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We consider complex dynamical behavior in a simple model of production dynamics,
based on the Wiendahl’s funnel approach. In the case of continuous order flow a model
of three parallel funnels reduces to the one-dimensional Bernoulli-type map, and
demonstrates strong chaotic properties. The optimization of production costs is possible
with the OGY method of chaos control. The dynamics changes drastically in the case of
discrete order flow. We discuss different dynamical behaviors, the complexity and the

stability of this discrete system.
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1. INTRODUCTION

A production system consists of a number of work
units, in which sets of different parts are produced
corresponding to customer orders. The orders
flow through the production system and cause
the manufacturing of the requested quantities. As
orders arrive at a work system, they form a queue
of waiting orders and build up a buffer inventory.
The problem of production control can be for-
mulated as that of regulating the flow of orders
in such a way that given aims (e.g., minimal costs
and due date reliability) are achieved.

The production process is described in a flow-
oriented manner with a funnel model, according to
Wiendahl (1987). A funnel represents a work unit,
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which could be an individual work place, a group
of work places, or an operation area. The funnels
are connected by the flow of “materials” (parts,
orders). From outside, orders are pushed into the
system. As they arrive, they fill the funnel and flow
out of the funnel after processing. Therefore the
funnel opening symbolizes the performance of
the work system, which can vary according to the
work capacity made available. Irregular oscillation
of funnel filling levels may disturb the flow and
reduce the performance of the system.

Our approach is to describe the production
process as a nonlinear dynamical system (other
applications of nonlinear methods to manufac-
turing systems have been recently pursued by
Bunimovich, 1999; Bartholdi et al., 1999; Hanson



180

et al., 1999; Dias-Rivera et al., 1999). Thus, we
consider all outside orders as regular (periodic or
even constant) functions of time, and all system
parameters as constants. In such circumstances the
only source of complex irregular behavior can be
the internal nonlinear dynamics. The real produc-
tion systems are rather complex in the sense of the
number of different work places and connections
between them. Our aim in this work is to discuss
the optimization of the production costs of a sim-
ple three-funnel model with continuous flow and
chaotic behavior described by Chase et al. (1993);
Schiirmann and Hoffmann (1995). In particular,
we demonstrate that the chaos can be controlled
to minimize some cost function. In Section 3 we
generalize this simple funnel model by introducing
a discrete order flow. The dynamic of the model
now depends on the work velocities and can be
irregular or periodic. Remarkably, the irregularity
is weaker than chaos; in particular the Lyapunov
exponent of the mapping is zero. We discuss the
complexity properties of this system in details.

2. A SIMPLE CONTINUOUS FUNNEL
MODEL WITH A “STRANGE
BILLIARD” AND ITS CONTROL

The simple funnel model to be considered in this
paper consists of one “input” funnel, which is
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connected with three following ones that work in
parallel. At any time the material flow is directed
from the first funnel to only one of the three
funnels 1, 2, 3 (Fig. 1). To which of these funnels
the material flow is directed, depends on the
history of the system and is regulated by the
following switching rule: if one of the funnels
becomes empty, the flow is immediatly switched to
this funnel and it remains here until the next one
becomes empty. In this section we always assume
that the material flow is continuous which means
that the switching can occur at any moment of
time. We would like to stress that “empty” does
not necessarily mean zero level: we can take any
level as a reference and measure the contents of
each funnel with respect to this level.

If the total production rate of the three funnels
is less than the material inflow, the levels of the
funnels will grow in average; and if the production
rate is larger than the inflow, the levels of the
funnels will decrease. Thus, a nontrivial statisti-
cally stationary regime is only possible for the
balanced system, where the total production rate
of the three funnels is equal to the material inflow.
Normalizing the input to unity, this means

Uy +u+uz =1, (1)
where u; are the production rates of the funnels.
From the balance condition it follows, that the
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FIGURE 1 A simple funnel model with three funnels. Solid line: funnel x; is filled from the input flow until some other funnel will
be empty. Dashed lines illustrate the other two posible cases, when funnel x, or x3 is being filled.
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total amount of the material in three funnels is a
constant (defined by the initial conditions):
X1 +x2+x3="U. (2)

We can write the equations of motion as a set of
ordinary differential equations for the contents of
the funnels x;:

5(,' = —U; + 6ik7 (3)
where the time-dependent index k corresponds to
the funnel which is being filled at a given moment
of time. An example of the time dependence of x;
is shown in Figure 2.

The dynamics of the model is three dimensional,
where the coordinates x; (representing the dy-
namical degrees of freedom) are the contents of
the funnels. Because the sum of these filling levels
is a constant, a point in the phase space (xi, x,, x3)
which describes the state of the system moves on
the plane (2). The condition x;>0 defines the
triangle which is the phase space of our model.
According to (3) the motion is linear until the
trajectory hits the boundary of the triangle. At the
hit the input flow switches and a new straight line
begins. Thus, we have straight line motions with
reflections at the boundaries. These dynamics
were called “‘strange billiards” by Schiirmann
and Hoffmann (1995), because (contrary to the
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billiards systems usually considered in classical
mechanics) the reflection angle is fixed and
independent on the incident angle.

As usual in billiard systems, the dynamics can be
easily reduced to the mapping of the boundary
onto itself — the Poincaré map. This mapping can
be obtained by solving the equations of motion (3)
between the reflections, the result is a piecewise-
linear function having 6 segments of constant
slope (Fig. 3). The mapping has one discontinuity
point and the absolute value of its slope is larger
than one. Therefore it is topologically equivalent
to the dyadic Bernoulli map.

Because the Bernoulli map has a natural
Markov partition, the invariant probability dis-
tribution can be found analytically. According to
this distribution, shown in Figure 3, we can find
different statistical characteristics of the work
process, in particular the cost function. Here we
assume that every switching of the inflow direction
causes a fixed cost K. Then the average costs per
time unit are

k=K lim &,
T—oo T
where N7 is the number of switches during the
time interval 7. As we have the statistical
description formulated in terms of the Poincaré
map, it is easy to find the average time between
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FIGURE 2 The funnel fillings levels x; (solid line), x, (dot-dashed line) and x; (dashed line) as functions of time. The sum of these
values is constant, and x;, x5, x3 > 0. The flow rates are u; = u; = 0.4, u3 =0.2, correspondingly the slopes of the curves are different.
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FIGURE 3 Lower panel: The Poincaré map for the three-
funnel model with the production rates u; =0.5, u,=0.3 and
u3=0.2. S, and S, , | are the successive reflection points of the
triangle circumference coordinate S. The small circles represent
the period-3 orbit that minimizes the cost function. Upper
panel: the invariant probability distribution.

switches

= lim —

T N—oo NT
which is inversely proportional to the cost
function:

k=X
T
The average time can be easily found analytically
through the invariant probability distribution.
We now address the problem of minimizing the
cost function, by controlling chaos. According to
Ott et al. (1990), it is possible to stabilize periodic
orbits inside chaotic regions by using the so-called
OGY method of chaos control. If these orbits have
a larger mean switching time, then the cost
function will have a lower value than for the
chaotic regime. It is straightforward to find the
periodic points of the Bernoulli map numerically,
and to calculate the corresponding mean switching
times. The results are shown in Figure 4. The
minimum of the cost function is reached on the
simplest period-3 periodic orbit when all three
funnels are filled in a cyclic manner: 1 — 2 — 3 —
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FIGURE 4 The cost function for the cycles of different
periods, and the average one (dashed line). The cycle of period
3 yields the global minimum.

1 -2 —3—1.... Thus, controlling the simplest
period-3 orbit minimizes the cost function.

The controlling strategy is straightforward. As
one of the funnels is becoming empty, we have to
check if the filling levels of the others are smaller
or larger than the coordinate of the period-3 orbit.
In the former case one has to switch slightly before
the funnel is empty, in the latter case one has to
switch after the zero level is reached. In this way it
is possible to get the trajectory closer to the desired
orbit, and finally to stabilize it.

3. THE SIMPLE FUNNEL MODEL
WITH DISCRETE ORDER FLOW

3.1. Formulation of the Problem

In this section we generalize the model discussed
above to the case of discrete order flow. We
assume that the orders are coming every unit of
time. We take the discretization interval to be
equal 1, then the total contents of the funnels is
another parameter of the problem. We could also
normalize in another way: to assume that the total
contents is 1 and the discretization interval is Az #
1. Correspondingly, the outflow from the funnels
1-3 happens discretely, at the time intervals u;!.

The equations of motion (3) remain the same,
but the switching rule has to be changed. Now the
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switching can occur only at integer times, and we
use the following rule: if at time ¢ =n the level of
the i-th funnel is less or equal to zero Figure 5,
then this funnel starts to be filled (it can happen
that two funnels have negative levels, in this case
we use a prescribed preference scheme). Note that
the level of the funnel is determined as a continu-
ous variable in this scheme.

Summarizing, instead of the continuous-time
dynamics (3) we have the discrete-time dynamics

xi(t+ 1) = xi(t) — ui + (1) 4)

The system must be be balanced, i.e., the total
input is equal to the total outflow. This property
should be formulated for the discrete case as well:

SusS(or e

i=1

Here u; are the production rates and 7; are the
times of the work process for one workpiece. From
(4) and (5) it follows that the sum of the variables
x; is an integral of motion:

3
Z x; = X = const. (6)
i=1

As already mentioned, the value of X is one of the
important parameters of the problem.

0 20 40 60
time

FIGURE 5 The funnel filling levels x;, x, and x5 as a function
of time. The sum of these values is constant. The markers
denote the discrete time. Note that the switching takes place if
one of the variables x; becomes negative or zero.

3.2. Rational Production Rates

We start with the case when all production rates
are rationals

Di
U =—, 7
1 q ( )

with some integers p;, ¢q. We show now that all
motions in this case are periodic. Let us consider
the g-th iteration of (4):

xi(t+q) = x(t) + pi + N, (8)
where

t+k—1

N,' = Z 6[k(7’)

is the total inflow of the funnel i during this time
interval. Because p; and N; are integers, it follows
from (8) that the fractional parts of x; are inte-
grals of motion. Thus, we have a mapping defined
on a bounded set of integers. Therefore, eventual-
ly every trajectory is periodic.

This conclusion is supported by numerical
experiments, where we for every initial condition
determined the period of the emerging periodic
orbit. We show the results for three values of the
total filling level X in Figure 6. The period in these
pictures denotes the total number of switches on
the periodic trajectory, the minimal period is
obviously 3. We observe the following features,
which appear to be rather unusual for dynamical
systems:

1. The dynamics is multistable, and the level of
multistability increases with the parameter X.
Cycles of different period coexist.

2. All the cycles are neutrally stable, moreover,
they appear in two-parametric families that fill
whole regions on the plane of variables. These
regions are very ordered if X is an integer, and
less ordered for irrational X.

Analytically, the property 2 is a direct conse-
quence of (8): adding small perturbations to Xx;
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FIGURE 6 The period of the eventual periodic trajectory in
dependence on initial point, shown in the initial coordinates
(x1,X»). The production rates are u;=0.4, u,=0.4, u3=0.2.
The total filling level is X =3 in (a), X = 2V/3in (b) and X =10
in (c). The color/grey codes for the periods are different on
different panels. (See Color Plate 1.)

does not change the dynamics that is essentially
determined by the integer part of the variables x;.
This property can be also demonstrated geome-
trically. Consider a closed trajectory as shown in
Figure 7. Shifting this trajectory parallel to any of
its sides (or a combination of such shifts) leads to
another allowed trajectory, if the “nodes” do not
cross the borders of the triangle x;+x,+x3=X.
One can see, that the possible switching points
for a given periodic orbit form a triangle, whose
corners are given by the condition that two
nodes lie exactly on the border of the triangle
X1+ X+ x3=4X.

3.3. Irrational Production Rates

If at least two production rates u; are irrational,
periodic orbits do not exist. This follows simply
from the observation, that for irrational u; the
condition x{r+N)=x(r) cannot be fulfilled. Nu-
merical simulations demonstrate that the processes
in the system are rather irregular. The situation
here is similar to that in the linear parabolic maps,
described recently by Zyczkowski and Nishikawa

FIGURE 7 A periodic trajectory of the discrete system,
shown in x; —x, coordinates (solid line). The dots mark the
integer moments of time. The trajectory can be shifted unless
the dots do not cross the borders of the triangle; one possible
position is shown with the dashed line.

(1999). In all numerical calculations presented
below we use the production rates

6 0 1
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where 6 = 1.3247. .. is the spiral-mean number (the
real root of 3 —60—1 =0). Also, we consider the
fixed total level of the funnels to X' =10. We have
performed numerical experiments with some other
parameter values, they demonstrate the same
qualitative features.

3.3.1. Phase Space Portrait

The mapping defined by (4) is volume-preserved,
but not one-to-one. Due to the overlapping of the
iterations, the final attractor looks like a set of
closed domains, see Figure 8. A similar structure
of the attracting set have been observed by
Zyczkowski and Nishikawa (1999).

3.3.2. Complexity

There are different complexity measures that
allows one to characterize a time sequence (see
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FIGURE 8 The structure of the phase space of the mapping (4). In (a) only points outside the triangle (i.e., the points where
switchings occur) are shown. The attractor is built by 10000 points of one trajectory (with transients discarded). A small part of (a) is
enlarged in (b); here one can see that the attractor consists of open domains.

Badii and Politi, 1997). The first step is to intro-
duce a symbolic representation of the process. The
natural symbolic coding with three symbols 1, 2, 3
corresponds to the sequence of the funnels that
are filled. Not all combinations of three symbols
are possible: a repetition of a symbol is forbidden.
This allows us to reduce the symbolic representa-
tion to two symbols. Namely, we associate to the
transitions 1 — 2,2 — 3,3 — 1 the symbol 1, and to
the transitions 2 — 1,1 — 3,3 — 2 the symbol —1.
Then, as one can easy see, the initial state and the
sequence of 1s and — 1s are sufficient to reproduce
the full sequence of three symbols 1,2,3. Remark-
ably, in the new two-symbol representation all
combinations of two symbols are possible. So the
maximal possible number of different words of
length » is 2”. This number will be realized if the
sequence is random. For chaotically generated
sequences (e.g., this is the case for the continuous-
flow system described in Section 2 above) one
expects the number N,, of different words of length
n to grow exponentially N, e™, where h is the
topological entropy of the system (Katok and
Hasselblatt, 1995).

To characterize the complexity, we have found
all sequences up to length 30, the results are pre-
sented in Figure 9. The number N, increases de-
finitely slower than any exponent, the best fit for
n=13,...,30 gives the power law N,xn'?’. A
similar power-law increase of the number of words
have been already found for quasiperiodically
forced systems by Pikovsky et al. (1996). To
classify the complexity, we remind that for a
periodic symbolic sequence the number of possible
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FIGURE 9 Characterization of complexity of the two-symbol
symbolic sequence (filled circles). The dashed line has slope
1.27. For comparison we show the corresponding curves for the
fully random sequence of two symbols (open circles), for a
periodic sequence (filled boxes), and for quasiperiodic se-
quences with two frequencies (open boxes) and with three
frequencies (open triangles). In the latter two cases the number
of words grows as power laws o n and oc n*?, respectively.

words is limited by the period, thus N, does not
grow with n. A quasiperiodic symbolic sequence
may demonstrate the power-law increase of the
number of the words. Thus, the adopted measure
of complexity reveals similarity to quasiperiodi-
cally generated symbolic sequences. Remarkably,
this similarity is not seen in the correlations.

3.3.3. Correlations

The autocorrelation function have been calculated
for the funnel states x;(¢); the results are presented
in Figure 10. The correlations decay up to level ~
0.01, but from these figures we cannot conclude
what are the spectral properties of the process
exactly. Indeed, according to the general spectral
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FIGURE 10 The correlation functions of time series x; (a), x, (b), and x3 (c¢). The correlations are small although we cannot

conclude that they vanish for large times.
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FIGURE 11 Integrated correlation functions (9): (a) the correlation function of the variable x; (Fig. 10a); (b): The correlations of

the symbolic sequence of two symbols, as described in text.

theory (Cornfeld et al., 1982), the spectrum can
have a discrete, an absolutely continuous, and a
singular continuous parts. The discrete spectrum
corresponds to a non-decaying part of the cor-
relation function that oscillates periodically or
quasiperiodically in time. The absolutely continu-
ous spectrum corresponds to a decaying correla-
tion function. Finally, the singular continuous
(fractal) spectrum corresponds usually to a cor-
relation function that decays as a power law, or
to a function that occasionally has some bursts.
Different examples of fractal spectra can be found
in papers by Feudel et al. (1995); Pikovsky et al.
(1995). To distinguish between the possibilities, we
use the Ketzmerick formula (Ketzmerick et al.,
1992), which gives the correlation dimension D, of
the spectrum:

cint(T) = %icz(t) x TP 9)
=0

Here ¢(?) is the correlation function, and ¢ (7T') is
the so-called integrated correlation function. We
present the integrated correlation functions (for
the variable x; and for the symbolic sequence of
1s and —1s described above) in Figure 11. They
show a power-law decay with D, = 1. This suggests
that the spectrum of the process is purely abso-
lutely continuous. We note here, that quasiperiodic
symbolic sequences demonstrate purely discrete
spectrum.

3.3.4. Stability

As it follows from the equations of motion (4), all
the trajectories are neutrally stable in the linear
approximation. Correspondingly, both Lyapunov
exponents are zero. However, for finite perturba-
tions we observe instability when two neighboring
trajectories fall on different sides of the borders
of the triangle (6). Our numerical experiments
demonstrate that preimages of the borders are
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everywhere dense. This means that any two initial
points will eventually diverge, what can be de-
scribed as a weak sensitivity to initial conditions.
For initially closed points 56(1), 55(2), we can esti-
mate the characteristic time before their images
are on different sides of the cutting lines as
Tinst = | A%

4. CONCLUSION

We have considered a simple balanced three-
funnel model of production dynamics, both for
continuous and discrete order flow. In the
continuous case the system demonstrates strong
chaotic properties. This allows one to use the
methods of chaos control to minimize the cost
function. We have demonstrated that the simplest
periodic orbit minimizes the switching costs, and
described how to control this orbit.

The case of discrete order flow exhibits non-
trivial complex dynamics. Now the dynamical
properties depend on the production rates; if
they are rational, the dynamics is periodic. For
irrational production rates we have observed
dynamics that shares properties of order and
chaos. In particular, the motion is neutrally stable
in the linear approximation, but has continuous
spectrum. These aspects of the dynamics resemble
the properties of some previously studied com-
plex non-chaotic systems. Search for similar prop-
erties in other production systems appears to be
promising, and will be subject of future research.
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