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Abstract

Using a mixture of analytic and numerical techniques we show that the mode-locked regions of quasi-periodically forced
Arnold circle maps form complicated sets in parameter space. These sets are characterized by ‘pinched-off' regions, where
the width of the mode-locked region becomes very small. By considering general quasi-periodically forced circle maps we
show that this pinching occurs in a broad class of such maps having a simple symmetry. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction
The Arnold circle map
A
xn+1=xn—|—§2+2—sm2nxn, 0<A<l1 0<Q<1, (1.2)
JT

has become a paradigm for the study of a wide variety of periodically forced systems in physics and biology. The
dynamics of this map may be characterized by the rotation number

. Xp — X0
p(R, A) = n'Lmoo"T’ (1.2)
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which is known to exist and is independent:@f Intuitively, the rotation number measures the average angular
velocity of an orbit around the circlec(mod D}. If p € Q then the Arnold map (projected onto the circle) has
periodic points, whilst ifo # Q then there are no periodic points on the circle. Itis natural to describe the parameter
plane($2, A) by rotation number, defining regions

Lo ={(Q, A)lp(2, A) = w}. 1.3)

If wis rational,w = p/q say, then’,, is a ‘tongue’ with non-empty interior emanating fraif?, A) = (p/q, 0)
into A > 0. These tongues are referred to as mode-locked regions. On the boundary of a tongue, two or more
periodic orbits annihilate in saddle-node bifurcations. On the other haadz if) thenL,, is generally assumed to
be a curve stretching froiw, 0) to (o', 1) for somew’ € R. This characteristic picture gives insight (for example)
into the devil’'s staircase of rotation numbers obtained in a number of real systems: the plateaus of the staircase
correspond to parameter values in the mode-locked tongues (see e.g. [2]).

Recently, there has been an explosion of interest in quasi-periodically forced systems (systems forced at two
independent frequencies). The natural extension of (1.1) to this situation is the quasi-periodically forced circle map

A . .
Xptl = Xn + Q2+ > sin 2rx, + B sin276,, Op+1 = 6n + «, (1.4)
T

wherex € (0, 1) isirrational, 0< A, 2 < 1andB > 0. The restriction o ensures that (1.4) is a diffeomorphism

(i.e., smooth with smooth inverse). The new variablepresents the phase of the second forcing frequency, and

B is a coupling parameter. Such systems have attracted attention both because of their relevance as paradigms for
physical situations and because strange non-chaotic attractors may be found numerically at some values of the
parameters (e.g.[9,10,12,13,15,17]). As with the Arnold circle map (1.1), it is natural to define rotation numbers in
thed-direction and the:-direction. Clearly

. 6, —06
lim 70 _

n—00 n

O(,
but the existence of

p(a, Q, A, B) = lim 2210

n— 00 n

(1.5)

is not obvious. However, in a much more general context, Herman [11] has shown that this rotation number does
indeed exist and is independent(@$, 6p) provided, as will be assumed throughout this paget,Q. Henceforth
the arguments ob will be taken as understood, gowill denote (1.5), and not the rotation number of the circle
map (1.2).

Sincex is irrational (1.4) has no periodic orbits. However, there is still a natural dichotomy of the dynamics. For
the quasi-periodically forced circle map mode-locking may occur if the rotation numiserationally related to
either of the forcing frequencies (viz. 1 anylor to a combination of these. Thus, the dynamics of (1.4) is said to
be mode-locked ip € aQ + Q, i.e., if there exist rational numbers andr, such thato = ria + r». If no such
relationship holds then the dynamics is said to be incommensurate. There is a standard dynamics associated with each
of these two possibilities: if the dynamics is mode-locked then the attractor may be a finite union of closed invariant
curves on the toruéc(mod 1), 6(mod 1), whilst if the dynamics is incommensurate then the attractor may be the
whole torus, with all orbits being dense on the torus. In both cases there are conjectural non-standard dynamics which
may occur at some parameter values, and which would explain the appearance of strange non-chaotic attractors
[5,7,8].

By analogy with the circle map (1.1), a natural step in the analysis of (1.4) is to determine the nature of the
mode-locked regions in parameter space
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Numerically calculated boundary of L, , with A=0.8
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Fig. 1. Numerically calculated boundary 6fo,g) for (1.4) witha = %(\/5 —1)andA =0.38.

Lrir=1{, QA B)lp=ria+ry, rieQ i=12}. (1.6)

Although partial (numerical) descriptions have been given [4-6,16] we know of no systematic study of these regions
along the lines of the standard analysis for circle maps. The aim of this paper is to provide some details of these
regions. In particular, asymptotic analysis for smélis used to describ&€ .0y and £(1,0) in some detail, and
numerical experiments are used to show how the pictures obtained are modified outside the region of validity of this
analysis. Some higher order mode-locked tongues are also amenable to a partial analysis, and these are included
for completeness. As Ding et al. [5] suggest, the width of the mode-locked regions tends to zero At kamnge

we are able to show that the decay of this width is proportionalt&'2 for moderate values a8. More striking

is the fact that this decay is modulated and there are valugBsabfwhich the width of the regions goes to zero at

lowest order, although higher order terms which have not been calculated may imply that the tongues have a very
small, but finite, width at such values. This ‘pinching’ of mode-locked tongues has been observed numerically [6,7]
but the results presented below suggest that it is a persistent feature of these systems. Fig. 1 shows the boundary
of L(0,0) in the (2, B) plane computed numerically for fixed = %(\/E_S —1)andA = 0.8 (cf. [7]). The tongue

appears to open and closess increased. At smaller values af as will be shown later, this oscillation is more

regular. Moreover, the oscillations in the boundary clearly decrease in amplitdd@a®ases; the scaling referred

to above will be investigated in later figures.

The remainder of this paper is organized as follows. In Sections 2—4 we present the perturbation analysis for
L0,0), £(1,0) and some higher order tongues, together with numerical confirmation of the results. In Section 5, we
describe the results of numerical experiments at larger valuésaofi comment on the similarities and differences
observed. We also look more closely at the ‘pinching’ effect at sehahd show that higher order mode-locked
regions display similar effects. In Section 6, we use the method of stationary phase to argue that the description
obtained should be qualitatively independent of the precise details of the quasi-periodically forced circle map being
discussed provided the map retains a simple symmetry. Appendix A gives the standard, but nasty, integrals which
need to be evaluated during the course of the analysis.
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2. The mode-locked regionC,q) (A small)

The calculation foiC g, o) will be given in some detail; since the basic methods are the same this level of detail will
not be provided in subsequent sections. Throughdstassumed to be a fixed irrational numberk @ < 1. The
approach is similar to that of Heagy and Hammel [10] for the quasi-periodically forced logistic map: we look for
invariant curves of a particular form and solve the lowest order perturbation problem to obtain a solution involving
an arbitrary parameter. This parameter is then fixed by a solvability condition at the next order —a condition which
can only be satisfied providd€, A, B) lies in a restricted region of parameter space. This region will be the lowest
order approximation to the mode-locked region. It is worth emphasising that the analysis presented below is only
valid for A small andB of order 1 compared td. Although, we will talk of ‘largeB’ this must be understood as
B large, but small compared 1!

Let A ~ ae andQ2 ~ we for some small parameter 0 < € « 1, witha, w > 0. The quasi-periodically forced
circle map (1.4) is thus

Xpp1 ~ Xn -+ BSIN 216, + € (a)+ %sin 2rrxn>, Ops1 = On + . 2.1)
If o = 0thenitis natural to look for invariant curves

x = G(0), GO +1) = GO), (2.2)
which can be expanded as an asymptotic series in

G(@O) ~ Go®) +€G1(0), G0+ =G;0), i=01 (2.3)

Substituting this ansatz into (2.1) and isolating terms of oelemde?, respectively, yields two equations 61
andGy,

Go(6 + a) = Go() + B'sin 276, (2.4)
and
G160 + &) = G1(0) + w + %sin 21Go(6). (2.5)
The lowest order problem, then (2.4), may be solved by poSin@) = > _ grexp(2rik0) to give
Go(®)=go+ L(sin 210 —a) — sin2rh) = go — _B Ccos Zr (0 - 1-01)
2(1— cos2ra) 2sinra 2
=go— S sinma sin2t (6 — ¢), (2.6)

wheregg is an arbitrary constant angl = %a — %1. The extra phase shift in the last line of (2.6) is trivial, but

it means that the integrals evaluated below are in a standard form. We now return to the second perturbation
equation (2.5). To obtain a consistency condition which fixes the valug,dhtegrate (2.5) from O to 1 i;

[3G1(0 + @) d8 = [yG1(8) d6 asG1(6 + 1) = G1(9), so this gives

1
0=+ i/ sin 27 Go(6) do. 2.7)
2 0

Substituting (2.6) into (2.7) and using (A.7) from Appendix A this implies that

2 B
_ﬂzsinzfg()]o( i ) (2.8)

a sinTa
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Numerically calculated boundary of L, with A=0.05
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Fig. 2. The boundary of () for (1.4) witha = %(JE — 1) andA = 0.05 (numerically computed data points are shown as circles) together
with the prediction, (2.10) which is shown as a continuous curve.

whereJy(z) is the Bessel function of order zero. From (2.8) it is immediate that the congtaah be determined
provided

B 2 27 Q2
‘Jo( il >‘z e ZE (2.9)
SinTa a A
This set defines the approximate phase-locked regjgig, for A sufficiently small. In particular, the boundary of
this region is
A B
Q~—|J . 2.10
27 |°° (Sinmx) ’ ( )

The numerically computed boundary, together with this theoretical prediction, is illustrated in Fig. 2. The agreement
between theory and experiment is excellentdo& 0.05. Note that/o(0) = 1, so that a$? — 0 (2.9) tends to the
standard result for the Arnold circle map as expected.

At large B (2.10) becomes (using (A.8))

A [ 2|sinmal 2 o5 B T
|sinta| 4

T 222\ B
showing that the decay in the envelope of the boundary is proportiorat 1. Ding et al. [5] predict that the
tongue would get small at large, but do not suggest any scaling. Moreover, from the oscillating cosine term in
(2.11) we see that the width of the tongues is zero to lowest order at zeroes of the Bessel function, i.e., at

Q (2.11)

)

By ~ (m — 3)|sinmal. (2.12)

This pinching effect for the phase-locked regions will recur throughout this paper.
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3. The mode-locked regionC,0) (A small)

In the limit of B — 0 (the Arnold circle map)L1,0) is qualitatively different fromZ g g); it is a curve in the
(2, A) plane rather than a tongue. We therefore expect the widih 10y tends to zero a® — 0. To obtain an
asymptotic formula for such a region for smdllthe parameters must be rescaleddas: ac andQ ~ o + we
(0 < € « 1) so that (1.4) becomes

Xp+l~ Xp + o+ BsSin2t6, +¢€ (a) + % sin 271xn> , Opt1 =0, + . (3.1)
From considerations of the homotopy type, invariant curve&irm, will be of the form

x=G@®), GO+1) =GO +1, (3.2)
and so we pose an asymptotic solution of the form

x ~ Go(0) + €G1(9), (3.3)

with Go(8 + 1) = Go(9) + 1 andG1(6 + 1) = G1(6). Substituting into (3.1) and equating terms of oréeand
el, respectively, gives

Go(0 + ) = Go(8) + a + Bsin 276 (3.4)
and
G10 +a) = G1(0) + w + Zisin 21Go(0). (3.5)
T

If we poseGo(0) = 0 + h(0) with k(60 + 1) = h(0) thenh(0) satisfies (2.4) and so, using (2.6),

Go(0) =go+6 —

sin2t (6 — ¢), (3.6)

2sinra

wheregg is an arbitrary constant which we hope to determine at next ordet;ﬁaﬂd%a — %. The consistency
condition obtained from integrating (3.5) between 0 and 1 is

a 1 . .
0:w+Z/o sin 2t (go+9— S Sinma sm27r(0—¢)> do, (3.7)

which can be rewritten, using (A.7) in Appendix A, as

a B
O=w——sin2r J , 3.8
0 gesin2eigo+ o) () @9
whereJ1(z) is the Bessel function of order 1. Thus, as in Section 2, we find that (3.8) can be solgggforided
J1< -JTB )‘2271|a)| N27T|Q—Ol|7 (3.9)
sinra a A

and so for sufficiently smalt the boundary of the mode-locked regiGp g is given to lowest order by

B
h (lsinmx|>‘ ' (3.10)

Fig. 3 shows a comparison between this prediction and numerically calculated points on the boudigasy foi
A = 0.05. Once again the agreement is excellent and the boundary shows Hfenarrowing and the regular

|2 — «f A
—al ~ —
2w




P. Glendinning et al./ Physica D 140 (2000) 227-243 233

Numerically calculated boundary of L, ;, with A=0.05

0.624 - .

0.622
0.620
0.618 {
0.616

0.614

0.612 4

0.610 L 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0

B

Fig. 3. The boundary of (1,0, for (1.4) witha = %(\/5 —1) andA = 0.05 computed numerically (data points are indicated by circles) together
with the prediction, (3.10), which is shown as a continuous curve.

pinching effect as expected from the latgasymptotics of/1(z) (see Appendix A, (A.8)) from which we obtain,

for large B and very small,
os(.”—B - §7‘r>' . (3.11)
|sinta| 4

A <2| sinra| )1/2
Moreover, since/1(0) = 0, the tongue closes @& — 0 as expected from the comments about the tongue structure

Q—o| ~ —
| ol 2m? B
for the Arnold circle map made at the beginning of this section.

4. Higher order mode-locked regions A small)

For a general mode-locked region wigh= (p/q)x + (r/s) the most simple solutions will lie on the union of
closed curves which wrag times around the torus and are shiftedroyn the x-direction afters iterations of the
map. Thus, these curves are of the form

ge +G®O), G@O+q) =Go). (4.1)

In principle (4.1) could be used to generate first-order conditions as in previous sections, but the computations
rapidly become extremely complicated and we shall restrict ourselves to cases which illustrate the possibilities for
higher order mode-locked regions. These &g ., with (r1, r2) equal to(0, %) and(p/q, 0).

To determinel g 1/2) we will need the second iterate of the map to lowest order, so setting) = (0, %) we
poseA ~ ae and2 ~ ria + r2 + we to obtain

Xp+2 ~ Xp + 2(r1a + r2) + B Sin 276, + B sin 276,41
te (20) + 21 sin 2rx, + 21 Sin 27 (x, + ria + r2 + Bsin 2;19,1)) , (4.2)
JT JT

with 6,41 = 6, + « as usual.
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To obtain the lowest order approximationd@,1,2) we pose the asymptotic solutian~ Go(0) +€G1(9), where
Gi(0 +1) = G;(9),i = 0, 1. Substituting into (4.2) and isolating terms of ord@rande?, respectively, (noting
that we expect the second iterate of the invariant curve to be the invariant curve shifted by A-thithetion) gives

Go(@ + 2a) = Go(@) + Bsin2t0 + Bsin2t(6 + «), (4.3)
and
G1(0 + 20) = G1(0) + 2w + Zi sin 2t Go(0) + Zi sin 27 (Go(0) + % + Bsin 270). (4.4)
T JT

The leading order equation is easily solved, so the consistency condition is
1
0=20+ 21/ (sin 2t Go(0) — sin 27(Go(6) + B sin 276)) d. (4.5)
7 Jo

Although messy, the integral can be evaluated and turns out to be identically equal to zero (we omit the boring
calculation which leads to this boring conclusion). Hemce 0 and we find essentially the same conclusion as for
the circle map:

12Q — 1] ~ O(A?). (4.6)

After this rather disappointing result we move on to the general todighlg o). Sincerz = 0 the solution curve
is invariant, i.e., it is not necessary to consider the second iterate of the map. Rosing, Q2 ~ (p/q)a + we
and an invariant curve of the forap/q)0 + Go(9) + €G1(0) with G; (0 + q) = G;(0),i = 0, 1, we obtain from
(2.1) that

Go(6 + a) = Go(0) + B sin 276, 4.7
and
G10+a)=G10) +w+ % sin 2r <§9 + Go(9)> . (4.8)

These equations are very similar to those obtained in Section 3, the only subtlety is that the périas mbdw ¢
rather than 1. By the same methods as used in earlier sections, (4.7) may be solved to obtain (as before)

B
Go(9) = go — 5

Sinmg SN2r @ —¢) (4.9)

and so the first-order consistency condition, obtained by integrating (4.8) from,Gs0
a (91 . p .
O:qa)+—/ Sin2r | =6 + go— ksin2r(6 — ¢) ) d6, (4.10)
21 Jo q
wherek = B/2sinma. Letg = go + (p¢/q) then (4.10) is
a 7. )4 / , a . 1 )4 ,
O=qgw+ —/ sin2r | —6 4 gy — ksin 270 ) dd =qa)~|——SIn27'rgO/ cosZt | —0 — ksin2r6 ) do
2 Jo q 2m 0 q

9-1 .1
. m .
=qw+ £ sin 27'rg6 E / cos Zr (_p + 29 —ksin 2710) do
2m —Jo a 49

a a1 pm) ! p
:qa)JrEsiang{J ZCOSZT— / cos 2r <—9—ksin2710> ds. (4.11)
q 0 q
0
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After this somewhat exhausting exercise we note that the bracketed sumis zergyglesg. Thus, the cusp-like
(high order contact) of the mode-locked regions observed{gf,») also occurs here unless the resonance is of
the form(n, 0) for somen € Z, i.e., the boundary of the tongue is of the form

Q—-Laj~042) it ¢z (4.12)
q q
On the other hand, ip/q = n for somen € Z (i.e.,q = 1, p = n) then (4.11) becomes
1
O=w+ 21 sin 271g6/ C0S 2t (n6 — k sin 276) d = w + Zi sin 2t g} J, (2k) (4.13)
T 0 T
using (A.5). Recalling the definition @fthe boundary of this mode-locked region may therefore be written as
A B
Q- ~ —|J . 4.14
§2 = ner 2;1‘ "<|sinmx|>‘ (4.14)

Note, of course, that we could have taken(mod 1) and obtained the same result. Indeed, the different scalings
predicted by this analysis presumably explains why the majority of mode-locked regions observed in [6] have
rotation numbers of the forma — [na] (Where [x] denotes the integer part ®j. Moreover, by (A.8), at relatively

large B (4.14) becomes

@ | A (2]sinzral\Y? cos 7B 1 1

- ~——— - —znmw — -7 ||.
ne T o2 B | sinmo| 2" T,

(4.15)

5. Numerical results

The aim of this section is two-fold. First, we check the theoretical predictions described above for the mode-locked
regions. Second, we look at how the mode-locked regions evolve outside the strict region of validity of the asymptotic
results.

The computations of Figs. 2 and 3 have shown that for sthahd moderateB the agreement between the
theoretically predicted form of the mode-locked regions and the numerically calculated boundary is very good. In
Fig. 4, we present similar calculations extended to a much larger range of the amplitude of the externaBforcing
One can see that the theoretical predictionfgyg), €2 ~ B~1/2 is reasonably satisfied when= 0.1, although
violations from this behaviour start already Bt~ 20 if A = 0.2. This emphasises the statement made at the
beginning of Section 2 that the asymptotic analysis is validAsmall andB of order 1. At larger values of
the non-linearity 4) and forcing there are two effects which are different to those expected from the asymptotic
analysis. First, the pinching at moderateis much less marked than it is in the very smalcases, where the
width of the mode-locked region in thie-direction very nearly vanishes. This is not surprising, since second-order
effects, ignored in the analysis above, become important. Second, there appear to be intétvaddues over
which the width of the tongue vanishes. Both features are clearly seen in Fig. 1, &veefe8, so we have chosen
this parameter value for a more detailed investigation. The tongues were numerically determined as regions of a
given constant rotation number. The latter was calculated using (1.5) via straightforward iterations of system (1.4).
The only trick was to choose in such a way tha#, is as close as possible g (in other words, we took the
best recurrences of the driving map). For the golden naetimis corresponds simply to the choiee= Fy, where
Fy is a Fibonacci number. This choice essentially improves the accuracy compared to a randomly: ¢hgsén
compared to An). The boundary of the tongue was then located at a valge @br fixed B), where the rotation
value sufficiently deviates from the given rational. The reghbre 45 in Fig. 4b below, where the width of the
tongue appears to be zero, gives an impression on the accuracy of the method.
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(a) Numerically calculated boundary of L
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Fig. 4. The boundary of (o) for (1.4) witha = %(\/5 — 1) over a large range a8: (a) A = 0.1; (b) A = 0.2.

Fig. 5 shows the bifurcation diagram at the pinching point riear 0.7 (an enlargement of the structure inside
the dashed square of Fig. 1). To get a rough picture of the bifurcation structure in Fig. 5 we have computed the
saddle-node bifurcations by checking the transition from mono- to bistability crossing the bifurcation line under the
variation of B with fixed ©2. This transition can be monitored by iterating a large number of initial conditions on a
line in phase space, where the valuesifare equally distributed in the interval,[0] andé is fixed. In the case of
monostability all these initial conditions collapse to one point after some transients, while after the bifurcation we
obtain more than one point. This picture was the basis for more accurate computations of the saddle-node bifurcation
as the collision point of the stable and unstable invariant curves computed from forward and backward iteration.
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Saddle node bifurcations close to the pinched off region
0.007 T T T T T T

0.006 a

0.005 r 8
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0.001

0.000 R — :
064 066 068 070 072 074 076

Fig. 5. Enlargement of the rectangle in Fig. 1 showing that the tongue does not actually pinch off completely; two curves of saddle-node
bifurcations (of invariant curves) cross.

There are three regions with qualitatively different dynamics. As shown in Fig. 6a and c, in regam$C
there is a single attracting closed invariant curve for the map (1.4), and an unstable invariant curve (not shown).
On crossing the bifurcation line marked in diamonds a simple saddle-node bifurcation of invariant curves produces
an additional pair of invariant curves, one stable and the other unstable, so in Be(ger Fig. 6b) there are two
stable invariant curves. Thus, there are two curves of saddle-node bifurcations of invariant curves, which intersect
at a bi-critical point. The dynamics of the quasi-periodic motion just above the bi-critical point D is illustrated in
Fig. 6d: intermittent behaviour associated with both of the stable invariant curves is clearly seen.

Another feature which influences the bifurcation diagram at larger non-linearity and forcing amplitudes is the
appearance of strange non-chaotic attractors. For a general discussion of such attractors see [3,9,14] and in the
context of quasi-periodically forced circle maps see [5-7]. A strange non-chaotic attractor is associated with the
apparent vanishing of the width of the mode-locked tongues at larger valle&f 3 in Fig. 1). This transition
has been described in [6,7]; the strange non-chaotic attractor appears through a non-smooth saddle-node bifurcation:
the stable and unstable invariant curves do not coincide at the bifurcation, but appear to touch on a set of points
whose projection onto the axis is dense. As has been argued in [7], the appearance of the strange non-chaotic
attractor withp = 0 is very sensitive to perturbations, and as a resappears to vary continuously &passes
through zero, leading to a mode-locked region of zero (or very small) width.

Putting this information together, the multiple saddle-node bifurcations and intervals on which the width of the
tongue effectively vanishes, we obtain a global picture oftke 0 mode-locked tongue as shown in Fig. 7. Cutting
through this three-dimensional structure at constant smalhows a number of bubbles (isolas) of saddle-node
bifurcations of invariant curves with small overlap regions between successive bubbles (as shown in Fig. 5). These
overlaps would presumably appear in the theory if the perturbation analysis above were pushed through to higher
order. AsA is increased, some of these bubbles are pulled apart, and intervals of (apparently) zero width for the
tongues appear between the successive bubbles. Note that since the rotation number is continuous, the tongue can
never vanish completely, and in an appropriate two-parameter projection the mode-locked region is represented by
a curve between the bubbles if the width really does go to zero. Fig. 7 is highly speculative and certainly incomplete
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(a) Stable invariant curve at point A in Fig. 5 (b) Two stable invariant curves at point B in Fig. 5
T T T T 1.0 T T

0.4 r

0.2

0.0 L
0.0 0.2 0.4

0.4 0.6 0.8 1.0

Fig. 6. Phase portraits showing the dynamics in each of the four regioBsC andD of Fig. 5. (a) The unique stable invariant curvedat(b)
a pair of stable invariant curves Bt (c) the unique stable invariant curvetand (d) an orbit aD showing intermittency near the locus both
invariant curves which exist at nearby parameters.

(there must be some additional saddle-node bifurcations), but it fits the theoretical and numerical results of which
we are aware. The parameter values at which the bubbles first separate is a natural focus for further work on the
appearance of strange non-chaotic attractors, and we should emphasise that it is not clear whether the width of the
tongues can become zero, or whether the width is just very small.

6. General circle maps

The asymptotic analysis of Section 2 may be repeated for general maps of the form
Xp+1 =X, + Q4+ €F(x,) + BH(®,), Op+1 =06y + «, (6.1)

where F and H are smooth periodic functions of period 1,<0¢ « 1, B is a positive real parameter andis
irrational. By redefining2 we may assume without loss of generality that bbtland H have zero mean. The
mode-locked regiotLg,0) can be found to lowest order by posifig~ we and looking for an invariant curve of
the formGo(0) + €G1(9), whereGo andG are periodic of period 1. In this case we obtain

Go(6 + @) = Go(8) + BH(®), 6.2)



P. Glendinning et al./ Physica D 140 (2000) 227-243 239
B

Fig. 7. A schematic view of the conjectured structure of the mode-locked region in three-dimensional parameter space showing how the ‘bubbles’
of saddle-node bifurcations of invariant curves might separate at larger valdepaiducing sheet-like regions of the mode-locked tongues.

and
G1(0 + a) = G1(0) + w + F(Go(9)). (6.3)

The lowest order problem, (6.2), may be formally solved as a series solution

Go(6) = go+ BY H(® — ma), (6.4)

m=1

wherego is an arbitrary parameter. So, at least formally(0) = go + Bh(6) whereh is a period 1, zero mean
function. The consistency condition is thus (integrating (6.3) from 0 to 1)

1
—w = f F(go + Bh(#)). (6.5)
0
SinceF is periodic of period 1, we may expand it as a Fourier series

F(9) = Z(Ak Sin(27k®) + By cos2k0)), (6.6)
k>1

and so the integral on the right-hand side of (6.5) may be rewritten, assuming that the order of the sum and integral
can be exchanged, as

1 1
> (Ak / sin(2rkB(h(6) + B 1g0)) d6 + By / cos27kB(h(0) + B 1go)) de) ) (6.7)
1 0 0

The method of stationary phase can be applied to each of the integBais l&rge:

/ cosrBy(0)d9 ~ B cos 2t (By (6,,) + %sign(w”(em))), (6.8)

1
-1/2
;J—wem)



240 P. Glendinning et al./ Physica D 140 (2000) 227-243

where the sum is over the saddle pointsyofvithin the range of integration. Assuming again that the order of
summations may be exchanged, then (6.8) applied to the expression of (6.7) gives

1
BV "S(h()B + g0+ £0m). (6.9a)
;¢7|h”<em)|§l °
where
A B
Si(z) = 7’1‘; sin 2rkz+ 7% cos 2rkz (6.9b)

and the sum oven is of all the saddle point#,,, of the function: in [0, 1] ando,,, = sign(h” (6,,)). For eachn, the

sum overk in (6.9a) and (6.9b) defines the Fourier series of a perfectly well-behaved periodic function with period
1, which is at least as smooth At is the function withkth Fourier coefficient equal to the Fourier coefficient of

F divided by+/k, i.e., D2 F (0), whereD is the usual differential operator). Let this functionBéx), i.e.,

Fx) = S(x), (6.10)

k>1
then if B is large (but small compared ¢0'1), then (6.5) is

0~ w+ B~ "?Y 0,y F(hmB + §oum + 0). (6.11)
m

wherew,, = 1//|h"(6,,)| andh,, = h(6,,).
Pinching occurs aB = B* such that

> awF(hmB* + §ouw + g0) =0 forallgo. (6.12)

For general functiong/ and F (and henceF) there is no obvious reason why the pinching condition (6.12) should
hold for anyB*, and so we expect that in general the pinching effect should not occur. In fact, we shall show that
pinching occurs due to some of the symmetries of the quasi-periodically forced circle maps generally considered.

Suppose thall and so by (6.4} is odd possibly after a rotation of coordinates. Then (and this is the important
condition) if6,, is a stationary point, there is unique stationary point irlJ06_,, say, such that

h_y = —hy,, oAy = Qpy, O_m = —0Op. (6.13)
Thus (6.9a) and (6.9b) can be written as a sum pxér

B2 a1 Y Sk B + §0im) + £0) + Sk(=hjm B = §01m| + 80)- (6.14)
|m| k>1

Using (6.9b) the sum af;s can be simplified, giving

A
2B7%2 Y &, sin2rgo {27’% cos 2rk(hn B + gam)}

{m|m=>0} k>1

B
+2B~V2 Z o, COS Zrgo |:Z7% cos Zrk(h,, B + %om):| . (6.15)
k>1

{m|m=>0}
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Denoting the two functions defined by the Fourier sums in square bracke®shyand Q(z), respectively (for
z=huB+ %am), the consistency condition (6.5) is thus

—BY?w =sin2tgo| Y  P(hwB+ gow) | +cos2igo| Y QUrmB+ jom)

{m|m>0} {m|m=>0}

Thus, we see immediately that if eithBz) = O for all z or Q(z) = O for all z, i.e., if eitherAy = Oforallk > 1
or B, = Ofor allk > 0, then we obtain a separation of the variables and, e @(4f is identically zero, the lowest
order (largeB) condition for made-locking is

| <2B7Y2| N~ P(hnB + Fom)|. (6.16)

{m|m=>0}

The right-hand side of this equation is independerggds it should be, and there is pinching provided that there
existsB* such that

> P(unB* + gow) =0. (6.17)

{m|m>0}

SinceP is a periodic zero mean function, then (6.17) must be satisfied infinitely often.

It is worth emphasising that it is only the symmetryrofind condition (6.13) on the coefficients associated with
the stationary points of that are required for this argument to hold. It does show that the pinching observed both
numerically and in physical experiments is a feature of the symmetries of the problem.

For the standard example considered ab®\a,) = (A/27) sin 2rx andH (x) = sin 276 with

h®) = — sin2r (6 — ¢)

2sinro

with ¢ = 2o — 1. This has a (symmetric) pair of stationary points and we mayfake 3o with /11 = h(61) =
—1/(2 siner) andh” (61) = —4w2h so thatoy = —signh1. Substituting into (6.11) wittt; = A/27 and all the
other Fourier coefficients equal to zero, we obtain

B

1 /2|sinmo]
T

1/2 B Lo
cos2r | ———— + = + zsign(sin
) ( s 8T8 ign(si na)),

which after a little more thought, is equivalent to (2.11).

We should emphasise that this analysis is not, strictly speaking, valid. In the perturbation expansions to obtain
(6.2) and (6.3) we have assumed tBas of order 1 (otherwise the desired splitting of the different orders does not
hold). On the other hand, in order to apply the method of stationary phase we have assurBeid thage. Thus,
our assumptions are only valid if we can cho@s® be order 1 and large enough for the method of stationary phase
to give reasonable results. This is clearly unreasonable, but we feel that the above analysis, flawed though it is, still
provides an explanation for the observed phenomena and might be made more rigourous if sensible scalings for
large B and smallA could be found. This caveat does not apply to the analysis of earlier sections because it was
not necessary to assume tiBais large there —it is relevant, of course, to the asymptotic expressions of (2.11) and
(3.11) in which largeB expansions of the Bessel functions are used.
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7. Conclusion

Using perturbation theory we have given a fairly complete description of the dominant mode-locked regions for a
quasi-periodically forced circle map in the limit of small non-linearity. These regions have a relatively complicated
structure compared to the equivalent regions in simple circle maps. Our main motivation for this work was the
understanding of the appearance of strange non-chaotic attractors in such maps. Although this paper does not
address this interesting problem explicitly we believe that these results should help orient research into the structure
of such attractors in parameter space.

Note.The conjecture in Section 5 about higher order perturbation theory and the overlap of the tongues has been
confirmed: see Ref. [18].
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Appendix A

For the evaluation of various integrals which arise in this paper we have relied on Abramowitz and Stegun [1,
Chapter 9]. In this appendix the main results used are collected together for the readers convenience.

Forn a non-negative integer

1/ cognd — zsinf) do = J,,(2), (A1)
T Jo

whereJ, is the Bessel function of order. Also

Jn(2) = (=" Ju(2), (A.2)
so that

In(@) = Jp(=2) = (=1)"Ju(-2), (A.3)
and

Winj(12D1 = [Jn(£2)| = [Jxn (2)]. (A.4)

Our normalization is a little different, but from (A.1) it is easy to see that

/OlcOSZT(nQ —zsin2r0)do = J,(2nz) (A.5)
and by symmetry arguments

/01 Sin 2t (nd — zsin2r0)do = 0. (A.6)

Thus, ifC, k and¢ are real constants amds a non-negative integer,
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1 1
/ sin 2t (C +nb — ksin 2t (6 — ¢)) do :[ sin 2t (C + n¢ + nb — ksin 2r0) do
0 0

1
=sin27(C + nq>)/ Ccos 2r (nf — ksin 2r0) do

0
=sin27(C + n¢)J, (2rk). (A.7)

Note that in this calculation we have used the fact that ifs integrable and of period 1 thefg)lf(e)de =
folf(e — ¢) do for any real constans. Finally, asz — oo,

1/2
Jn(z) ~ (i) cos(z - }nn - }n) +0 <}> . (A.8)
14 2 4 Z
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