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Abstract

The synchronization transition is described for a system of two asymmetrically coupled chaotic oscillators. Such a system
can represent the two-cluster state in a large ensemble of globally coupled oscillators. It is shown that the transition can be
typically mediated by a transcritical transversal bifurcation. The latter has a hard brunch that dominates the global dynamics,
so that the synchronization transition is normally hard. For a particular example of coupled logistic maps a diversity of
transition scenaria includes both local and global riddling. In the case of small non-identity of the interacting systems the
riddling is shown to turn into an exterior or interior crisis. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Xt; 05.45.Ac

Synchronization of chaotic systems is a subject of
intensive research. More than a decade ago it was
shown that in the presence of dissipative coupling
the states of two chaotic oscillators may become

w xidentical, while remaining chaotic in time 1,2 . This
effect has been observed in experiments with lasers

w xand various electronic circuits 3–5 . Moreover, it
has been proposed to utilize synchronization as a
tool for constructing new types of communication

w xschemes 6–9 . Usually when considering synchro-
nization of two chaotic oscillators, one assumes the
full symmetry of the problem. This imposes impor-
tant restrictions on the possible transition scenaria.
The cases of non-identity are then often treated using
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perturbation approaches. In this paper we focus on a
situation where the coupled chaotic systems are iden-

Ž .tical or nearly identical , but the coupling term is
essentially asymmetrical. We demonstrate that ap-
pearing here transcritical transversal bifurcation is
dominated by the hard branch, making the synchro-
nization transition hard.

Asymmetrical coupling naturally appears in the
dynamics of clusters in large ensembles of globally
coupled chaotic oscillators. The basic model, pro-

w xposed by Kaneko 10,11 , has the form

N´
x tq1 s 1y´ f x t q f x t ,Ž . Ž . Ž . Ž .Ž . Ž .Ýi i jN js1

1Ž .

where the single system is governed by a one-dimen-
Ž .sional mapping x™ f x . Examples of globally cou-
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pled oscillators include lasers, neuronal ensembles,
w xand Josephson junction arrays 12–15 . As observed

w x Ž .in Refs. 10,11,16 , the ensemble of N oscillators 1
often demonstrates clustering: Variables of some
subsystems are identical. In the simplest case of two
clusters we have x sx s . . . sx sx, x s1 2 N N q11 1

. . . sx sy, where variables x and y obey theN

equations

x tq1 s f x t q´ p f y t y f x t ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .
2Ž .

y tq1 s f y t q´ 1yp f x tŽ . Ž . Ž . Ž .Ž . Ž .

yf y t . 3Ž . Ž .Ž .

Here parameter p describes the distribution of the
oscillators over the clusters: ps1yN rN. Note1

that we do not assume the number of oscillators to
Ž .be large thermodynamic limit , e.g. for Ns3 and

N s2 we will have ps1r3, and all the results1

below are applicable.
Ž .The system 2,3 includes also the previously

Žconsidered cases of symmetrical ps1r2, see e.g.
w x. Ž .17–19 and unidirectional ps0 coupling. Our
attention is concerned with the general case p/

1r2,0. We want to describe, how the desynchroniza-
wtion transition i.e. the transition from the syn-
Ž . Ž .chronous state x t sy t to the asynchronous one

Ž . Ž .xx t /y t occurs. A remarkable peculiarity of syn-
chronization transitions, as transitions inside chaos,
is that they can be viewed both topologically and
statistically. The topological approach is based on
the bifurcation theory, while the statistical approach
deals with average characteristics of the chaotic sys-
tem.

From the statistical point of view, the desynchro-
nization transition happens when a typical syn-

Ž . Ž .chronous trajectory x t sy t looses stability in the
Žtransversal direction symmetry-breaking or blowout

.transition . Quantitatively, this corresponds to the
point where the transverse Lyapunov exponent l ,H

Žgoverning the linear evolution of the transversal i.e.,
Ž ..A xyy perturbations, changes its sign. For the

Ž .system 2,3 the transversal Lyapunov exponent is
< <p-independent: l s log 1y´ ql, where l is theH

Lyapunov exponent of the synchronous chaotic oscil-

lations. Correspondingly, the blowout transition oc-
curs at e s1"eyl.bl

In the topological picture, one interprets the tran-
sition as transversal bifurcations of synchronous or-
bits; usually the periodic orbits embedded in the
chaotic attractor are considered as a skeleton of the
chaotic set. These bifurcations generally occur at
different values of the coupling parameter ´ , and the
transition thus occupies a whole interval of the cou-
pling parameter ´ F´F´ to be specified below.rid bl

In particular, the state when some synchronous peri-
odic orbits are already transversally unstable, while
the transversal Lyapunov exponent is negative is

w xcharacterized by riddling 21 : In the vicinity of the
synchronous state xsy there are transverse pertur-
bations that grow, although typical perturbations de-
cay. The riddled state is especially sensitive to per-

w xturbations and noise 22,23 .
The analysis of local bifurcations of the periodic

points should be complemented by a study of the
global dynamics of the system. An important role in
this connection is played by the absorbing area
w x19,20 , – an invariant or semi-invariant region in
state space, which can enclose the chaotic attractor
and thus restrict bursts of the trajectories out of
synchrony.

The concrete type of riddling and blowout transi-
tion depends on the type of transversal bifurcation of
the synchronous periodic orbits of the symmetric
state. For two identical coupled oscillators, and in
the case of symmetric coupling ps1r2, the sym-
metry in the transversal direction is preserved and
the bifurcation will also be symmetrical: A pitchfork

Žbifurcation if the transversal multiplier is q1 at the
. Žbifurcation point or a period doubling if the multi-

.plier is y1 . Both these bifurcations of a symmetri-
cal fixed point P can be super- or subcritical. Let us0

now consider, how asymmetry of the system affects
these bifurcations. The period-doubling bifurcation is

Ž .preserved even for p/1r2 Fig. 1a . Due to sym-
metry with respect to time shifts the quadratic terms
in the normal form cancel. This means that the
standard period doubling occurs when the transversal
multiplier passes through y1 independently on the

w xsymmetry of the system 24,25 . Contrary to this, the
supercritical pitchfork bifurcation transforms to a
transcritical bifurcation, as it is schematically shown
in Fig. 1b.
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Ž .Fig. 1. A schematic view of the period-doubling a and the
Ž .transcritical b bifurcations in the asymmetrical case. In the latter

case the hard branch P with finite hs yy x appears far from1

the symmetric state hs0.

At the transcritical bifurcation there are two
transversally stable supercritical branches: one ap-

def
pears softly from the stable state h s yyxs0, but
the other appears far away from this state via a
saddle-node bifurcation at some subcritical value ´sn

of the coupling parameter. We refer to these branches
as the soft and the hard branch, respectively, and
argue that in general the hard branch controls the
transition. Let us look on the normal form of the
transcritical bifurcation of type Fig. 1b in the case of
continuous time, it includes linear, quadratic, and

w xcubic terms 24,25

hsah ´qbhych 2 .Ž .˙

This equation can be written in a potential form
w 2 3 4 xh s yE V s yE ya´h r2 y abh r3 q ach r4 .˙ h h

At the transition point the potential V has one
extremal point hs0 and the minimum h sbrc.min

Ž . Ž .It is easy to check that V h -V 0 , i.e. themin

absolute minimum of the potential is at the point
h away from hs0. So in the presence of smallmin

noise the hard branch h will dominate.min

Below we discuss the properties of the transcriti-
cal synchronization transition in a particular case of
coupled logistic maps, and show that here the hard

branch indeed determines the dynamics. In the sys-
Ž . Ž . Ž .tem 2,3 with the logistic map f x sax 1yx the

Ž ) ) . ) y1fixed point P s x , x , x s1ya , is first to0

loose its stability in the transversal direction. Note
Ž .that the longitudinal along the direction xsy mul-

XŽ ) .tiplier at this point f x is negative, and the
transversal multiplier is

m s 1y´ f X x ) . 4Ž . Ž . Ž .H

Thus, the transcritical bifurcation occurs for ´)1,
while for ´-1 the transversal bifurcation is the
symmetrical period doubling even if the coupling is
asymmetrical. Below we fix the parameter of the
logistic map as3.8, and consider possible synchro-
nization transitions in dependence on the coupling ´

Žand asymmetry p see Fig. 2 where, due to the
obvious symmetry, only the region p-1r2 is

.shown . The point of transcritical bifurcation of the
Ž .fixed point P is, according to 4 , p-independent,0

the same holds for the transversal Lyapunov expo-
nent. Thus the riddling and the blowout transitions
are horizontal lines ´ f1.555... and ´ f1.65...rid bl

Depending on the value of p, different types of
hard branch are observed corresponding to different
types of saddle-node bifurcation at ´s´ . In thesn

Ž .region of large p 0.239...-p-0.5 the fixed points
arising at ´ are unstable in the longitudinal direc-sn

tion, and have different stability in the transversal
direction, so one point is a saddle and the other is a

Fig. 2. Bifurcation diagram for two coupled logistic maps. In the
crosshatched region an asymmetrical attractor exists outside the
synchronous state. The lines of the riddling and blowout bifurca-
tions, the saddle-node bifurcation, and absorbing area crisis are
also shown.
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repellor. Here we denote the most unstable object to
Ž .appear in the present case the repellor as R, and

Ž .the less unstable one in the present case the saddle
as Q. With increasing ´ , the saddle Q undergoes an

Žinverse period-doubling, and becomes attracting this
bifurcation line is depicted in Fig. 2 as a lower

.boundary of crosshatched region . With further in-
crease of e the attractor becomes a focus, then
quasiperiodic and chaotic. Finally it turns into a

Žchaotic saddle through an exterior crisis upper
.boundary of the crosshatched region in Fig. 2 .

For 0.0329...-p-0.239... two fixed points ap-
Žpear at ´ , which are stable node and saddle againsn

.we denote them by Q and R . For larger ´ the
saddle R turns into a repellor through a supercritical
period-doubling, and the situation becomes the same
as discussed for larger values of p above. Finally,
for very small asymmetry parameters 0 - p -

Ž .0.0329... a repellor unstable node and a saddle
fixed point appear at ´ . While the saddle pointsn

turns into repellor R through a supercritical period-
doubling, the repellor is not stabilized, so that the
points from its vicinity escape to infinity after the

Žboundary crisis of the absorbing area contact bifur-
.cation of its boundary with the basin of infinity .

Summarizing these findings, we can conclude that
prior to the riddling transition, nontrivial objects
outside of the diagonal xsy appear. One is the
repelling fixed point R., Depending on the parameter
p, the other object Q can be a saddle, a stable fixed
point, a more complex attractor, a chaotic saddle, or
the basin of attraction to infinity. This richness of
transitions makes the system under consideration
exemplary.

We now demonstrate how the objects Q and R
determine the synchronization transition. At the rid-
dling transition the fixed point P in the diagonal0

looses its transversal stability through a transcritical
bifurcation which can be viewed as a collision of P0

with the repellor R. The repellor R brings with it
part of the stable manifold of Q. Thus, riddling
means that there is a dense set of points near xsy
that come close to Q. We can distinguish different

Žtypes of riddling. If Q is a finite attracting set for
. Ž0.273...- p - 0.377... or infinity for 0 - p -

. Ž0.245... , then transition to global riddling occurs at

.´s´ with a possibility for some nearly synchro-rid

nized states to be attracted to Q or to escape to

infinity. The former situation is illustrated in Fig. 3.
Most trajectories from the vicinity of the syn-
chronous state are eventually attracted to it, but some
set of the points escapes to another attractor. With
small noise, almost all the points will eventually

w xescape 21–23 . If Q is a saddle embedded into the
Žbasin of synchronous state chaotic for 0.245...-p

.-0.273... or point cycle for 0.377...-p-0.5 , the
riddling occurring at ´s´ is local. In this caserid

some exceptional set of points near the diagonal
xsy can go far away, but eventually almost all of
them return back to the synchrony. With small noise
one observes bursts of finite size at a finite rate.

From the above decsription it is also clear that the
Žsoft branch that appears during exchange of stability

.of the point P and the repellor R is less important0

for the dynamics. This is evident in the case when
the hard branch Q is an attractor, but even in the
case when Q is a saddle it dominates the intermittent
dynamics because the bursts of xyy towards Q are
much larger than the bursts in the direction of the
soft branch. Moreover, our analysis of global dynam-
ics inside absorbing areas which envelopes the syn-
chronous attractor shows that points in the vicinity of
the soft branch can visit the hard branch as well.
This means that even perturbations that push the
synchronous state towards the soft branch eventually
result in a hard transition at the transcritical point.

Ž .Fig. 3. The synchronized attractor a piece of the line xs y
Žcoexists with the asymmetrical quasiperiodic attractor Q in-

.variant curve at yf1, xf0.5 . The basin of the synchronized
attractor, shown in white, is riddled: everywhere dense there are

Ž .pieces of the basin of Q shown in grey . Parameters as3.8,
´ s1.6, ps0.33.
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Fig. 4. Two possible ways of destruction of the transcritical rid-
dling bifurcation by a small parameter mismatch. The latter is due

Ž .to deviations of the parameter of the logistic map: a a s2
Ž .0.998a , b a s1.002 a .1 2 1

Hence, global two-dimensional dynamics of the sys-
tem always has to be taken into account to explain
the transcritical riddling transition, unless p/0.

Numerical experiments show that the structures Q
in the phase space that appear and develop outside
the diagonal xsy determine the blowout transition
as well. For a nearly symmetrical case 0.488...-p-

0.5 we have a soft slightly asymmetrical transition.
For 0.336...-p-0.488... the blowout transition is
hard and the loss of synchronization leads to a stable
strongly asymmetrical regime developed from Q.
For 0.3...-p-0.336... the blowout transition is

Žtopologically hard large asymmetrical deviations
.from the synchrony are possible but metrically soft,

as a trajectory repeatedly returns to synchrony xsy.
Finally, for very large asynchrony p-0.3..., after
the blowout bifurcation, almost all trajectories escape
to infinity.

We now discuss the effect of a small mismatches
Žbetween both systems i.e. slightly different map-

Ž ..pings for the x and y variables in 2,3 on the
synchronization transition. With such a mismatch,
the state xsy is no longer invariant, but a nearly

Ž .synchronous attractor apparently chaotic where x
fy still exists. We demonstrate that its fate is
mediated by the Abroken transcritical bifurcationB.
Indeed, the transcritical bifurcation is structurally

w xunstable 24,25 and is destroyed even by a small
mismatch.

If we restrict our attention to the fixed point P ,0

there are two possible scenaria depending on the sign
of the mismatch, as shown in Fig. 4. In both, the
synchronous one-dimensional attractor transforms
into a thin two-dimensional invariant attracting re-
gion, as is schematically shown in Fig. 5. Its bound-
ary is created by the unstable manifolds of P . In the0

case of Fig. 4a the saddle point P that is on the0

boundary of the nearly synchronous attractor xfy
collides with the repellor P in a saddle-node bifur-2

Ž .cation, and disappears Fig. 5a . For the nearly syn-
chronous attractor this is the point of exterior or
interior crisis depending on whether P is attracting1

or not.
The situation of Fig. 4b appears at the first glance

to be different, as here the point P does not bifur-0

cate at all. However, in this case a crisis occurs as
well: At some critical value of coupling e thec

Fig. 5. A sketch of the phase portraits of the system with a small
parameter mismatch before collision of the nearly synchronous

Ž .attractor crosshatched with the repelling fixed point P . The two2

cases correspond to Fig. 4.
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unstable point P collides with the unstable mani-2
Žfold of the point P this manifold constitutes a part0

of the border of nearly synchronous attractor, see
.Fig. 5b . Beyond e the nearly synchronous attractorc

Žis destroyed and the attracting set is P if it is1
. Žstable , the absorbing area, or infinity if the system

.is beyond the absorbing area crisis . We see that any
mismatch transforms the riddling loss of synchro-
nization into a crisis transition to an asynchronous
state.

In conclusion, we have discussed peculiarities of
the desynchronization transition for a system with
symmetrical synchronous state and asymmetrical
coupling. The transitions above can be directly fol-

Ž .lowed in ensembles of coupled oscillators of type 1
as clustering transitions. Although we have consid-
ered only the transitions between fully synchronized
and two-cluster states, the main ideas can be applied
to more complex configurations as well. Indeed,

Ž .suppose that in system 1 there is a K-cluster state.
Any of existing clusters can be splitted in new ones,
yielding a state with Kq1 clusters. This transition

Ž .can be described using a Kq1 -dimensional map-
Ž .ping similar to 2,3 , and in this high-dimensional

system it may be a transcritical transition, because a
Ž .symmetric with two variables coinciding solution

looses its symmetry in a non-symmetric way. If this
transition is mediated by a periodic orbit that first
becomes transversally unstable, then the description
above is fully applied.

We have demonstrated that the asymmetry of the
coupling is important if, at the stability threshold, the

Žtransversal multiplier is q1 which corresponds to a
.pitchfork bifurcation in the fully symmetrical case ,

while the period doubling transition, for multiplier
y1, is rather insensitive to asymmetry. The pitch-
fork bifurcation is transformed into a transcritical
one due to asymmetry, and the riddling transition is
shown to be typically determined by the hard, i.e. far
located, branch. In practice, this means that due to
noise, asynchronous bursts of finite level may be
observed. In the presence of a small mismatch be-
tween the coupled oscillators the transcritical bifur-
cation is destroyed and the riddling transition changes
its progressing. Indeed, the nearly synchronized state
disappears via exterior or interior crises.
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