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Critical point of tori collision in quasiperiodically forced systems

Sergey P. Kuznetsov,1 Eireen Neumann,2 Arkady Pikovsky,2 and Igor R. Sataev1
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We report on a type of scaling behavior in quasiperiodically forced systems. On the parameter plane the
critical point appears as a terminal point of the tori-collision bifurcation curve; its location is found numerically
with high precision for two basic models, the forced supercritical circle map and the forced quadratic map. The
hypothesis of universality, based on renormalization group arguments, is advanced to explain the observed
scaling properties for the critical attractor and for the parameter plane arrangement in the neighborhood of the
criticality.

PACS number~s!: 05.45.Df, 05.10.Cc
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I. INTRODUCTION

Transition to chaos via quasiperiodicity is one of the m
common scenarios of the onset of temporal disorder in
namical systems. One rather convenient way to study su
details of such a transition is to use quasiperiodically forc
systems: in these models the frequency ratio appears a
independent parameter, and can be effectively contro
both in numerics and in experiments. It has been discove
that in quasiperiodically forced systems the transition fr
order to chaos is typically mediated by strange noncha
attractors~SNAs!. The termstrangerefers to the geometrica
structure of the attractors, while the termnonchaoticindi-
cates absence of sensitivity of the dynamics to initial con
tions ~all Lyapunov exponents of SNA’s are nonpositive!.
Nevertheless, trajectories on SNAs possess high sensit
with respect to the phase of the quasiperiodic force, and
to this property the set of trajectories appears to be a fra
object rather than a smooth torus. The SNAs were first
scribed by Grebogiet al. @1# and since then have been e
tensively studied numerically@2–17# and experimentally
@18–20#. Moreover, SNAs have been shown to be relevan
the analysis of the Schro¨dinger equation with a quasiperiod
potential@2,21#.

Recently, the approach based on the concepts of sca
and the renormalization group~RG!, which has been proved
to be extremely fruitful for understanding transitions
chaos, has been applied to the problem of the onset
SNA. Two situations have been analyzed with this approa
The first, the so called blow-out transition to the SNA, w
reported in@22#. The second case relates to the terminal po
of the torus-doubling bifurcation curve, the TDT poin
where the regions of torus, double torus, SNA, and ch
meet together in the parameter plane@13#.

In this paper we study the dynamics associated with
terminal point of the bifurcation line, where a stable tor
collides with an unstable one. We call it theTCT point~tori-
collision terminal point!. At this point the bifurcation lines of
smooth@23# and fractal@12# torus collisions meet togethe
the attractor at this point is a fractal. Our main tool is t
renormalization group. In particular, it provides univers
constants describing the scaling properties of phase s
and parameter space associated with the TCT point.
PRE 621063-651X/2000/62~2!/1995~13!/$15.00
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The paper is organized as follows. In Sec. II we discu
the phenomenology of tori collision in quasiperiodical
forced systems and outline the topography of the param
plane. A method based on rational approximations to
frequency of driving allows us to find the TCT point wit
high accuracy. In Sec. III we formulate the renormalizati
group approach and study the fixed point of the RG trans
mation. The universal scaling properties of the dynam
which follow from the RG analysis, are derived and co
firmed numerically in Secs. IV and V.

II. TCT CRITICAL POINT IN QUASIPERIODICALLY
FORCED MAPS

In this section we introduce model maps to be studied
describe the critical situation, which we call the TCT poin
First, we discuss two cases of torus-torus collision, nam
the smooth and the fractal collision, and demonstrate that
corresponding bifurcation lines meet at the TCT point. Ne
we describe a method to determine this point, which is ba
on rational approximations to the frequency of the quasip
odic force.

A. Smooth and fractal tori collisions

As the first example we consider a quasiperiodica
forced circle map

xn115xn1b2
K

2p
sin@2p~xn1c!#

1e sin~2pyn! ~mod 1!, ~1!

yn115yn1v ~mod 1!.

The dynamical variablex is defined on the circle 0<x,1.
The variabley describes the phase of the external force
also varies from 0 to 1. The parametersK andb are the usual
parameters of the circle map, while the amplitudee and the
frequencyv characterize the forcing: rational frequenciesv
correspond to periodic, and irrational to quasiperiodic dr
ing. In this paper we fix the frequency to be equal to t
inverse golden meanv5(A521)/2.
1995 ©2000 The American Physical Society
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FIG. 1. The bifurcation diagram of the quasiperiodically forced circle map~1! on the (b,e) plane, for fixedk52.5. Regions of torus,
intermittent chaos, and two types of SNA are presented. The panels A and B show the enlarged boxes of the upper panel. The pha
illustrating the dynamical regimes at the marked points are depicted in Fig. 2 below. In the upper panel one can observe joining o
different boundaries of the torus area at the TCT critical point.
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We intend to consider here only the supercritical cir
map,K.1. In this case the map as a function ofx is irre-
versible and nonmonotonic, i.e., it has maxima and m
ima. For a given K it is convenient to set c
5arctan(AK221)/2p to place the minimum of the map ex
actly at x50. We take an arbitrarily fixed value ofK52.5
~see the discussion below of the role of this parameter! and
present the numerically obtained chart of the parameter p
(b,e) in Fig. 1. The regions of different dynamical regim
are shown in gray scale. The phase plane portraits at re
sentative points marked by crosses illustrate different
namical regimes~Fig. 2!.

To understand in more detail the arrangement of the
rameter plane let us start with the vanishing amplitude of
external forcee50. One can easily find a value ofb for
which the map~1! has a stable and an unstable fixed point
the region wheredxn11 /dxn.0; see Fig. 3. With increasing
b these fixed points come closer to one another; finally, t
collide ~the multiplier of the fixed point becomes equal to
and then disappear. The moment of collision correspond
the tangent, or saddle-node, bifurcation@24#. After that, in
the region where the former fixed points were located
narrow channel remains, which the dynamical variablex
passes very slowly. In the context of the transition to cha
the motion in the channel is a laminar phase of type-I int
mittency; reinjection of the trajectories after passage thro
the channel corresponds to one rotation ofx around the
circle.
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If the external force is turned on, theneÞ0, and instead
of a stable fixed point we obtain an attractor, represented
a smooth closed invariant curve; its size grows with the a
plitude of the force. In the context of continuous-time d
namical systems, this invariant curve may be thought of a
cross section of a two-dimensional torus; it is common us
to term such an attractor a torus. Note that an unstable t
exists nearby, emerged from the unstable fixed point. W
increasingb, one observes a similar transition as describ
above, but for the tori rather than for the fixed points. That
the two tori, one stable and the other unstable, come cl
meet, and disappear~see Fig. 3!. This is the case of a smoot
tori collision. At the bifurcation point the stable and unstab
tori coincide and form a single semistable torus. This is
situation at the instability threshold, and the Lyapunov exp
nent at this moment is zero~see@23# for details!. This bifur-
cation occurs at some bifurcation curve in the parame
plane (b,e) ~Fig. 1!. Beyond the bifurcation an intermitten
regime appears, which may be regarded as a version
type-I intermittency modified by quasiperiodic driving. I
Fig. 2 this transition is illustrated by panels I and II.

If we start from the tangent bifurcation in the unforce
system, and increasee following the line of the smooth tori
collision, we observe that the semistable torus grows in s
with the forcing amplitude~Fig. 4!. Finally, at b'0.38, e
'0.13, this torus touches the linex50, and this is what we
call the tori-collision terminal critical point.
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FIG. 2. Illustration of smooth
and fractal tori collisions. The
numbers on the panels correspon
to the points marked in the bifur
cation diagram Fig. 1. In I, III,
and IV the stable and the unstab
tori are shown with bold dots and
dashed line, respectively. Th
transition I→II is the smooth tori
collision. The transition III→IV
→V→VI is a fractal tori colli-
sion. Near the collision~panel IV!
the stable torus is very rumpled
The regimes V and VI differ in
Lyapunov exponent; it is negative
for V ~thus it is a SNA! and posi-
tive for VI.
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As mentioned, at the bifurcation line of the smooth to
collision the torus has zero Lyapunov exponent; the sam
true at the TCT point. However, at the moment of touch
the linex50 one trajectory on the torus becomes supersta
and has a Lyapunov exponent equal to minus infinity. Mo
over, this superstable trajectory must be dense on the cri
torus because of the quasiperiodic nature of the dynam
Such a combination of properties—a threshold of instabi
for the invariant set as a whole, and the presence of
superstable trajectory—means that the critical torus has t
a fractal.

There is another bifurcation line of tori collision in th
diagram of Fig. 1, which cannot be followed down toe50.
On this line the stable and unstable invariant curves tou
but do not coincide. This means that at least one of
curves must be nonsmooth, corresponding to a fractal to
As shown in Ref.@12#, such a bifurcation gives rise to
strange nonchaotic attractor. In Fig. 2 this transition is illu
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trated by panels III–VI.1

From Fig. 1 one can see that both the bifurcation lines
smooth and fractal tori collisions meet at the TCT critic
point. Hence, this point is of most importance for unde
standing the dynamics of the system because all rele
regimes and transitions are present in the neighborhoo
this point.

We argue that the properties of dynamics at the TCT po

1To distinguish the SNA domains we used a numerical techni
based on the phase sensitivity exponent@11#. Because of the finite
resolution of this technique, we cannot exclude the possibility t
fractalization of the stable torus occurs, not before, but just at
moment of the tori collision. If this is the case, then the regi
marked as SNA-1 in Fig. 1 is occupied in fact by the regimes
smooth tori. To solve this problem, a special theoretical and
merical study is needed, which is beyond the scope of the pre
work.
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FIG. 3. Illustration of saddle-node collision.~a! The bifurcation of collision of stable and unstable fixed points in the autonomous c
map.~b! The bifurcation of tori collision in the presence of quasiperiodic forcing.
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are universal. Indeed, if we go along the line of smooth t
collision, the TCT point is that where the attractor touch
the singular point of zero derivative. Thus, it is essential t
this singularity should be a quadratic extremum. One mi
expect~and this expectation will be confirmed by the reno
malization group analysis below! that any one-dimensiona
map having a quadratic extremum and demonstrating a
gent bifurcation will exhibit at some point of the parame
space the same kind of criticality under golden-mean qu
periodic driving. In particular, for the circle map one can t

FIG. 4. The invariant curve at the smooth tori-collision poin
for different values ofe. The smallest curve corresponds to t
smallest forcing amplitudee; ase grows the curve becomes large
and finally at the TCT critical point it touches the linex50. This
last invariant curve is fractal.
i
s
t
t

n-
r
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other supercritical values of the parameterK. For eachK
.1 a TCT criticality may be found at some definiteb ande.
In other words, there exists a~presumably smooth! TCT
curve in the three-dimensional parameter space (K,b,e).
However, the situation will be distinct if the singularity o
the map is not quadratic. For example, forK51 the circle
map has a cubic inflection point, and the nature of criti
behavior becomes different; this case will be discussed e
where. The situation becomes yet more unclear when
singular point disappears~for K,1); we plan to study this
case in the future.

To support the argument that the existence of the T
critical point is rather a general property of forced noninve
ible maps with a quadratic extremum, we present one m
example, a quadratic~logistic! map under quasiperiodic forc
ing:

xn115xn
21b1e sin~2pyn!,

~2!
yn115yn1v ~mod 1!, v5~A521!/2.

For vanishing amplitude of the external forcee50 and small
b, this map possesses a stable and an unstable fixed poin
some value ofb.0 they collide and disappear via the ta
gent bifurcation.

If external force is present (eÞ0), we have a stable an
an unstable torus that collide at someb. On increasing the
amplitude of the external force and going along the bifur
tion curve, we finally reach the situation where the clos
invariant curve at the threshold of the torus-collision bifu
cation touches the linex50. This is the TCT point—the
critical point of the same nature as has been described fo
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TABLE I. The approximations of the TCT point for the forced circle map based on rational approx
tions of the driving frequency. The parametersek ,bk converge to the TCT point; the phasesuk ,vk ~initial
phases for the superstable cycle and the cycle at instability threshold, respectively! converge to a definite
value as well.

Fk21 /Fk 144/233 233/377 377/610
e 0.13246827351501 0.13250795751162 0.13253613129985
b 0.37789716819380 0.37788430788852 0.37787571332547
u 0.28256543113078 0.28507911784015 0.28352121995658
v 0.28390824416939 0.28424462744230 0.28403287626312
Fk21 /Fk 610/987 987/1597 1597/2584
e 0.13254894376094 0.13255711167252 0.13256112439438
b 0.37787164279323 0.37786912162019 0.37786785844262
u 0.28447737339461 0.28388514644255 0.28424919282601
v 0.28416035662086 0.28408010084896 0.28412859034350
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circle map. As will be shown below, the critical behavior
both our models belongs to the same universality class.
disadvantage of the quadratic map in comparison to
circle map is that instead of the transition to chaos via in
mittency we observe a divergence of the iterations to infin
So the dynamics is not as rich as for the circle map;
particular, the intermittent regimes do not occur beca
there is no reinjection mechanism here.

B. Rational approximations to the TCT point

In order to find the critical point with high accuracy w
use rational approximations to the frequencyv. In our case
of the reciprocal golden mean, these approximants are
ratios of the Fibonacci numbers:

vk5Fk21 /Fk , k51,2, . . . ,
~3!

F050, F15F251, Fk115Fk1Fk21 .

If we apply a rational frequencyvk , then, instead of the
torus, we will have a cycle of periodFk . On increasing the
control parameterb we expect to see a tangent bifurcation
this cycle at some parameter value that gives an approx
tion to the torus-collision bifurcation.

It is worth stressing here that for a rational frequencyvk
the bifurcation point depends on the initial phasey0 of the
external force. Thus, there is a whole interval of parame
between the first and the last bifurcation points. However
the situation of smooth tori collision, this bifurcation interv
tends to zero as the order of the rational approximants gr
(k→`); cf. @23#. Hence, asymptotically there is no depe
dence on the initial phase; this is the reason why we
speak of the smooth bifurcation of the tori. Certainly, this
the case for small amplitudese. In numerical computations
by gradually increasing the amplitude, we can trace this
furcation up to larger amplitudes of the force.

According to our definition of the TCT point, the invar
ant curve corresponding to the terminal point of the tor
collision bifurcation must touch the linex50. Let us formu-
late the conditions for this in terms of the ration
approximants. For a given rational frequencyvk5Fk21 /Fk
we have to find the appropriate values ofb5bk ande5ek to
satisfy the following conditions.
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~1! For some initial phasey05uk there exists a period-Fk
cycle starting fromx50, and the derivativedx/dy0 van-
ishes. This means that the locus of periodic points for diff
ent phases of the external force—the closed curve appr
mating the invariant curve for irrationalv—touches the line
x50.

~2! The maximal multiplier reached at some other init
phasey05vk is equal to 1: for this phase the period-Fk cycle
is precisely at the threshold of the tangent bifurcation. T
condition means that the periodic orbit, which is stable b
fore the bifurcation, just meets its unstable partner.

The data from our computations are summarized in Ta
I. Note the evident convergence of the points (ek ,bk) to a
definite limit. Estimating this limit, we get the coordinates
the TCT point (ec ,bc) for the map~1!. ~This estimate will be
essentially improved in the next section.! As a by-product,
we obtain the limit values for the phasesuk and vk : uc
5 limk→` uk5 limk→` vk .

It is worth explaining why we discuss the TCT point
the context of strange nonchaotic dynamics. Let us tak
rational approximantvk and the corresponding point from
Table I. Then we have simultaneously~i! a superstable cycle
for one phase of the external force and~ii ! a cycle at the
tangent bifurcation threshold for another phase. This me
that with an infinitesimal shift of the parametersb,e we can
face a situation where the cycle remains stable at one p
and becomes unstable at another one. Hence, changin
phase of the external force leads to a bifurcation. Accord
to the criterion for the presence of a SNA suggested in R
@11#, we conclude that an arbitrarily small shift of paramete
from the TCT point may ensure appearance of a SNA.

Using the rational approximants for the frequency of t
external force, we can find the TCT point for the logist
map ~2! also. In Table II we present the corresponding n
merical data. Again we observe a convergence of the po
(ek ,bk) to a definite limit (ec ,bc), which is the TCT point
for the quadratic map. We also obtain the limit for the pha
uk andvk .

III. RENORMALIZATION GROUP EQUATION
AND HYPOTHESIS OF UNIVERSALITY

In the case of the golden-mean frequency, which is
interest here, the main idea of the renormalization group
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TABLE II. The same as Table I, but for the forced quadratic map.

Fk21 /Fk 610/987 987/1597 1597/2584
e 1.01092505020861 1.01098675212306 1.0110169072812
b 0.09981191332417 0.09979289883669 0.0997834196824
u 0.28409804003715 0.28350525381290 0.2838694775144
v 0.28378074120914 0.28370032358923 0.2837487914877
Fk21 /Fk 2584/4181 4181/6765 6765/10946
e 1.01103504807250 1.01104434510749 1.0110497285770
b 0.09977779656842 0.09977488690490 0.0997732134033
u 0.28364394312993 0.28378268847958 0.2836968158872
v 0.28371827623344 0.28373673977169 0.2837251480189
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proach is to consider a sequence of evolution operator
Fibonacci numbers of iterations@25–27,22,13#. Suppose that
precisely at the critical TCT point we produceFk iterations
for one of our model maps~1! or ~2! and write the result as

xn1Fk
5 f k~xn ,yn!,

~4!
yn1Fk

5yn1vFk ~mod 1!.

In our derivation of the RG equation we will suppose that
extremum point of mapf is x50, and the origin for variable
y is placed at the pointuc . According to the definition of the
Fibonacci numbers, we can represent the evolution o
Fk125Fk111Fk iterations as a result of two subseque
steps, containingFk11 andFk iterations respectively. Thus
we can write@13#

f k12~x,y!5 f k„f k11~x,y!,y1Fk11v…. ~5!

To find the new functionf k12 we need to use two previou
functions,f k and f k11. This may be reformulated in terms o
functional pairs: To find a new pair@ f k11(x,y),fk11(x,y)
5 f k12(x,y)# we need one previous functional pa
@ f k(x,y),fk(x,y)5 f k11(x,y)#. Indeed, from our definition
and from Eq.~5! it follows that

f k11~x,y!5fk~x,y!,
~6!

fk11~x,y!5 f k„fk~x,y!,y1Fk11v….

It is worth noting here that the second arguments of the fu
tions f andf are defined modulo 1, and due to the propert
of the Fibonacci numbers, we have

y1Fk11v5y2~2v!k11 ~mod 1!.

Now, as in any procedure in renormalization group ana
sis, a scale change of the variablesx andy should be imple-
mented. We setx5X/Ak andy5(2v)kY ~cf. @22,13#!. Af-
ter this substitution the first equation~4! transforms to

Xn1Fk
5Akf k„Xn /Ak ,Yn~2v!k

…,

and, if we wish to normalize the map in such a way that
value at the origin is 1, we have to set

Ak51/f k~0,0!. ~7!
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Applying the variable change to both elements of the fu
tional pair f k(x,y),fk(x,y), we introduce the rescaled func
tions

gk~X,Y!5Akf k„X/Ak ,Y~2v!k
…,

Gk~X,Y!5Akfk„X/Ak ,Y~2v!k
…

5Akf k11„X/Ak ,Y~2v!k
…. ~8!

Finally, we designate

ak5Ak11 /Ak5 f k~0,0!/ f k11~0,0! ~9!

and rewrite Eqs.~6! in terms of the renormalized functionsg
andG to obtain the following RG equations:

gk11~X,Y!5akGk~X/ak ,2vY!,
~10!

Gk11~X,Y!5akgk„Gk~X/ak ,2vY!,2vY1v…,

where

gk~0,0!51, Gk~0,0!51/ak .

We can calculate the terms of the functional seque
gk(X,Y),Gk(X,Y) by virtue of straightforward iterations o
the original maps at the critical point. Given a Fibonac
numberFk , we first set the initial conditionx050, y05uc
and iterate the mapping~2! Fk times. The resultingxFk

is

used to obtain the normalization factorAk51/xFk
. Then, to

find gk(X,Y) for some particular values of arguments, w
again iterate the map~2!, but with initial conditions x0
5X/Ak andy05uc1Y(2v)k. After Fk iterations we get

gk~X,Y!5AkxFk
, ~11!

and afterFk11 iterations

Gk~X,Y!5AkxFk11
. ~12!

Numerical results show that at the TCT point the fun
tions obtained for high-order Fibonacci numbers tend to
definite limit. In Fig. 5 we present an illustration for th
quadratic map: For randomly chosen points (X,Y) the values
of gk(X,Y) have been calculated and plotted. This has b
done for several Fibonacci numbers, namely, 144, 233,
377. One can see that the points form a well defined surf
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in the space (X,Y,g). The larger the Fibonacci numbers, th
higher the precision of coincidence forgk andgk11.

This observation leads to a conjecture that there exis
fixed point of the RG equation~10! in a properly chosen
space of the functional pairs. Passing to the limitk→` in the
RG equation~10!, we must have the same function in th
left- and right-hand parts, so we get the fixed-point equat

g~X,Y!5aG~X/a,2vY!,
~13!

G~X,Y!5ag„G~X/a,2vY!,2vY1v…,

where

g~0,0!51, G~0,0!51/a. ~14!

Excluding the functionG by means of the first equation, w
can rewrite the second one as a functional equation for
single unknown functiong(X,Y):

g~X,Y!5a2g„a21g~X/a,2vY!,v2Y1v…. ~15!

The fixed-point equation~15! is self-consistent: it does
not contain any memory of the original map. Its smooth
lution, having at the origin a quadratic extremum with r
spect to the first argument, must be in some sense unive
The conjectured universality is supported by the fact t
both our models—the quadratic map and the circle ma
yield the same limit function of Fig. 5.

Being convinced of the existence of the fixed-point so
tion of the RG equation, we can develop a method that gi
a possibility of essentially improving the accuracy of estim
tion of the parameter values corresponding to the TCT c
cal point. Let us take, for instance, the map~2!. Instead of
using the rational approximants we now fixv5(A521)/2.
Then we try to find an appropriate set of paramet
(ec ,bc ,uc), that gives coincident values of the scaling fa
tors ak at four subsequent levels. That is, starting iteratio
of Eq. ~2! from x50,y5uc , we set

FIG. 5. The universal function: The illustration of the conve
gence of the functional sequencegk(X,Y) to the fixed-point solu-
tion of the RG equation. The plotted values ofgk(X,Y) originate
from randomly chosen points in the domain21,X,1, 2v,Y
,1. The quadratic map was iterated for Fibonacci numbersFk

5144,233,377, and the scaled function was obtained by virtue
Eq. ~11!. Observe that the points collapse on a single surface in
three-dimensional plot.
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ak5
xFk

xFk11

, ak115
xFk11

xFk12

, ak125
xFk12

xFk13

,

ak135
xFk13

xFk14

,

and requireak5ak115ak125ak13. This yields three equa
tions, from which the three unknown parameters (ec ,bc ,uc)
can be found with the help of Newton’s method. To co
struct the matrix of derivatives needed for this method, a
of mappings for derivativesxe ,xb ,xu is iterated together
with the original map~2!:

xe,n1152xnxe,n1sin@2p~yn!#,

xb,n1152xnxb,n11, ~16!

xu,n1152xnxu,n12pe cos@2p~yn!#,

where the initial conditions arexe,050, xb,050, and xu,0
50.

Using the data of the last row of Table II as an initi
guess, we have implemented the above scheme step by
for subsequent levelsk to obtain a more and more precis
location of the critical point. For Fibonacci numbers of ord
105 the usual double-precision arithmetic becomes insu
cient, and the calculations were performed inMATHEMATICA

with 60-digit precision ~up to the levels Fk
5514 229 . . . 3 524578). The best result for the coordinate
of the TCT critical points for the quadratic map is

bc50.099 771 228 95, ec51.011 056 090 99,
~17!

uc50.283 729 413 25

~see Table III!. Analogous computations~Table IV! per-
formed for the circle map atK52.5 with 20-digit precision
up to the levelsFk546 368 . . . 317 811yield

bc50.377 866 239, ec50.132 566 321,
~18!

uc50.284 109 286.

All our numerical results confirm the RG conjectures,
particular, the renormalization factora following from the
calculations appears to be the same for both maps, nam

a>1.711. ~19!

However, the convergence to the universal function~see Fig.
6! is rather slow. As we have found, the convergence
governed by two components decaying asnk, with n1
>0.945 andn2>20.770.2 This explains why we need to
consider such deep levelsk to be sure that the convergence
the fixed point of the RG equation indeed takes place. A
this is the reason why the estimate~19! for a is not very
precise.

2This observation may be used to improve the computation of
universal functiong(X,Y) by the iteration method.

of
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TABLE III. The improvement of the TCT location estimate for the quadratic map, using the equaliz
of a at four subsequent levels. The last row gives the best estimate for the critical point.

Fk Fk14 b e u

75025 514229 0.0997712288641926 1.0110560912888772 0.2837294133021
121393 832040 0.0997712293313196 1.0110560897902704 0.2837294133060
196418 1346269 0.0997712289716737 1.0110560909440631 0.2837294132590
317811 2178309 0.0997712290364777 1.0110560907361631 0.2837294132586
514229 3524578 0.0997712289664062 1.0110560909609621 0.2837294132482
832040 5702887 0.0997712289735432 1.0110560909380657 0.2837294132481

bc50.09977122895 ec51.01105609099 uc50.28372941325
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To have firm support for the hypothesis of universality
is desirable to have a direct numerical solution of the fix
point RG equation~15!; this will provide high precision data
for the universal functiong(X,Y) and for the factora. One
possible approach is to approximate the function by a fin
polynomial containing odd and even powers ofY and even
powers ofX, and to search numerically for a set of coef
cients of this polynomial satisfying Eq.~15! with the best
possible accuracy. A straightforward realization of this id
appears not to be feasible, and we have used some tr
First, we have selected a restricted domain of the defini
for the functiong in the (X,Y) plane. The condition is tha
for any point (X,Y) of this domainD the points (X/a,
2vY) and „a21g(X/a,2vY), v2Y1v… @see the right-
hand part of Eq.~15!# belong toD. As we have the approxi
mate data for the functiong ~see Fig. 5!, we can check tha
the domain

D:$20.110.9y,uxu,0.110.9y,2v,y,1% ~20!

is appropriate. For the representation of the function inD we
applied an expansion in orthogonal Chebyshev polynom
and constructed a Newtonian scheme to calculate the co
cients of this expansion. As initial guess we used the fu
tion obtained numerically from iterations of the quadra
map at the estimated TCT point. As our final result, t
solution of Eq.~15! was found with precision of order 1027.
The scaling constant obtained in this way is

a51.710 960 5, ~21!

in good agreement with the previously mentioned numer
estimate~19!.
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IV. SCALING PROPERTIES OF THE DYNAMICS AT THE
TCT POINT

In Fig. 4 one can observe that the attractor at the T
critical point is represented by a nonsmooth fractal-li
curve. We call itthe critical torus. In this section we discuss
briefly the consequences of the RG analysis for the dynam
exactly at the critical point.

Let us consider a plot of the critical attractor in the coo
dinates (x,y). If we rescale the variablesx and y2uc by
factorsa and b521/v, respectively, then the dynamics
expected to remain the same~except for the rescaling of time
by the factor 1/v). Hence, the curve must remain invaria
under this transformation. Figure 7 demonstrates that thi
indeed the case: The picture inside the selected box re
duces itself under subsequent magnifications~with inversion
in respect toy, due to the negative factor of the scaling!. This
scaling property near the origin implies that the critical cur
behaves asx;uyug with the exponent g5 loga/logb
51.117. The powerg is close to 1, so visually the curv
looks as if it is broken at the point of singularity. In fact,g
.1, and this means that the singularity is weak: the invari
curve, apparently, remains differentiable, but not twice d
ferentiable. Due to ergodicity ensured by irrationality of t
frequency, the weak singularity at the origin implies the e
istence of a dense set of singularities of the same type o
the whole invariant curve.

In Fig. 8~a! the Fourier spectrum is shown for the tim
series generated by motion on the critical attractor. It
drawn in the commonly used form, with a linear scale for t
frequency and a logarithmic scale for the amplitude. T
picture may be directly compared with possible experimen
results. In Fig. 8~b!, as in Ref.@25#, we use a double loga
2113
3653
1796
3446
4991
9017
TABLE IV. The same as Table III, but for the forced circle map.

Fk Fk14 b e u

4181 28657 0.37786623026092 0.13256634957866 0.2841092883
6765 46368 0.37786624505218 0.13256630219886 0.2841092917
10946 75025 0.37786623782053 0.13256632536350 0.2841092867
17711 121393 0.37786624024109 0.13256631760989 0.2841092871
28657 196418 0.37786623890263 0.13256632189730 0.2841092861
46368 317811 0.37786623928299 0.13256632067891 0.2841092861

bc50.377866239 ec50.132566321 uc50.284109286
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rithmic scale: it reveals the self-similar structure of the sp
trum. The envelope of the family of spectral lines has a slo
'3.0, in contrast to the case of the known spectrum at
golden-mean winding number in the critical circle map wit
out external force, where the slope constant is 2. Note
for the TDT critical point@13# the slope is close to 4. In Fig
8~c! we present the spectrum of the functionx(y), which
describes the form of the invariant curve in Fig. 7. The po
erlike decrease of the spectral amplitudes illustrates again
fractal-like nature of the critical attractor.

V. SCALING PROPERTIES OF THE PARAMETER SPACE
NEAR THE TCT CRITICAL POINT

A. Linearization of the RG equation and estimation
of the relevant eigenvalues

In terms of the RG approach, the investigation of a nei
borhood of the TCT critical point in the parameter space
associated with small perturbations of the fixed-point so
tion of the functional equation~10!. To simplify the analysis
we use a little trick: Instead of the level-dependent factorsak
we substitute into Eq.~10! the fixed valuea5 lim ak . Cer-
tainly, the fixed point of the modified equation remains t
same. Next, we set

gk~X,Y!5g~X,Y!1nkh~X,Y!,
~22!

Gk~X,Y!5G~X,Y!1nkH~X,Y!,

whereg(X,Y) andG(X,Y) correspond to the fixed point an
satisfy Eq.~13!. The functionsh andH describe a perturba
tion and are supposed to be small, andn is an eigenvalue to

FIG. 6. The convergence of the values ofgk(X,Y) for two par-
ticular pairs of the arguments (X,Y). The numerics show that fo
large k the convergence is dominated by a linear combination
two terms, decaying as 0.93k and (20.75)k.
-
e
e

at

-
he

-
s
-

be found. Substituting these expressions into our modi
RG equation~10! and accounting for the first-order terms w
obtain

nh~X,Y!5aH~X/a,2vY!,

nH~X,Y!5a@g8„G~X/a,2vY!,

2vY1v…H~X/a,2vY! ~23!

1h„G~X/a,2vY!…,

2vY1v…],

where g8 denotes the derivative in the first argument. B
cause we have found the TCT point by tuning two free p
rameters, one should expect that there exist two relevan
genvalues larger than 1, namely,n5d1 andn5d2, where we
suppose thatd1.d2. Then, asymptotically, the behavior o
an infinitesimal perturbation will contain the two correspon
ing eigenvectors. The coefficients at these vectors depen
the parameters of the original map and vanish at the crit
point. Thus, we can write

gk~X,Y!>g~X,Y!1C1~e,b!d1
kh1~X,Y!

1C2~e,b!d2
kh2~X,Y!,

~24!
Gk~X,Y!>G~X,Y!1C1~e,b!d1

kH1~X,Y!

1C2~e,b!d2
kH2~X,Y!.

Now we can explain the procedure of calculation of t
eigenvaluesd1 and d2 from the iterations of the origina
map, e.g., quadratic map~2!. Suppose we performFk itera-
tions in the vicinity of the TCT critical pointe>ec ,b>bc ,
starting fromx50,y5uc . According to Eq.~24!, in terms of
the rescaled variableX the result will be

XFk
>g~0,0!1C1~e,b!d1

kh1~0,0!1C2~e,b!d2
kh2~0,0!.

~25!

Thus, at subsequent Fibonacci numbers of the iterations
original variablex will behave as

xFk
>a2k@d01d1~e,b!d1

k1d2~e,b!d2
k#, ~26!

f

FIG. 7. The scaling of the critical torus of the quadratic map on the phase plane (x,y). Panel~a! shows the whole picture, panel~b!
presents the enlargement of the box from panel~a!, and panel~c! shows the enlargement of the box from panel~b!. The magnification factors
area51.711 for the vertical axis and2v21521.618 for the horizontal axis.
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FIG. 8. The Fourier spectrumuA(v)u2 of the time seriesxn generated by the quadratic map at the TCT critical point:~a! linear scale for
the frequency and logarithmic scale for the amplitude;~b! double logarithmic scale;~c! the Fourier spectrum of the periodic functionx(y)
describing the critical torus.
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whered0 , d1, andd2 are some combinations of the coef
cients and constants. As we mentioned in the previous
tion, it is possible to compute the derivatives of the varia
x with respect to the parameters by simultaneous iteration
the original map~2! together with Eqs.~16! at the critical
point. According to Eq.~26!, the derivatives will behave as

xe,Fk
>d1,e~ec ,bc!~d1 /a!k1d2,e~ec ,bc!~d2 /a!k,

~27!
xb,Fk

>d1,b~ec ,bc!~d1 /a!k1d2,b~ec ,bc!~d2 /a!k.

No matter which of these expressions we take, for largek the
first term will dominate, and the value ofd1 may be found
from the ratio of subsequent terms,

d1>a
xe,Fk

xe,Fk21

>a
xb,Fk

xb,Fk21

. ~28!

To obtaind2, we have to select properly the direction
the perturbation in the parameter plane (e,b) to exclude a
contribution from the largest eigenvector. For this, we fi
calculatexe,FN

andxb,FN
for the maximal Fibonacci numbe

FN we can handle, and requirexe,FN
De1xb,FN

Db50. For

Fk smaller thanFN the derivatives with respect to a value
the shift in the direction (De,Db) should behave asxp,Fk

}(d2 /a)k, and d2 can be estimated from the ratio of th
terms for subsequentk. In practice, however, a technical di
ficulty arises here: the derivatives appear to be in a m
complicated dependence onk because of the notable contr
bution from the third eigenvalue, associated with a shift
initial phase from the pointuc . This is the trivial eigenvalue
d352(A511)/2, and it may be excluded by using a mod
fied ratio, namely,

d2>a
xp,Fk11

2~d3 /a!xp,Fk

xp,Fk
2~d3 /a!xp,Fk21

. ~29!

The calculations have been performed for the quadratic m
and for the circle map. For both maps the results are in g
agreement, yielding

d1>3.65, d2>1.81. ~30!

To compute the constantsd1 andd2 with higher accuracy,
one can turn to a numerical solution of the eigenprobl
~23!. We used the Chebyshev polynomial expansion for
universal functiong ~see Sec. III!, the corresponding repre
c-
e
of

t

re

f

p
d

e

sentation for G @according to Eq. ~13!, G(X,Y)
5a21g(aX,2Y/v)#, and analogous expansions for th
functionsh(X,Y) andH(X,Y). The relevant eigenvalues ar
found to be

d153.600 810 . . . , d251.828 329 . . . , ~31!

in reasonable agreement with the estimates~30!.

B. Self-similarity on the plane of parameters

From the relation for the evolution operator~24! one can
see that the parameter plane near the critical point posse
some properties of self-similarity, or scaling. Indeed, su
pose we consider a dynamical regime at the point (e,b),
which corresponds to some values of the coefficientsC1

5C1
0 and C25C2

0. If we find a point (e8,b8) such that the
coefficients are equal toC15C1

0/d1 andC25C2
0/d2, then the

evolution operator corresponding toFk11 iterations at the
new point will coincide with the evolution operator forFk
iterations at the old point. Hence, the type of dynam
~torus, chaos, SNA! should be the same at both points a
differ only by the characteristic time scale: It is larger at t
second point by a factorFk11 /Fk , which tends tov21 as
k→`. According to this, all quantitative characteristics
both regimes can easily be expressed one via the other.
example, the Lyapunov exponents are connected as

L~e8,b8!>vL~e,b!. ~32!

It is worth stressing that all the scaling relations a
asymptotic, i.e., they are more precise when we are close
the critical point.

To demonstrate the scaling numerically, it would be co
venient to define an appropriate local coordinate sys
~scaling coordinates! near the critical point in such a wa
that the scaling transformation described above would co
spond simply to the simultaneous scale change along
coordinate axes by factorsd1 andd2, respectively. Unfortu-
nately, we do not know explicit expressions forC1 ,C2 via e
andb, so the problem has to be resolved numerically. Let
place the origin of the desirable coordinate system (c1 ,c2) at
the critical point and note, first, that one coordinate ax
corresponding to the larger scaling factord1, may be directed
almost arbitrarily. A shift along this direction has to contri
ute to the coefficientC1 in Eq. ~24!; therefore, the only con-
dition is that it must be transverse to a curve on the para
eter plane given by the equationC1(e,b)50. In contrast to
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FIG. 9. A demonstration of the scaling properties on the plane of the parameters near the TCT critical point. We plot the Ly
exponent for the circle map using a gray scale. For clarity of presentation, only the region of negative exponents is resolved. The up
shows the Lyapunov exponents in the originalb,e coordinates. The left lower panel shows the transformation to the scale coordinates~34!,
and the middle and the right lower panels show successive magnifications: for each subsequent picture the horizontal scale is sc
factor d153.65, and the vertical scale is scaled by the factord251.81. The magnitudes of the Lyapunov exponent are coded by the
scale, from light~positive values! to dark ~negative values!. The coding rule from picture to picture is redefined according to Eq.~32!.
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this, the second coordinate must be defined carefully,
cause the contribution to the first eigenvector should van
along the coordinate axis. Thus, the line defined by the eq
tion C1(e,b)50 has to be a coordinate curve along whi
the value ofc2 is varied, and on whichc150. One may try
to search for an explicit expression of this coordinate cu
via Taylor expansion in the form

De5c2 , Db5Ac21Bc2
21Cc2

31•••. ~33!

This expansion may be cut if we take into account the c
crete relation between the scaling factorsd1 ,d2. Suppose
that we consider a sequence of pictures of the param
plane near the critical point on smaller and smaller sca
namely,c1}d1

2k andc2}d2
2k . If we neglect the Taylor co-

efficient of c2
m in Eq. ~33!, the deflection from the prope

coordinate curve will behave asd2
2mk , and the contribution

to the first eigenvector in the evolution operator~24! will be
of orderd2

2mkd1
k . This contribution is thus not dangerous

ud1u,ud2
mu. According to our estimate~31!, d2,d1 and d2

2

,d1, butd2
m.d1 for m>3. Hence, it is sufficient to accoun

in Eq. ~33! for only the linear and quadratic terms~see
@28,29# for other examples of selecting the scaling coor
nates!.

In the spirit of the above discussion, we define the sca
coordinates near the TCT critical point by the following a
satz, appropriate for both our model maps:
e-
h
a-

e

-

ter
s,

-

g

e5ec1c2 , b5bc1c11Ac21Bc2
2 . ~34!

The coefficientA was defined from the ratio of derivatives
the critical point; cf. Eq.~27!. The coefficientB may be
obtained in the same manner from more elaborate comp
tions involving the second derivatives. From our calculatio
it was found that for the quadratic map

A520.311 707 6, B520.2819, ~35!

and for the circle map

A520.312 184 8, B522.047. ~36!

Apparently, the coordinate curvec150 coincides with the
bifurcation curve of smooth tori collision. So the coefficie
A is related to the slope of the bifurcation curve at the TC
point in the original coordinates (e,b), while B is related to
its curvature.

In Figs. 9 and 10 we demonstrate the scaling of the
rameter plane near the TCT critical point. As indicator of t
dynamical regimes the Lyapunov exponent is used. In
original parameter plane (e,b) we select a small fragmen
near the TCT critical point with the borders going along t
coordinate lines of the scaling coordinate system. The n
plots show details of this fragment under subsequent ma
fication by factorsd1 andd2 along the respective axes of th
scaling coordinates. For each next diagram we change
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FIG. 10. The same as Fig. 9, but for the forced quadratic map.
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rule of the gray scale coding in accordance with the rule
renormalization for the Lyapunov exponent~32!. A nice co-
incidence of the plots observed at subsequent stages of
nification proves the scaling.

VI. CONCLUSION

In this paper we have reported on a type of critical beh
ior at the border between regular and complex dynam
This critical behavior is associated with a point in the para
eter plane of quasiperiodically forced systems, where
torus-collision bifurcation line terminates; we call it the TC
critical point. In particular, we have found a critical point
such type in the quasiperiodically forced supercritical cir
map and quadratic map.

The dynamics of the circle map near this point includ
all relevant regimes: torus, chaos, and strange noncha
attractor. Two different types of transition to chaos me
here, one from a torus to intermittent chaos via a smooth
collision, and another from torus via fractal tori collision
SNA and chaos. For the quadratic map the ‘‘zoo’’ of regim
is not so rich, because the intermittent and chaotic regim
do not exist due to escape of trajectories to infinity. Ho
ever, from the point of view of the dynamics at the critic
point, this map belongs to the same universality class.

We have found the precise location of the TCT critic
point for both model maps. To investigate the dynamics
the critical point we have adopted the RG approach app
priate for the golden-mean frequency of the external force
is similar to that developed earlier for the torus-doubli
terminal point @13#. We have demonstrated that proper
renormalized functions describing the evolution operat
f

ag-

-
s.
-
e

s
tic
t
ri

s
es
-
l

l
t

o-
it

s

over the Fibonacci numbers of iterations converge to a fix
point solution of the RG equation, while for the TDT point
was a period-3 cycle. As follows from the RG analysis, t
attractor at the TCT point~the critical torus! is represented
by a fractal-like closed invariant curve, having weak sing
larities at a dense set of points.

The formulation of the linearized RG equation for th
perturbations of the fixed-point evolution operator allow
us to derive the scaling properties of the vicinity of the cri
cal point in the parameter plane. These scaling proper
were checked in computer simulations, demonstrating g
agreement with the RG results.

It may be conjectured that the universality class asso
ated with the TCT critical point will contain not only one
dimensional maps, but also higher-dimensional systems
would be of interest to observe this type of universal beh
ior in experiments similar to that performed for the observ
tion of the TDT critical behavior@20#. However, at the mo-
ment it is not yet clear how the present analysis can
generalized to invertible maps. Indeed, in our procedure
determining the critical behavior the presence of the q
dratic extremum plays a crucial role. However, it does n
exist, e.g., for the forced subcritical (K,1) circle map,
where smooth and fractal tori collisions can also be o
served. This problem will be the subject of future researc
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