-
Lyapunov exponent, valid for arbitrary coupling and sys-scribed by the constants; ,.
tems’ parameter mismatch. This allows us to show that the (ii) Fluctuations of local growth rateare modeled with
logarithmic singularity disappears if the interacting systemshe terms y; /(t) which are random processes with zero
have different exponents. We also obtain analytic expresmean values. In order to be able to apply the powerful theory
sions for generalized Lyapunov exponents. The theoreticalf the Fokker-Planck equatidi 2], we assume, furthermore,
predictions(Sec. 1) are illustrated with numerical calcula- these processes to be independent, Gaussiangaratre-
tions of coupled maps and interacting high-dimensionalated
continuous-time systen{S$ec. Ill). Apart from the analytical

A. Stochastic continuous-time model

treatment, we present in Sec. Il D simple arguments explain- {(xi)=0, <Xi(t))(j(t')>:20i25ij S(t—t').
ing the singularity form with the help of elementary random-
walk dynamics. The parameterei2 describe the fluctuations of local expan-

A theoretical investigation based on modeling the fluctuasion rates in the chaotic systems. The quanti&§§ can be
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set in direct correspondence to the uncoupled chaotic sysercing termsé; , are no more statistically independent, we
tems, if one calculates the distribution of lod&hite-time) can write the Fokker-Planck equation for the probability den-
Lyapunov exponentd13]. Such a distribution has the sity p(vq,t) [12]:

asymptotic(for large time intervalsl) form

. J
Prob\y)~e 7¢O, p=|2e coshvy)+2e sinh(v)— — (A;— Ay)—
(9V1 (9V1
with a scaling functiong having its minimum at the true )
Lyapunov exponen\. For the stochastic modél) and(2) ) 207_ ®)
the local Lyapunov exponents are finite-time averages of the 7 av?ll p
Gaussians correlated process, so that their distribution is
also Gaussian, whereo?=(a2+ 2)/2.
Prot()\T)~e*T()‘T’A)2(2")72. The stationary solution of Ed5) is given by
psta(vl)ZCEX[X|Vl—80'72COSth), (6)

This means that we in fact use the parabolic approximation
gg;he functiong and get the parameter” from this func- where = (A;—A,/20?), with the normalization constant
' C.
—2_ o 1 Based on the solutio6) we now calculate the largest

o =2¢"(N). ) . :
Lyapunov exponent .« (below we omit the index, denoting

(iii) Couplingis described by the last terms on the right- the largest exponent for simplicity a9, defined by
hand-side; it is proportional to the coupling constantor a
while a symmetrical coupling is assumed, the case of asym-
metrical coupling is considered in Sec. Il F below.

Note that in this formulation we assume the statistical
properties of the _underlymg chaotic motion to be |_nd_epen—|—he normu§+u§ can be expressed in termswf andv,, as
dent of the coupling: the parameteks , and the statistical
propertigs o_f the fluctuationg, , are e independen_t. Th_is In(u§+ ug):v2+|n(2 coshv,).
assumption is supported by the thepty], where the invari-

ant measure for weakly coupled systems is constructed usingince one is interested in the large-time limit, the stationary
perturbation methods, so that the measure has no singulatseiribution  of v, may be used. Because

ties in dependence o#. Thus the theory below is valid as {In(2 Cosml))pstagvl) is finite and time independent, the only

soon as we can negleetdependence of the statistical prop- contribution to the largest Lyapunov exponent comes from
erties of chaos compared to singukardependence of the ° larg yap! P
v,. Thus Eq.(4) gives the equation fox,

largest Lyapounov exponent.

11 5 2
)\=I|mT§(In(ul+u2)>.
t—oo

1. 1
B. The Fokker-Planck equation and the maximal A= §<V2>: g( coshvy)+ E(A1+A2_ 2¢). (7)
Lyapunov exponent

Before writing the Fokker-Planck equation for the sto- The averaging with the stationary distributipg.(v,) yields
chastic systen{l) and (2), we perform a transformation to

new variables. First we note that for large times and positive Ky (el a?)+ Ky (ela?)
couplinge both variablesu; , have the same sign. Indeed, it (coshv)y= =l 2+| |
is easy to see that the regiong,u,>0 andu,,u,<0 are 2K (el o)

absorbing ones because for=0 we haveu,=eu, and for

u,=0 we haveu,=zu;. Thus eventually one observes the
state withu,u,>0 independently of initial conditions. So the
transformation

where K, are modified Bessel functiondacdonald func-
tions) [15]. Substituting this in Eq(7) we obtain a final
analytical formula for the largest Lyapunov exponent. We
write it in a scaling form,

vi=In(uy/uz), vo=In(uyuy)

1
A— E(A1+A2_28)

can be performed, leading to the equations I K1_|||(8/0'2)+K1+m(8/0'2)

N o2 - o2 2K|||(8/0'2)
d_tl:§1_288inf‘(vl)+A1—A2, (3) (8)

g This form demonstrates that the essential parameters of the
ava _ problem are the coupling parameter and the Lyapunov expo-
dt =&+ 2eC0sHvy) + Ayt Ay—2e, @) nents’ mismatch normalized to the fluctuation of the expo-
nents:e/o? andl=(A;—A5)/(20?), correspondingly.
where &;=x1— x2 and &= x1+ x2. One can see that the Simplified expressions can be obtained in the following
dynamics ofv, is v, independent, thus, although the noisy limiting cases.
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(a) Small coupling, equal Lyapunov exponermscord- It is straightforward to obtain the generalized Lyapunov
ing to Eq.(6), if the Lyapunov exponents of two interacting €xponents for integey. Forq=1 we need equations for the
systems are equal\;=A,=A, then the parametdrvan- mean valuegu, ;) which can easily be obtained by direct
ishes and we gdcf. [10]) averaging of the systenil) and (2) using the Furutsu-

Novikov relation[16,17]

K,(ela?) . q
=e—————— —&.
Ko(ela?) a<ul>=(/\+0‘2—8)<U1>+8<U2>, (13
For small couplings/ o the leading term iz is singular, as d
it follows from the expansions df; andK [15]: E<U2>:(A+0'2_8)<u2>+3<u1>- (14)
2
g
A=A~ ————. (9 Thus the average@i; ,) grow exponentially and the gener-
[In(e/ )] alized Lyapunov exponent is
This formula corresponds to Daido’s singular dependence of L(1)=A+ 02 (15)

the Lyapunov exponent on the coupling paraméder6)]. It
is valid in all cases, when identical chaotic systems ar&imilarly,
coupled symmetrically, provided that the Lyapunov eXP0-g 5y equations for the momer(tez) (uZ) (u,u,) and deter-
nents in these systems fluctuate’=0). Moreover, even for mineL(2) as the largest eigenvlteu,uezo% this system
different systems having however equal Lyapunov exponents
(but not necessarily equal fluctuations of the exponents _ 5 I sarew)
get the same singularity as for identical systems. Daido ar- L(2)=2A+307" =28+ o'+ 4e”, (16
rived at a similar result in his analytical treatment of coupled
one-dimensional maps, cf. EQL9) of Ref.[7].

(b) Small coupling, different Lyapunov exponent$ie
expansior(9) remains valid for small values of mismatfdh,
if (¢/0?)!'is close to 1. For larger mismatch, when

€
0_2

the largest Lyapunov exponent is

we can write the three-dimensional system of lin-

This method works for all integer moments, but &pr2 we
have to look for roots of polynomials of order 4 and higher,
so the analytical expressions are hardly available. Also, we
do not have a method for calculation of the generalized ex-
ponents for noninteger indices.
I Having expressions fok(1) andL(2), we can find an
<1 approximate expression for the usual Lyapunov exponent
’ (cf. [18]). Indeed, this exponent is determined by the behav-
ior of L(g) nearg=0,

A=L"(0)
ra-p
T(1+]1)

€

7\%20'2||| F
(oa

2|l
) + §(|A1—A2|+A1+A2). [this formula follows directly from Eq(12), see alsd13]].
(10 As L(q) is a convex function andl (0)=0, knowing two

pointsL(1) andL(2) we can approximate it with a parabola

The singularity is now of the power-law type, with the power
depending on the systems’ mismatch. Note also that this is
the correction to the largest of the Lyapunov exponents of .
with the parameters
uncoupled systems, ,.
(c) Large couplingFor e/ o0?>1 the expansion of Eq8)

L(a)=aq+ B9,

. L(2) L(2)
gives a=2L(1)~ -, B=-L)+—5.
o> (1+31%)0* 1 o
A~ - g, t3(At A (1)  Thus we get the approximation for the usual Lyapunov ex-
ponent
C. Generalized Lyapunov exponents _ o2 ) )
The generalized Lyapunov exponents characterize finite- A=a=At o tem\ et
time fluctuations of the exponential growth rate. For our lin-
ear model(1) and(2) they are defined d4l3] For £> o this gives
1 2 4
L(g)=lim=In{(u?+u3)%?), (12) =T 7 A
_— 2 8

For simplicity of presentation we assume below that the inwhich coincides with Eq(11). We see that the parabolic
teracting systems are identical and therefore will omit theapproximation for the generalized exponent spectium)
index at the parameters® and A. is valid for large couplings and small fluctuations of the
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FIG. 1. A sketch of the perturbation dynamics
in coupled systems. The curly line shows the ran-
W Azl dom walk not influenced by coupling; straight ar-
Up=g" d he effect of l
g rows demonstrate the effect o coupiing.
- ’ ln W
2]
finite-time exponents. Another limiting case, when the form d duy AU,
of the generalized exponent spectrum is exactly parabolic, is <a|n V> =\—+—)=A1+Ar—2¢,
that of zero coupling Iy Iz

L(q)=Aq+ o2, and this quantity is just the sum of the Lyapunov exponents.

Thus
For small coupling, where the logarithmic singularity of the Ao=—N+ A +HA,— 26, (17)
usual exponen(9) is essential, the parabolic approximation
does not work. and we get fora, the same singularity as for the largest

exponent, only with another sign.

D. A qualitative picture

Here we give qualitative arguments supporting the main F. Asymmetrical coupling

singularity formula(9). Let us consider the symmetric case = The more general case of asymmetrical coupling can be
and small couplingémoreover, for simplicity of presentation described by the following set of Langevin equations:
we assume\ =0). For smalle, the coupling in the system

(1) and (2) influences the dynamics only if the difference %_ _

betweenu; andu, is large. E.g., ifu,~u;/e>uy, then the ar ~ DO+ Aqdu+eg(up—uy), (18
coupling term in the first equatiofi) is of the same order as

other terms and it contributes to the growth of the variable du,

u;. At the same time the influence of, on u, remains Tt~ Lxa() T AzJuztey(uy—uy). (19

small. Thus, the coupling “switches on” only rarely, but

leads to effective equalization of the variables where theBy virtue of the scaling transformation

smallest one is adjusted to the largest one. We illustrate this

process in Fig. (). Up=+eoUy, Up=+/eqUs, (20)
To make these arguments quantitative, let us represent the

same qualitative picture in the plane of logarithmic variableshe problem can be reduced to the symmetric case,

Inuy, Inu, [see Fig. 1b)]. Here we have a random walk in )

two dimensions, and this walk is restricted to the strip Up=(x1+A;—e1+ e, Us+ Ve 0(Us—Uy),

| Inu;—Inuy/<—Ine (the connection between the dynamics

in the plane of logarithmic variables and the random walk ~ _ _ [T P
has already been pointed out in Réf]). The walk has rather U= (X2t Ap= g2t Ve182)Upt Verop(Uy— ).

strange properties of reflection at the boundaries: it springs ®hus, we can use the expressi@hfor the largest Lyapunov
the diagonal Iu; =In u,, always in the direction of growth of - oxhonent, leading to

Inu; and Inu,. Due to these reflections a constant drift arises,

whose velocity is easy to estimate. Indeed, for an unbiased 1

random walk starting at the center of the strip the mean time.1— 5(/\1+ Ar—e1—e)

to reach the boundary is (#)%¢?[19], and this is a charac-

2

teristic time between reflections. Each reflection makes a o
contribution of order off In¢| to the mean drift. So for the
2 2
mean drift velocity we getr?/| In g in accordance with Eq. _Vei82 Ky jij(Veeal o) + Ky (Vereal o) 21)
(9). a? 2K“‘(\/8182/0'2)
E. The second Lyapunov exponent Here the effective mismatch and the effective coupling are

From the Fokker-Planck equation approach we have ob OV given by

tained the largest Lyapunov exponent. The second exponent

can be found as follows. For the stochastic syst&nand(2) | = i[(Al_Sl)_ (Ay—e,)], e=1eqe0.
the mean divergence of the phase volume is 2072
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In the case of unidirectional coupling the ansé2) is no  The largest Lyapunov exponent can, analogous ta Bgbe
more valid, but in this situation the Lyapunov exponents camrepresented as

easily be found directly. If, e.gg,=0, then the Lyapunov
exponents ard;, A,—&,. There is no singularity for uni-
directional coupling.

The results for asymmetrical coupling can straightfor-
wardly be understood in the framework of the qualitativeThe averaging requires a nontrivial integral, which can be
picture of Sec. Il D. Indeed, the important quantity is theestimated in the limit o~ ?>—0 (see[23]) to give the final
width of the strip in Fig. 1b), and this is—(Ing;+Iney). I formula
the limiting case of unidirectional coupling the width tends

2¢e
AN=A-2¢ +?(cosr(vl—v2) +coshvq)+coshv,)).

to infinity, the random walk never hits the boundary, and 4 a2
there are no essential corrections to the uncoupled exponents. A=A~ 3 m (25)
EIT
G. Three coupled chaotic systems The singularity in the system of three coupled chaotic oscil-

Models with many coupled identical chaotic systems havdators is thus of the same type as for two oscillators, cf. Eq.
attracted large attention recent(g.g., [20,21]). As a first  (9).
step in this direction, we show here that the system of three
symmetrically coupled oscillators has the same logarithmic H. Coupled map lattices
singularity in the Lyapunov exponent as the system of two

oscillators. The stochastic model has the following form: In a parallel work, an approach similar to ours has been

used to derive an analytic expression for the scaling of the

du, largest Lyapunov exponent in coupled map lattice®. For
W=[X1(t)+A]u1+ e(Uytuz—2uy), small coupling, coupled identical maps, and positive multi-

pliers, the authors arrive at an expression
dU2 0'2
W:[Xz(t)+A]U2+8(U1+U3_2U2), (22 N A~ ———

| In(y/a®)|

dus here y=&/(1—2¢). Thi It is similar t for th
Y8 _ )+ ATuad TU.—2 where y=¢/( €). This result is similar to ours for the
ar -~ xs(UFAJuste(Urtup—2us), case of two coupled systems, E8), with the difference that

¢ is replaced byy as the scaling parameter.
with uncorrelated noisy termg; . In the variables The authors of Refl10] were also able to derive an ex-
pression for the case of multipliers with fluctuating signs,

u; u;
V1=|n—, V2:|n_, V3:|n(U1U2U3) 3 0_2
us Us AA~e
2 |[In(ylo)|”
the system(22) reduces to
Instead of the variance?, the standard deviatioo appears

dvy . in the argument of the logarithm.
7 X1 X3 2¢e SInI”(Vl) — gev2+ SGVZ_Vl’

dt
. NUMERICAL RESULTS
%=X2—X3—28 sinh(v,) —seVi+ee'17V2, (23 We now compare thg results' obtair_1ed for the system of
dt continuous-time Langevin equations with numerical calcula-
tions for both continuous- and discrete-time deterministic
dvs systems. For the calculation of Lyapunov exponents we iter-
gt Xt xatxst3(A—2e)+2¢ coshivy—vy) ate the original as well as a set of linearized equations, and
reorthonormalize the difference vectors periodically using a
+2¢& coshv,)+2e coshv,). modified Gram-Schmidt algorithnisee[24,25 and refer-

ences therein
As the equations fow,,v, constitute a closed system, we  For the first example§Sec. Ill A-Ill C) we iterate a sys-
can write the Fokker-Planck equation for the probability dentem of two diffusively coupled one-dimensional maps,
sity p(v1,Vz). In the limit e—0 the stationary solution of

this equation can be looked for in the “quasipotentigsee, X1(n+1)=fy(xy(n))+ e[ fo(Xo(n)) = F1(xq(N))],
e.g.,[22]) form p=Cexf (e/d®)f(v1,v2)], which in the first (26)
order ine gives(see[23] for detaily

Xo(N+1)=f5(Xa(n))+ e[ f1(xq(N))— fZ(XZ(n))],(27)

€
=Cexg — —[coshv,—v,)+coshv,)+coshv .
P ;{ 02[ va=vz) va) fva)] wheref,(x) andf,(x) are maps specified below. The linear-
(24 ized equations read
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FIG. 2. Coupled skewed Bernoulli maps, E80). (a) The Lyapunov exponents;— A, and\,— A, vs ¢ for xo=1/3 (solid lines,
Xo=1/4 (dotted line$, xo=1/5 (dashed lines andx,= 1/6 (dash-dotted lings (b) The same graphs in scaled coordinates. The long-dashed
lines show the analytical resulta {— A;)/o?=1/|In(e/d?)| and (\,— A,)/ o?=—1/|In(e/d?)|, see Eqs(9) and (17).

wi(n+1)=(1—g)f{(x,(n))wy(n)+efH(Xa(N))Wy(n), maps with different values ofy# 1/2. From Fig. 2b) it can
(28) be seen that different curves collapse onto single lines for
both exponents when plotted in the rescaled form according
Wo(n+1)=(1—g)f5(Xo(n))Wy(n) +efi(X1(N))wq(N). to Eq. (8), namely as X;—A4)/a? vs 1/In(e/d?)|. The re-
(29 sulting lines are in very good agreement with the leading
term of the theoretical prediction A(—A;)/o?
The Lyapunov exponents of the uncoupled maps /&g = 1/|In(e/0?)|, which is also shown.

=(In|f;J). In the simplest examples considered below the No such good accordance between theory and numerical
variances can be calculateda®,=((In|f; J—A;)?)/2. To  experiment is found in the case of generalized Lyapunov
have a good correspondence to the theory, we use only mexponents. In Figs. (8 and 3b) the results forL(1) and
notonous mappingé.e., with a constant sign df’) below, [ (2) are shown for small values af. Also shown are the

so that the fluctuations of the local expansion rate are théneoretical predictions from EqéL5) and(16), respectively.
only source of irregularity of perturbations’ dynamics. An- The rough correspondence is completely lost for larger val-
other source of irregularity could be irregular changes of theyes of ¢, although the considerations in Sec. Il C are not
sign of the derivativef’ (as for the logistic and the tent restricted to smalk.

maps. Such an irregularity is not covered by our continuous-  Mych better results are achieved if the derivatiésn
time approach, but also leads to the logarithmic singularityhe |inearized equation@8) and (29) are replaced by inde-

of type (9), see[10]. pendent and identically distributed Gaussian stochastic vari-

ables¢; (i=1,2). Then the system of equations reads
A. Skewed Bernoulli maps

We first choosé ;(x) = f,(x) = f(x) to be identical maps, wi(n+1)=(1-¢&)efrMw,(n)+eef2Mw,(n), (33
wheref(x) is the skewed Bernoulli map defined as

x/Xq if  x=<x Wo(n+1)=(1—g)e2Mw,(n)+eerMw,(n), (34

f(x) (30

(X=X)/(1—Xq) if X>Xg,
with i(n)=A and (M —=A)(&(M) —A
with xe[0,1] and 0<x,<1. For the uncoupled map, the =2026ij<5§::(i),j>=1,2). In Figs. ‘(fef)gla(n(; 4b))t(h%(regults)f33r
Lyapunov exponent and the magnitude of fluctuations arg¢ (1) andL(2), respectively, are shown together with the
given by analytical curves. The values af ando? were calculated by
means of Eq931) and(32) with the values ok, used above
(31 :
for the skewed Bernoulli map.
and An explanation for the discrepancy between the determin-
istic and stochastic results is that the distributiorf afx;) is
Xo |2 changed with increasing, while the distribution of the sto-
Inl—xo ' (32 chastic variablest; remains constant. Furthermorg,(x;)
andf’(x,) are not statistically independent for larger values
respectively. Foxo=1/2 we obtain the ordinary Bernoulli of . These effects have no observable influence in the case
map. In this case, there are no fluctuations of the local mulef usual Lyapunov exponent§ig. 2) because of the singu-
tipliers (0?=0), and no coupling sensitivity of the larity. In the case of generalized Lyapunov exponents, how-
Lyapunov exponents is observed. ever, the nonsingular scaling functions are much more sen-
Figure 2a) shows the differences;,—A;, vs ¢ for  sitive against changes in the distribution of multipliers.

A=—XgInXg—(1—Xg)IN(1—Xg)

, 1
o :Exo(l_xo)
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FIG. 3. Generalized Lyapunov exponents for the skewed Bernoulli nt@pRescaled exponefit (1)— A]/o? vs ¢ for the same values
of xo as in Fig. 2. The long-dashed line shows the analytical rddu(il)—A]/o?=1, see Eq.(15). (b) Rescaled exponert (2)
—2A]/a? vs el a? for the same values of, as in Fig. 2. The long-dashed line shows the analytical r¢&ufle)—2A 1/ o?>=3—2¢/ o>

+1+4(elo?)Z?, see Eq(16).

B. Different maps In Fig. 5 the result is compared with the previous result
for two coupled identical skewed Bernoulli mapg € 1/4 in
either casp As expected, the logarithmic singularity is ob-
ferved in both cases, although the deviatjan— A;| is

One main result of the analytical approach is that the sin
gularity does only depend on the averacfe= (U§+ ag)/z of

the fluctuations of local expansion rates and on the mismatc e 2 .
|=(A,—A,)/(20?) of the Lyapunov exponents of the un- smaller if o5=0. When rescaled with the averagé, how-

coupled systems. Although no singularity occursrf=0, ever, the curves collapse onto single lines for_ the_ first and
we can expect to observe coupling sensitivity in the case of §6€0Nd Lyapunov exponents, as can be seen in Fiy. 5
system with fluctuations (ﬁ>0) coupled to one without
fluctuations (r§=0), given that the mismatch is suffi- C. Systems with anomalous fluctuations
ciently small. of Lyapunov exponents
iterlgt(: ;ﬂirss)sgffcokf E](IJSSZ%;E?E)IOgbvvyih%goiﬂ]gn?vryoegﬁ?"y Daido found out that for coupled logistic magx)
ferent maps. The first map is agaih the skewed Bernoulli ma:4x(1_x) the. Lya_punpv exponents .exh|b|t power-law in-
[t (x)=f(x). see Eq(30)], while the second map is defined Riead qf Ioganthml.c.smgular behavior due to anomalous
asl ' ’ fluctuations of the finite-time Lyapunov exponefi§. Here
we report a similar observation in the case of coupled strange

(mod 1), (35) nonchaotic_ attractors. _ _

Fluctuations of finite-time Lyapunov exponents is a typi-
whereA | is the Lyapunov exponent of the skewed Bernoulli cal feature of chaotic systems, but in some nonchaotic sys-
map f(x) [see Eq.31)]. With this choice we have the pa- tems the Lyapunov exponents fluctuate as well. To this class
rametersﬂf>0, a§=0, andl=0. belong strange nonchaotic attractdiSNAS that have a

(@)

fa(x)=et1x,

1.04
1.03 |

1.02 | [i%

[L(1)-A)/o’

101 {f

1.00

0.99 : . : : , . . .
0.0 0.1 0.2 03 04 0.5 700 1.0 20 3.0 4.0 50
2

€ €/c’

FIG. 4. Rescaled generalized Lyapunov exponents in stochastic faafse exponenfL(1)—A]/o? vse for A ando? corresponding
to the values ok, used for Fig. 2. The long-dashed line shows the analytical result as in(B)g(l® The exponentL(2)—2A]/o? vse/o?
for A and ¢ corresponding to the values ®§ used for Fig. 2. The long-dashed line shows the analytical result as in (ig. 3
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FIG. 5. Different maps(a) A;— A, andA,— A, vs ¢ for two coupled skewed Bernoulli maps witg= 1/4 (solid lines as well as one
skewed Bernoulli map with,=1/4 coupled with the different ma(35) (dotted lineg. (b) (A\;— A1)/o? and (\,— A,)/ o vs 1/In(e/d?)| for
the same examples as in Figab The long-dashed lines show the analytical results as in Fig. 2

negative maximal Lyapunov exponent but a complex fractal D. High-dimensional continuous-time systems
structure in the phase spa(see|26] and references there Daido observed the effect of coupling sensitivity of chaos

The fluctuations of finite-time Lyapunov exponents aréni ony for coupled one-dimensional maps, but also for two-
present in SNA{26], but they are much more correlated yimensional discrete-time mafs]. Here we give numerical

than in chaotic systems. We demonstrate below that thigigence that the logarithmic singularity is also observed in

leads to weaker singularity in the Lyapunov exponent depenyinite-dimensional and continuous-time systems. As an ex-
dence on coupling.

ample we study a system of two coupled one-dimensional

We studied numerically two coupled quasiperiodically yg|ay differential equations. A delay differential equation has
forced maps having strange nonchaotic attractors, taking 45, infinite number of Lyapunov exponents, and for large

_ ; delays usually a finite number of exponents is positive. The
=2. +
f(0 =2 5tanti)|sin(wn+ ¢)], (36 system we study reads

wherew=(/5—1)/2 is the frequency of quasiperiodic driv- X1 (1) = (X1 (1), X1(t—= 7)) +e[Xo(t) =x1 ()],  (37)
ing. The model36) has been studied rigorously j27,2§.

The results are presented in Fig. 6. The dependence of the _ _ _

Lyapunov exponents on the coupling has a singularity, but Xa()=F0xa(t) Xp(t= T Fe[Xa() =x2(0)], (38)
this singularity contrary to Eq(9) is a power law, with a

power close to 1/2. A detailed theory needs correct accour¥here

of nontrivial correlation properties of the SNA and is now in

progress. f(x(t),x(t—7))=—x(t)+asinx(t—17)

. (b)

10 T T T T
"
T “a
/./l
a
_ {/'
| 10" [ 4 |
c * XS
o = ./l e
<- | < /./:/. *® ¢
[ I:. o ® .
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FIG. 6. The Lyapunov exponents in coupled strange nonchaotic attractors in natural coor@natekin a log-log representatidh).
The dashed line iib) has slope 0.5.
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FIG. 7. The Lyapunov exponents in the coupled lkeda equations, in néiuaid scaledb) coordinates. Open circle and open square:

the splitting of the positive Lyapunov exponent; open triangle and open rhombohedral: the splitting of the zero exponent; cross and star: the
splitting of the closest to zero negative exponent.

corresponds to the lkeda equation, describing an optical resd:yapunov exponents were shown to have the same logarith-
nator systenj29]. The parameter values were chosen to bamic singularities as in the case of two coupled systems, al-
a=3.0 andr=5.0. We integrated the coupled lkeda equa-though with a different factofsee Sec. Il & The singularity
tions, together with the linearized equations, using thés observed in numerical simulations for three coupled iden-
fourth-order Runge-Kutta routine. The results are presenteglcal skewed Bernoulli mapfsee Fig. &)]. The factor of

in Figs. 1a) and 7b). The uncoupled lkeda system has one4/3, however, is obviously not correct, although a rough
positive and one zerddue to invariance to time shifts agreement between theoretical and numerical results can be
Lyapunov exponent, all other exponents are negative. In thgeen in Fig. &). A reason for the disagreement could be the
coupled system the two former zero expondtfte third and  neglect of terms of ordes? when finding the stationary
the fourth are not affected by the coupling sensitivity: one probability distribution, Eq(24).

exponent remains exactly zero, changes of the another one
are hardly seen for small couplings. We attribute this to the

! IV. CONCLUSION
fact that the zero Lyapunov exponent in an autonomous sys-

tem does not fluctuate. The other Lyapunov exponéhis In this paper we used the Langevin approach to obtain
positive one and the first negative onbowever, show the statistical properties of the Lyapunov exponents for small
logarithmic singularity. coupling. For the simplest system of two coupled stochastic

equations it is possible to obtain an analytical expression for
the largest Lyapunov exponent, for different values of pa-
rameters(coupling, Lyapunov exponents of uncoupled sys-
For three weakly coupled chaotic systems, the leadingems, fluctuations of Lyapunov exponent§he logarithmic
terms in the expressions for the maximum and minimumnsingularity, first discovered by Daido, is shown to exist even

E. Three coupled chaotic maps

0.06 ‘ - - - 0.4

A=A (i=1,.3)

A= A)G" (i=1,..,3)

—0.06 . ) ) .
0.0000  0.0002 0.0004 0.0006 0.0008 0.0010 -0.4 ; - - y
€ 0.00 0.05 0.10 0.15 0.20 0.25

1/n(e/c")!

FIG. 8. Three coupled skewed Bernoulli mafs. The exponenta;— A;(i=1,...,3) vse for xo=1/3 (solid lineg, xo=1/4 (dotted
lines), xo=1/5 (dashed lines andx,=1/6 (dash-dotted lings (b) The exponentsX;— A;)/a?(i=1, ..., 3) vs In(e/o?)| for the same
values ofxy as in(a). The long-dashed lines show the analytical res(@.
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if rather different systems are coupled, provided theirsystem with weaker stochastic propertissange nonchaotic
Lyapunov exponents coincide. We also give a qualitativeattractoy reveal, however, a power-law singularity, possibly
explanation of the effect, based on the interpretation of thelue to the existence of long correlations in the dynamics of
perturbations’ dynamics as coupled random walks. The couperturbations.

pling ~ & restricts the two-dimensional walk to a strip with a  Recent results presented in R§10] for coupled map
width ~loge, with rather unusual “reflection conditions” |attices, including the case of fluctuating multiplier signs,
on the strip borders. As a result the random w@kd, cor-  support the assumption that the logarithmic singularity is a

respondingly, the Lyapunov expongntgets a bias very general phenomenon of coupled chaotic systems.
~(loge)~L. It is not clear, if such an effect can be observed

in the context of other random-walk-like phenomena.

We have also presented some generalizations where we
do not have strict analytical results. For three coupled sys-
tems we were only able to obtain leading terms in the small This work was supported by the Deutsche Forschungsge-
coupling approximation; they are of the same inverse logameinschaft (SFB 559 and the Volkswagenstiftung. We
rithm type as for two systems. Numerical simulations of athank A. Politi and F. Cecconi for useful discussions.
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