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Abstract

Using a mixture of analytic and numerical techniques we show that the mode-locked regions of quasi-periodically forced
Arnold circle maps form complicated sets in parameter space. These sets are characterized by ‘pinched-off’ regions, where
the width of the mode-locked region becomes very small. By considering general quasi-periodically forced circle maps we
show that this pinching occurs in a broad class of such maps having a simple symmetry. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The Arnold circle map

xn+1 = xn +�+ A

2π
sin 2πxn, 0 ≤ A < 1, 0 ≤ � < 1, (1.1)

has become a paradigm for the study of a wide variety of periodically forced systems in physics and biology. The
dynamics of this map may be characterized by the rotation number

ρ(�,A) = lim
n→∞

xn − x0

n
, (1.2)
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which is known to exist and is independent ofx0. Intuitively, the rotation number measures the average angular
velocity of an orbit around the circle{x(mod 1)}. If ρ ∈ Q then the Arnold map (projected onto the circle) has
periodic points, whilst ifρ 6= Q then there are no periodic points on the circle. It is natural to describe the parameter
plane(�,A) by rotation number, defining regions

Lω = {(�,A)|ρ(�,A) = ω}. (1.3)

If ω is rational,ω = p/q say, thenLp/q is a ‘tongue’ with non-empty interior emanating from(�,A) = (p/q,0)
into A > 0. These tongues are referred to as mode-locked regions. On the boundary of a tongue, two or more
periodic orbits annihilate in saddle-node bifurcations. On the other hand, ifω /∈ Q thenLω is generally assumed to
be a curve stretching from(ω,0) to (ω′,1) for someω′ ∈ R. This characteristic picture gives insight (for example)
into the devil’s staircase of rotation numbers obtained in a number of real systems: the plateaus of the staircase
correspond to parameter values in the mode-locked tongues (see e.g. [2]).

Recently, there has been an explosion of interest in quasi-periodically forced systems (systems forced at two
independent frequencies). The natural extension of (1.1) to this situation is the quasi-periodically forced circle map

xn+1 = xn +�+ A

2π
sin 2πxn + B sin 2πθn, θn+1 = θn + α, (1.4)

whereα ∈ (0,1) is irrational, 0≤ A, � < 1 andB ≥ 0. The restriction onA ensures that (1.4) is a diffeomorphism
(i.e., smooth with smooth inverse). The new variableθ represents the phase of the second forcing frequency, and
B is a coupling parameter. Such systems have attracted attention both because of their relevance as paradigms for
physical situations and because strange non-chaotic attractors may be found numerically at some values of the
parameters (e.g. [9,10,12,13,15,17]). As with the Arnold circle map (1.1), it is natural to define rotation numbers in
theθ -direction and thex-direction. Clearly

lim
n→∞

θn − θ0

n
= α,

but the existence of

ρ(α,�,A,B) = lim
n→∞

xn − x0

n
(1.5)

is not obvious. However, in a much more general context, Herman [11] has shown that this rotation number does
indeed exist and is independent of(x0, θ0) provided, as will be assumed throughout this paper,α /∈ Q. Henceforth
the arguments ofρ will be taken as understood, soρ will denote (1.5), and not the rotation number of the circle
map (1.2).

Sinceα is irrational (1.4) has no periodic orbits. However, there is still a natural dichotomy of the dynamics. For
the quasi-periodically forced circle map mode-locking may occur if the rotation numberρ is rationally related to
either of the forcing frequencies (viz. 1 andα) or to a combination of these. Thus, the dynamics of (1.4) is said to
be mode-locked ifρ ∈ αQ + Q, i.e., if there exist rational numbersr1 andr2 such thatρ = r1α + r2. If no such
relationship holds then the dynamics is said to be incommensurate. There is a standard dynamics associated with each
of these two possibilities: if the dynamics is mode-locked then the attractor may be a finite union of closed invariant
curves on the torus(x(mod 1), θ(mod 1)), whilst if the dynamics is incommensurate then the attractor may be the
whole torus, with all orbits being dense on the torus. In both cases there are conjectural non-standard dynamics which
may occur at some parameter values, and which would explain the appearance of strange non-chaotic attractors
[5,7,8].

By analogy with the circle map (1.1), a natural step in the analysis of (1.4) is to determine the nature of the
mode-locked regions in parameter space
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Fig. 1. Numerically calculated boundary ofL(0,0) for (1.4) withα = 1
2(

√
5 − 1) andA = 0.8.

Lr1,r2 = {(α,�,A,B)|ρ = r1α + r2, ri ∈ Q, i = 1,2}. (1.6)

Although partial (numerical) descriptions have been given [4–6,16] we know of no systematic study of these regions
along the lines of the standard analysis for circle maps. The aim of this paper is to provide some details of these
regions. In particular, asymptotic analysis for smallA is used to describeL(0,0) andL(1,0) in some detail, and
numerical experiments are used to show how the pictures obtained are modified outside the region of validity of this
analysis. Some higher order mode-locked tongues are also amenable to a partial analysis, and these are included
for completeness. As Ding et al. [5] suggest, the width of the mode-locked regions tends to zero at largeB, and
we are able to show that the decay of this width is proportional toB−1/2 for moderate values ofB. More striking
is the fact that this decay is modulated and there are values ofB at which the width of the regions goes to zero at
lowest order, although higher order terms which have not been calculated may imply that the tongues have a very
small, but finite, width at such values. This ‘pinching’ of mode-locked tongues has been observed numerically [6,7]
but the results presented below suggest that it is a persistent feature of these systems. Fig. 1 shows the boundary
of L(0,0) in the (�,B) plane computed numerically for fixedα = 1

2(
√

5 − 1) andA = 0.8 (cf. [7]). The tongue
appears to open and close asB is increased. At smaller values ofA, as will be shown later, this oscillation is more
regular. Moreover, the oscillations in the boundary clearly decrease in amplitude asB increases; the scaling referred
to above will be investigated in later figures.

The remainder of this paper is organized as follows. In Sections 2–4 we present the perturbation analysis for
L(0,0), L(1,0) and some higher order tongues, together with numerical confirmation of the results. In Section 5, we
describe the results of numerical experiments at larger values ofA and comment on the similarities and differences
observed. We also look more closely at the ‘pinching’ effect at smallA and show that higher order mode-locked
regions display similar effects. In Section 6, we use the method of stationary phase to argue that the description
obtained should be qualitatively independent of the precise details of the quasi-periodically forced circle map being
discussed provided the map retains a simple symmetry. Appendix A gives the standard, but nasty, integrals which
need to be evaluated during the course of the analysis.
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2. The mode-locked regionL(0,0)L(0,0)L(0,0) (AAA small)

The calculation forL(0,0) will be given in some detail; since the basic methods are the same this level of detail will
not be provided in subsequent sections. Throughoutα is assumed to be a fixed irrational number, 0< α < 1. The
approach is similar to that of Heagy and Hammel [10] for the quasi-periodically forced logistic map: we look for
invariant curves of a particular form and solve the lowest order perturbation problem to obtain a solution involving
an arbitrary parameter. This parameter is then fixed by a solvability condition at the next order —a condition which
can only be satisfied provided(�,A,B) lies in a restricted region of parameter space. This region will be the lowest
order approximation to the mode-locked region. It is worth emphasising that the analysis presented below is only
valid forA small andB of order 1 compared toA. Although, we will talk of ‘largeB ’ this must be understood as
B large, but small compared toA−1!

LetA ∼ aε and� ∼ ωε for some small parameterε, 0< ε � 1, with a, ω ≥ 0. The quasi-periodically forced
circle map (1.4) is thus

xn+1 ∼ xn + B sin 2πθn + ε
(
ω + a

2π
sin 2πxn

)
, θn+1 = θn + α. (2.1)

If ρ = 0 then it is natural to look for invariant curves

x = G(θ), G(θ + 1) = G(θ), (2.2)

which can be expanded as an asymptotic series inε,

G(θ) ∼ G0(θ)+ εG1(θ), Gi(θ + 1) = Gi(θ), i = 0,1. (2.3)

Substituting this ansatz into (2.1) and isolating terms of orderε0 andε1, respectively, yields two equations forG0

andG1,

G0(θ + α) = G0(θ)+ B sin 2πθ, (2.4)

and

G1(θ + α) = G1(θ)+ ω + a

2π
sin 2πG0(θ). (2.5)

The lowest order problem, then (2.4), may be solved by posingG0(θ) = ∑
gkexp(2π ikθ) to give

G0(θ)= g0 + B

2(1 − cos 2πα)
(sin 2π(θ − α)− sin 2πθ) = g0 − B

2 sinπα
cos 2π

(
θ − 1

2
α

)

= g0 − B

2 sinπα
sin 2π(θ − φ), (2.6)

whereg0 is an arbitrary constant andφ = 1
2α − 1

4. The extra phase shift in the last line of (2.6) is trivial, but
it means that the integrals evaluated below are in a standard form. We now return to the second perturbation
equation (2.5). To obtain a consistency condition which fixes the value ofg0, integrate (2.5) from 0 to 1 inθ ;∫ 1

0G1(θ + α)dθ = ∫ 1
0G1(θ)dθ asG1(θ + 1) = G1(θ), so this gives

0 = ω + a

2π

∫ 1

0
sin 2πG0(θ)dθ. (2.7)

Substituting (2.6) into (2.7) and using (A.7) from Appendix A this implies that

−2πω

a
= sin 2πg0 J0

(
πB

sinπα

)
, (2.8)
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Fig. 2. The boundary ofL(0,0) for (1.4) withα = 1
2(

√
5 − 1) andA = 0.05 (numerically computed data points are shown as circles) together

with the prediction, (2.10) which is shown as a continuous curve.

whereJ0(z) is the Bessel function of order zero. From (2.8) it is immediate that the constantg0 can be determined
provided∣∣∣∣J0

(
πB

sinπα

)∣∣∣∣ ≥ 2πω

a
∼ 2π�

A
. (2.9)

This set defines the approximate phase-locked regionL(0,0) for A sufficiently small. In particular, the boundary of
this region is

� ∼ A

2π

∣∣∣∣J0

(
πB

sinπα

)∣∣∣∣ . (2.10)

The numerically computed boundary, together with this theoretical prediction, is illustrated in Fig. 2. The agreement
between theory and experiment is excellent forA = 0.05. Note thatJ0(0) = 1, so that asB → 0 (2.9) tends to the
standard result for the Arnold circle map as expected.

At largeB (2.10) becomes (using (A.8))

� ∼ A

2π2

(
2| sinπα|

B

)1/2 ∣∣∣∣ cos

(
πB

| sinπα| − π

4

)∣∣∣∣ , (2.11)

showing that the decay in the envelope of the boundary is proportional toB−1/2. Ding et al. [5] predict that the
tongue would get small at largeB, but do not suggest any scaling. Moreover, from the oscillating cosine term in
(2.11) we see that the width of the tongues is zero to lowest order at zeroes of the Bessel function, i.e., at

Bm ∼ (m− 1
4)| sinπα|. (2.12)

This pinching effect for the phase-locked regions will recur throughout this paper.
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3. The mode-locked regionL(1,0)L(1,0)L(1,0) (AAA small)

In the limit of B → 0 (the Arnold circle map),L(1,0) is qualitatively different fromL(0,0); it is a curve in the
(�,A) plane rather than a tongue. We therefore expect the width ofL(1,0) tends to zero asB → 0. To obtain an
asymptotic formula for such a region for smallA the parameters must be rescaled asA ∼ aε and� ∼ α + ωε

(0< ε � 1) so that (1.4) becomes

xn+1 ∼ xn + α + B sin 2πθn + ε
(
ω + a

2π
sin 2πxn

)
, θn+1 = θn + α. (3.1)

From considerations of the homotopy type, invariant curves inL(1,0) will be of the form

x = G(θ), G(θ + 1) = G(θ)+ 1, (3.2)

and so we pose an asymptotic solution of the form

x ∼ G0(θ)+ εG1(θ), (3.3)

with G0(θ + 1) = G0(θ)+ 1 andG1(θ + 1) = G1(θ). Substituting into (3.1) and equating terms of orderε0 and
ε1, respectively, gives

G0(θ + α) = G0(θ)+ α + B sin 2πθ (3.4)

and

G1(θ + α) = G1(θ)+ ω + a

2π
sin 2πG0(θ). (3.5)

If we poseG0(θ) = θ + h(θ) with h(θ + 1) = h(θ) thenh(θ) satisfies (2.4) and so, using (2.6),

G0(θ) = g0 + θ − B

2 sinπα
sin 2π(θ − φ), (3.6)

whereg0 is an arbitrary constant which we hope to determine at next order andφ = 1
2α − 1

4. The consistency
condition obtained from integrating (3.5) between 0 and 1 is

0 = ω + a

2π

∫ 1

0
sin 2π

(
g0 + θ − B

2 sinπα
sin 2π(θ − φ)

)
dθ, (3.7)

which can be rewritten, using (A.7) in Appendix A, as

0 = ω − a

2π
sin 2π(g0 + φ)J1

(
πB

sinπα

)
, (3.8)

whereJ1(z) is the Bessel function of order 1. Thus, as in Section 2, we find that (3.8) can be solved forg0 provided∣∣∣∣J1

(
πB

sinπα

)∣∣∣∣ ≥ 2π |ω|
a

∼ 2π |�− α|
A

, (3.9)

and so for sufficiently smallA the boundary of the mode-locked regionL(1,0) is given to lowest order by

|�− α| ∼ A

2π

∣∣∣∣J1

(
πB

| sinπα|
)∣∣∣∣ . (3.10)

Fig. 3 shows a comparison between this prediction and numerically calculated points on the boundary ofL(1,0) for
A = 0.05. Once again the agreement is excellent and the boundary shows theB−1/2 narrowing and the regular
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Fig. 3. The boundary ofL(1,0) for (1.4) withα = 1
2(

√
5− 1) andA = 0.05 computed numerically (data points are indicated by circles) together

with the prediction, (3.10), which is shown as a continuous curve.

pinching effect as expected from the largez asymptotics ofJ1(z) (see Appendix A, (A.8)) from which we obtain,
for largeB and very smallA,

|�− α| ∼ A

2π2

(
2| sinπα|

B

)1/2 ∣∣∣∣ cos

(
πB

| sinπα| − 3

4
π

)∣∣∣∣ . (3.11)

Moreover, sinceJ1(0) = 0, the tongue closes asB → 0 as expected from the comments about the tongue structure
for the Arnold circle map made at the beginning of this section.

4. Higher order mode-locked regions (AAA small)

For a general mode-locked region withρ = (p/q)α + (r/s) the most simple solutions will lie on the union ofs
closed curves which wrapq times around the torus and are shifted byr in thex-direction afters iterations of the
map. Thus, these curves are of the form

p

q
θ +G(θ), G(θ + q) = G(θ). (4.1)

In principle (4.1) could be used to generate first-order conditions as in previous sections, but the computations
rapidly become extremely complicated and we shall restrict ourselves to cases which illustrate the possibilities for
higher order mode-locked regions. These areL(r1,r2) with (r1, r2) equal to(0, 1

2) and(p/q,0).
To determineL(0,1/2) we will need the second iterate of the map to lowest order, so setting (r1, r2) = (0, 1

2) we
poseA ∼ aε and� ∼ r1α + r2 + ωε to obtain

xn+2 ∼ xn + 2(r1α + r2)+ B sin 2πθn + B sin 2πθn+1

+ε
(
2ω + a

2π
sin 2πxn + a

2π
sin 2π(xn + r1α + r2 + B sin 2πθn)

)
, (4.2)

with θn+1 = θn + α as usual.
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To obtain the lowest order approximation toL(0,1/2) we pose the asymptotic solutionx ∼ G0(θ)+εG1(θ), where
Gi(θ + 1) = Gi(θ), i = 0,1. Substituting into (4.2) and isolating terms of orderε0 andε1, respectively, (noting
that we expect the second iterate of the invariant curve to be the invariant curve shifted by 1 in thex-direction) gives

G0(θ + 2α) = G0(θ)+ B sin 2πθ + B sin 2π(θ + α), (4.3)

and

G1(θ + 2α) = G1(θ)+ 2ω + a

2π
sin 2πG0(θ)+ a

2π
sin 2π(G0(θ)+ 1

2 + B sin 2πθ). (4.4)

The leading order equation is easily solved, so the consistency condition is

0 = 2ω + a

2π

∫ 1

0
(sin 2πG0(θ)− sin 2π(G0(θ)+ B sin 2πθ))dθ. (4.5)

Although messy, the integral can be evaluated and turns out to be identically equal to zero (we omit the boring
calculation which leads to this boring conclusion). Henceω = 0 and we find essentially the same conclusion as for
the circle map:

|2�− 1| ∼ O(A2). (4.6)

After this rather disappointing result we move on to the general tongueL(p/q,0). Sincer2 = 0 the solution curve
is invariant, i.e., it is not necessary to consider the second iterate of the map. PosingA ∼ aε, � ∼ (p/q)α + ωε

and an invariant curve of the form(p/q)θ +G0(θ)+ εG1(θ) with Gi(θ + q) = Gi(θ), i = 0,1, we obtain from
(2.1) that

G0(θ + α) = G0(θ)+ B sin 2πθ, (4.7)

and

G1(θ + α) = G1(θ)+ ω + a

2π
sin 2π

(
p

q
θ +G0(θ)

)
. (4.8)

These equations are very similar to those obtained in Section 3, the only subtlety is that the period ofGi is nowq
rather than 1. By the same methods as used in earlier sections, (4.7) may be solved to obtain (as before)

G0(θ) = g0 − B

2 sinπα
sin 2π(θ − φ) (4.9)

and so the first-order consistency condition, obtained by integrating (4.8) from 0 toq, is

0 = qω + a

2π

∫ q

0
sin 2π

(
p

q
θ + g0 − k sin 2π(θ − φ)

)
dθ, (4.10)

wherek = B/2 sinπα. Let g′
0 = g0 + (pφ/q) then (4.10) is

0= qω + a

2π

∫ q

0
sin 2π

(
p

q
θ + g′

0 − k sin 2πθ

)
dθ = qω + a

2π
sin 2πg′

0

∫ q

0
cos 2π

(
p

q
θ − k sin 2πθ

)
dθ

= qω + a

2π
sin 2πg′

0

q−1∑
m=0

∫ 1

0
cos 2π

(
pm

q
+ p

q
θ − k sin 2πθ

)
dθ

= qω + a

2π
sin 2πg′

0


q−1∑

0

cos 2π
pm

q


∫ 1

0
cos 2π

(
p

q
θ − k sin 2πθ

)
dθ. (4.11)
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After this somewhat exhausting exercise we note that the bracketed sum is zero unlessp/q ∈ Z. Thus, the cusp-like
(high order contact) of the mode-locked regions observed forL(0,1/2) also occurs here unless the resonance is of
the form(n,0) for somen ∈ Z, i.e., the boundary of the tongue is of the form

|�− p

q
α| ∼ O(A2) if

p

q
/∈ Z. (4.12)

On the other hand, ifp/q = n for somen ∈ Z (i.e.,q = 1,p = n) then (4.11) becomes

0 = ω + a

2π
sin 2πg′

0

∫ 1

0
cos 2π(nθ − k sin 2πθ)dθ = ω + a

2π
sin 2πg′

0Jn(2πk) (4.13)

using (A.5). Recalling the definition ofk the boundary of this mode-locked region may therefore be written as

|�− nα| ∼ A

2π

∣∣∣∣Jn
(

πB

| sinπα|
)∣∣∣∣ . (4.14)

Note, of course, that we could have takennα (mod 1) and obtained the same result. Indeed, the different scalings
predicted by this analysis presumably explains why the majority of mode-locked regions observed in [6] have
rotation numbers of the formnα − [nα] (where [x] denotes the integer part ofx). Moreover, by (A.8), at relatively
largeB (4.14) becomes

|�− nα| ∼ A

2π2

(
2| sinπα|

B

)1/2 ∣∣∣∣ cos

(
πB

| sinπα| − 1

2
nπ − 1

4
π

)∣∣∣∣ . (4.15)

5. Numerical results

The aim of this section is two-fold. First, we check the theoretical predictions described above for the mode-locked
regions. Second, we look at how the mode-locked regions evolve outside the strict region of validity of the asymptotic
results.

The computations of Figs. 2 and 3 have shown that for smallA and moderateB the agreement between the
theoretically predicted form of the mode-locked regions and the numerically calculated boundary is very good. In
Fig. 4, we present similar calculations extended to a much larger range of the amplitude of the external forcingB.
One can see that the theoretical prediction forL(0,0), � ∼ B−1/2, is reasonably satisfied whenA = 0.1, although
violations from this behaviour start already atB ≈ 20 if A = 0.2. This emphasises the statement made at the
beginning of Section 2 that the asymptotic analysis is valid forA small andB of order 1. At larger values of
the non-linearity (A) and forcing there are two effects which are different to those expected from the asymptotic
analysis. First, the pinching at moderateB is much less marked than it is in the very smallA cases, where the
width of the mode-locked region in the�-direction very nearly vanishes. This is not surprising, since second-order
effects, ignored in the analysis above, become important. Second, there appear to be intervals ofB values over
which the width of the tongue vanishes. Both features are clearly seen in Fig. 1, whereA = 0.8, so we have chosen
this parameter value for a more detailed investigation. The tongues were numerically determined as regions of a
given constant rotation number. The latter was calculated using (1.5) via straightforward iterations of system (1.4).
The only trick was to choosen in such a way thatθn is as close as possible toθ0 (in other words, we took the
best recurrences of the driving map). For the golden meanα this corresponds simply to the choicen = Fk, where
Fk is a Fibonacci number. This choice essentially improves the accuracy compared to a randomly chosenn (1/n2

compared to 1/n). The boundary of the tongue was then located at a value of� (for fixedB), where the rotation
value sufficiently deviates from the given rational. The regionB ≈ 45 in Fig. 4b below, where the width of the
tongue appears to be zero, gives an impression on the accuracy of the method.
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Fig. 4. The boundary ofL(0,0) for (1.4) withα = 1
2(

√
5 − 1) over a large range ofB: (a)A = 0.1; (b)A = 0.2.

Fig. 5 shows the bifurcation diagram at the pinching point nearB = 0.7 (an enlargement of the structure inside
the dashed square of Fig. 1). To get a rough picture of the bifurcation structure in Fig. 5 we have computed the
saddle-node bifurcations by checking the transition from mono- to bistability crossing the bifurcation line under the
variation ofB with fixed�. This transition can be monitored by iterating a large number of initial conditions on a
line in phase space, where the values forx are equally distributed in the interval [0,1] andθ is fixed. In the case of
monostability all these initial conditions collapse to one point after some transients, while after the bifurcation we
obtain more than one point. This picture was the basis for more accurate computations of the saddle-node bifurcation
as the collision point of the stable and unstable invariant curves computed from forward and backward iteration.
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Fig. 5. Enlargement of the rectangle in Fig. 1 showing that the tongue does not actually pinch off completely; two curves of saddle-node
bifurcations (of invariant curves) cross.

There are three regions with qualitatively different dynamics. As shown in Fig. 6a and c, in regionsA andC
there is a single attracting closed invariant curve for the map (1.4), and an unstable invariant curve (not shown).
On crossing the bifurcation line marked in diamonds a simple saddle-node bifurcation of invariant curves produces
an additional pair of invariant curves, one stable and the other unstable, so in regionB (see Fig. 6b) there are two
stable invariant curves. Thus, there are two curves of saddle-node bifurcations of invariant curves, which intersect
at a bi-critical point. The dynamics of the quasi-periodic motion just above the bi-critical point D is illustrated in
Fig. 6d: intermittent behaviour associated with both of the stable invariant curves is clearly seen.

Another feature which influences the bifurcation diagram at larger non-linearity and forcing amplitudes is the
appearance of strange non-chaotic attractors. For a general discussion of such attractors see [3,9,14] and in the
context of quasi-periodically forced circle maps see [5–7]. A strange non-chaotic attractor is associated with the
apparent vanishing of the width of the mode-locked tongues at larger values ofB (B ∼ 3 in Fig. 1). This transition
has been described in [6,7]; the strange non-chaotic attractor appears through a non-smooth saddle-node bifurcation:
the stable and unstable invariant curves do not coincide at the bifurcation, but appear to touch on a set of points
whose projection onto theθ axis is dense. As has been argued in [7], the appearance of the strange non-chaotic
attractor withρ = 0 is very sensitive to perturbations, and as a resultρ appears to vary continuously as� passes
through zero, leading to a mode-locked region of zero (or very small) width.

Putting this information together, the multiple saddle-node bifurcations and intervals on which the width of the
tongue effectively vanishes, we obtain a global picture of theρ = 0 mode-locked tongue as shown in Fig. 7. Cutting
through this three-dimensional structure at constant smallA shows a number of bubbles (isolas) of saddle-node
bifurcations of invariant curves with small overlap regions between successive bubbles (as shown in Fig. 5). These
overlaps would presumably appear in the theory if the perturbation analysis above were pushed through to higher
order. AsA is increased, some of these bubbles are pulled apart, and intervals of (apparently) zero width for the
tongues appear between the successive bubbles. Note that since the rotation number is continuous, the tongue can
never vanish completely, and in an appropriate two-parameter projection the mode-locked region is represented by
a curve between the bubbles if the width really does go to zero. Fig. 7 is highly speculative and certainly incomplete
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Fig. 6. Phase portraits showing the dynamics in each of the four regionsA, B, C andD of Fig. 5. (a) The unique stable invariant curve atA; (b)
a pair of stable invariant curves atB; (c) the unique stable invariant curve atB; and (d) an orbit atD showing intermittency near the locus both
invariant curves which exist at nearby parameters.

(there must be some additional saddle-node bifurcations), but it fits the theoretical and numerical results of which
we are aware. The parameter values at which the bubbles first separate is a natural focus for further work on the
appearance of strange non-chaotic attractors, and we should emphasise that it is not clear whether the width of the
tongues can become zero, or whether the width is just very small.

6. General circle maps

The asymptotic analysis of Section 2 may be repeated for general maps of the form

xn+1 = xn +�+ εF (xn)+ BH(θn), θn+1 = θn + α, (6.1)

whereF andH are smooth periodic functions of period 1, 0< ε � 1, B is a positive real parameter andα is
irrational. By redefining� we may assume without loss of generality that bothF andH have zero mean. The
mode-locked regionL(0,0) can be found to lowest order by posing� ∼ ωε and looking for an invariant curve of
the formG0(θ)+ εG1(θ), whereG0 andG1 are periodic of period 1. In this case we obtain

G0(θ + α) = G0(θ)+ BH(θ), (6.2)
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Fig. 7. A schematic view of the conjectured structure of the mode-locked region in three-dimensional parameter space showing how the ‘bubbles’
of saddle-node bifurcations of invariant curves might separate at larger values ofA, producing sheet-like regions of the mode-locked tongues.

and

G1(θ + α) = G1(θ)+ ω + F(G0(θ)). (6.3)

The lowest order problem, (6.2), may be formally solved as a series solution

G0(θ) = g0 + B

∞∑
m=1

H(θ −mα), (6.4)

whereg0 is an arbitrary parameter. So, at least formally,G0(θ) = g0 + Bh(θ) whereh is a period 1, zero mean
function. The consistency condition is thus (integrating (6.3) from 0 to 1)

−ω =
∫ 1

0
F(g0 + Bh(θ)). (6.5)

SinceF is periodic of period 1, we may expand it as a Fourier series

F(θ) =
∑
k≥1

(Ak sin(2πkθ)+ Bk cos(2πkθ)), (6.6)

and so the integral on the right-hand side of (6.5) may be rewritten, assuming that the order of the sum and integral
can be exchanged, as

∑
k≥1

(
Ak

∫ 1

0
sin(2πkB(h(θ)+ B−1g0))dθ + Bk

∫ 1

0
cos(2πkB(h(θ)+ B−1g0))dθ

)
. (6.7)

The method of stationary phase can be applied to each of the integrals ifB is large:∫
cos 2πBψ(θ)dθ ∼ B−1/2

∑
m

1√
ψ ′′(θm)

cos 2π(Bψ(θm)+ 1
8sign(ψ ′′(θm))), (6.8)



240 P. Glendinning et al. / Physica D 140 (2000) 227–243

where the sum is over the saddle points ofψ within the range of integration. Assuming again that the order of
summations may be exchanged, then (6.8) applied to the expression of (6.7) gives

B−1/2
∑
m

1√|h′′(θm)|
∑
k≥1

Sk(h(θm)B + g0 + 1
8σm), (6.9a)

where

Sk(z) = Ak√
k

sin 2πkz+ Bk√
k

cos 2πkz (6.9b)

and the sum overm is of all the saddle points,θm, of the functionh in [0,1] andσm = sign(h′′(θm)). For eachm, the
sum overk in (6.9a) and (6.9b) defines the Fourier series of a perfectly well-behaved periodic function with period
1, which is at least as smooth asF (it is the function withkth Fourier coefficient equal to the Fourier coefficient of
F divided by

√
k, i.e.,D−1/2F(θ), whereD is the usual differential operator). Let this function beF(x), i.e.,

F(x) =
∑
k≥1

Sk(x), (6.10)

then ifB is large (but small compared toε−1), then (6.5) is

0 ∼ ω + B−1/2
∑
m

αmF(hmB + 1
8σm + g0), (6.11)

whereαm = 1/
√|h′′(θm)| andhm = h(θm).

Pinching occurs atB = B∗ such that∑
m

αmF(hmB
∗ + 1

8σm + g0) = 0 for allg0. (6.12)

For general functionsH andF (and henceF) there is no obvious reason why the pinching condition (6.12) should
hold for anyB∗, and so we expect that in general the pinching effect should not occur. In fact, we shall show that
pinching occurs due to some of the symmetries of the quasi-periodically forced circle maps generally considered.

Suppose thatH and so by (6.4)h is odd possibly after a rotation of coordinates. Then (and this is the important
condition) if θm is a stationary point, there is unique stationary point in [0,1], θ−m say, such that

h−m = −hm, α−m = αm, σ−m = −σm. (6.13)

Thus (6.9a) and (6.9b) can be written as a sum over|m|:

B−1/2
∑
|m|
α|m|

∑
k≥1

Sk(h|m|B + 1
8σ|m| + g0)+ Sk(−h|m|B − 1

8σ|m| + g0). (6.14)

Using (6.9b) the sum ofSks can be simplified, giving

2B−1/2
∑

{m|m>0}
αm sin 2πg0


∑
k≥1

Ak√
k

cos 2πk(hmB + 1
8σm)




+2B−1/2
∑

{m|m>0}
αm cos 2πg0


∑
k≥1

Bk√
k

cos 2πk(hmB + 1
8σm)


 . (6.15)
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Denoting the two functions defined by the Fourier sums in square brackets byP(z) andQ(z), respectively (for
z = hmB + 1

8σm), the consistency condition (6.5) is thus

−B1/2ω = sin 2πg0


 ∑

{m|m>0}
P(hmB + 1

8σm)


+ cos 2πg0


 ∑

{m|m>0}
Q(hmB + 1

8σm)


 .

Thus, we see immediately that if eitherP(z) = 0 for all z orQ(z) = 0 for all z, i.e., if eitherAk = 0 for all k ≥ 1
orBk = 0 for all k ≥ 0, then we obtain a separation of the variables and, e.g., ifQ(z) is identically zero, the lowest
order (largeB) condition for made-locking is

|ω| ≤ 2B−1/2

∣∣∣∣∣∣
∑

{m|m>0}
P(hmB + 1

8σm)

∣∣∣∣∣∣ . (6.16)

The right-hand side of this equation is independent ofg0 as it should be, and there is pinching provided that there
existsB∗ such that

∑
{m|m>0}

P(hmB
∗ + 1

8σm) = 0. (6.17)

SinceP is a periodic zero mean function, then (6.17) must be satisfied infinitely often.
It is worth emphasising that it is only the symmetry ofF and condition (6.13) on the coefficients associated with

the stationary points ofh that are required for this argument to hold. It does show that the pinching observed both
numerically and in physical experiments is a feature of the symmetries of the problem.

For the standard example considered above,F(x) = (A/2π) sin 2πx andH(x) = sin 2πθ with

h(θ) = − 1

2 sinπα
sin 2π(θ − φ)

with φ = 1
2α − 1

4. This has a (symmetric) pair of stationary points and we may takeθ1 = 1
2α with h1 = h(θ1) =

−1/(2 sinπα) andh′′(θ1) = −4π2h1 so thatσ1 = −signh1. Substituting into (6.11) withA1 = A/2π and all the
other Fourier coefficients equal to zero, we obtain

1

π

(
2| sinπα|

B

)1/2

cos 2π

(
− B

2 sinπα
+ 1

8 + 1
8sign(sinπα)

)
,

which after a little more thought, is equivalent to (2.11).
We should emphasise that this analysis is not, strictly speaking, valid. In the perturbation expansions to obtain

(6.2) and (6.3) we have assumed thatB is of order 1 (otherwise the desired splitting of the different orders does not
hold). On the other hand, in order to apply the method of stationary phase we have assumed thatB is large. Thus,
our assumptions are only valid if we can chooseB to be order 1 and large enough for the method of stationary phase
to give reasonable results. This is clearly unreasonable, but we feel that the above analysis, flawed though it is, still
provides an explanation for the observed phenomena and might be made more rigourous if sensible scalings for
largeB and smallA could be found. This caveat does not apply to the analysis of earlier sections because it was
not necessary to assume thatB is large there —it is relevant, of course, to the asymptotic expressions of (2.11) and
(3.11) in which largeB expansions of the Bessel functions are used.
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7. Conclusion

Using perturbation theory we have given a fairly complete description of the dominant mode-locked regions for a
quasi-periodically forced circle map in the limit of small non-linearity. These regions have a relatively complicated
structure compared to the equivalent regions in simple circle maps. Our main motivation for this work was the
understanding of the appearance of strange non-chaotic attractors in such maps. Although this paper does not
address this interesting problem explicitly we believe that these results should help orient research into the structure
of such attractors in parameter space.

Note.The conjecture in Section 5 about higher order perturbation theory and the overlap of the tongues has been
confirmed: see Ref. [18].
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Appendix A

For the evaluation of various integrals which arise in this paper we have relied on Abramowitz and Stegun [1,
Chapter 9]. In this appendix the main results used are collected together for the readers convenience.

Forn a non-negative integer

1

π

∫ π

0
cos(nθ − z sinθ)dθ = Jn(z), (A.1)

whereJn is the Bessel function of ordern. Also

J−n(z) = (−1)nJn(z), (A.2)

so that

Jn(z) = J−n(−z) = (−1)nJn(−z), (A.3)

and

|J|n|(|z|)| = |Jn(±z)| = |J±n(z)|. (A.4)

Our normalization is a little different, but from (A.1) it is easy to see that∫ 1

0
cos 2π(nθ − z sin 2πθ)dθ = Jn(2πz) (A.5)

and by symmetry arguments∫ 1

0
sin 2π(nθ − z sin 2πθ)dθ = 0. (A.6)

Thus, ifC, k andφ are real constants andn is a non-negative integer,
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0
sin 2π(C + nθ − k sin 2π(θ − φ))dθ =

∫ 1

0
sin 2π(C + nφ + nθ − k sin 2πθ)dθ

= sin 2π(C + nφ)

∫ 1

0
cos 2π(nθ − k sin 2πθ)dθ

= sin 2π(C + nφ)Jn(2πk). (A.7)

Note that in this calculation we have used the fact that iff is integrable and of period 1 then
∫ 1

0 f (θ)dθ =∫ 1
0 f (θ − φ)dθ for any real constantφ. Finally, asz → ∞,

Jn(z) ∼
(

2

πz

)1/2

cos

(
z− 1

2
nπ − 1

4
π

)
+ O

(
1

z

)
. (A.8)
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