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In this contribution we present a brief introduction to the theory of synchronization of self-
sustained oscillators. Classical results for synchronization of periodic motions and effects of
noise on this process are reviewed and compared with recently found phase synchronization
phenomena in chaotic oscillators. The basic notions of phase and frequency locking are recon-
sidered within a common framework. The application of phase synchronization to data analysis
is discussed.

1. Introduction

The history of synchronization goes back to the
17th century when the famous Dutch scientist
Christiaan Huygens [1673] reported on his obser-
vation of synchronization of two pendulum clocks.
The systematic study of this phenomenon, ex-
perimental as well as theoretical, was started by
Edward Appleton [1922] and Balthasar van der Pol
[1927]. They showed that the frequency of a tri-
ode generator can be entrained, or synchronized,
by a weak external signal with slightly different
frequency. These studies were of high practical
importance because such generators became basic
elements of radio communication systems.

The next impact to development of the the-
ory of synchronization was given by representa-
tives of the Russian school. Andronov and Vitt
[1930a, 1930b] further developed methods of
van der Pol and generalized his results. The
case of n : m external synchronization was stud-
ied by Mandelshtam and Papaleksi [1947]. Mutual
synchronization of two weakly nonlinear oscilla-
tors was analytically treated by Mayer [1935]
and Gaponov [1936]; relaxation oscillators were
studied by Bremsen and Feinberg [1941] and
Teodorchik [1943]. An important step was made by
Stratonovich [1958, 1963] who developed a theory

of external synchronization of a weakly nonlinear
oscillator in the presence of random noise.

The development of rigorous mathematical
tools of the synchronization theory started with
works on circle map [Denjoy, 1932] and forced re-
laxation oscillators [Cartwright, 1948; Cartwright
& Littlewood, 1945]. Recent development has been
highly influenced by Arnold [1961] and Kuramoto
[1984].

Reviews of synchronization phenomena as well
as original results can be found in monographs
of Teodorchik [1952], Hayashi [1964], Malakhov
[1968], Blekhman [1971, 1981], Landa [1980, 1996],
Romanovsky et al. [1984] and Kuramoto [1984].

We start this tutorial with the description of
classical results for the synchronization of a peri-
odic oscillator by external force (Sec. 2). We discuss
here the notions of phase and frequency locking, and
then, in Sec. 3, we show what changes if fluctuations
are taken into account. Next, we demonstrate how
these notions can be generalized to be useful for
chaotic systems as well (Sec. 4). We end with a de-
scription of how the idea of phase synchronization
can be used to detect the weak interaction between
oscillators from observed data (Sec. 5). For the sake
of simplicity we restrict ourselves here to the case
of external forcing.
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2. Entrainment of a Periodic
Oscillator

Stable periodic self-sustained oscillations of an au-
tonomous dissipative dynamical system are repre-
sented by a stable limit cycle in its phase space. If
the oscillator is forced externally, this simple dy-
namics is generally destroyed. It is important, that
if the force is small, its influence can be described
in a rather universal way. The first step towards
this description is to introduce new variables of the
unforced system: the phase and amplitudes. The
phase is a variable that corresponds to the motion
along the limit cycle, i.e. along the direction where
neither contraction nor expansion of the phase vol-
ume occurs. Therefore, this direction in the phase
space and, respectively, the phase of oscillations
corresponds to the zero Lyapunov exponent. A natu-
ral way to define the phase is to take it proportional
to time and increase by 2π during one period of the
oscillation T0.1 Then the dynamics of the phase on
the cycle can be described as

dφ

dt
= ω0 , (1)

where ω0 = 2π/T0. Amplitudes are all other
variables of the dynamical system that are locally
transversal to the cycle; they correspond to the neg-
ative Lyapunov exponents.

The description in terms of Lyapunov expo-
nents clearly demonstrates why the phase is an ex-
ceptional variable of a dynamical system: being cor-
respondent to the sole neutrally stable direction, the
phase, in contrast to amplitudes, can be controlled
already by a very weak external action. Indeed, a
weakly perturbed amplitude will relax to its stable
value, whereas a small perturbation of the phase
neither grows nor decays. Thus, even very small
phase perturbations can be easily accumulated.

So far the phase is defined only on the limit cy-
cle, but not in its vicinity. One way to extend this
definition is to demand that Eq. (1) is valid for the
phase not only on the cycle, but in its neighborhood
as well; this phase is also denoted by φ. Such a def-
inition implies that the transversal hypersurfaces of
constant phase are the isochrones, i.e. they are in-
variant if the dynamics is observed stroboscopically
with the period of oscillations T0 [Kuramoto, 1984].

In physics, one often speaks of nonisochronicity as
of the dependence of the oscillatory frequency on
the amplitude. In Eq. (1) the frequency is constant,
and the nonisochronicity means that the hypersur-
faces of constant phase are not orthogonal to the
cycle, but cross it at some angle 6= π/2. Because
hypersurfaces of constant phase form a foliation of
a neighborhood of the cycle, the correct phase φ can
be obtained from any other cyclic (phase-like) vari-
able θ via some transformation φ = φ(θ, A), where
A denotes the amplitude variables. Sometimes, to
characterize synchronization of a particular system,
it is advantageous to use θ: This variable can be
estimated from data and the mean observed fre-
quencies of forced or coupled oscillators obtained
by means of φ and θ coincide: Ω = 〈φ̇〉 = 〈θ̇〉.
For a theoretical treatment the phase φ is more
convenient.

The difference in the relaxation time scales of
perturbations of the amplitudes and the phase2 al-
lows one to describe the effect of small periodic ex-
ternal force with a single phase equation. Indeed,
making a perturbation expansion, one can see that,
due to stability property, deviations of the ampli-
tudes are small, while deviations of the phase can be
large (albeit slow). As a result, one can derive (see
[Kuramoto, 1984] for details) the phase equation

dφ

dt
= ω0 + εQ(φ, ϕ) , (2)

where ε is a small parameter proportional to the
amplitude of the force, ϕ is its phase obeying ϕ̇ =
ω = 2π/T , and Q is a 2π-periodic both in φ and
ϕ function. Equation (2) describes dynamics on a
torus 0 ≤ φ < 2π, 0 ≤ ϕ < 2π. Taking the Poincaré
map at ϕ = 0, we can reduce Eq. (2) to a circle map

φn+1 = φn + F (φn) (3)

with a 2π-periodic function F . The dynamics of
the map (3) is characterized by the rotation num-
ber (see, e.g. [Ott, 1992])

ρ = lim
N→∞

φN − φ0

2πN
.

This number is nothing other than the ratio be-
tween the observed frequency of oscillations Ω and
the frequency of the external force ω:

ρ =
Ω

ω
, where Ω = 〈φ̇〉 .

1Sometimes we consider the phase defined on the entire real line, and sometimes as a cyclic variable that is defined on the
[0, 2π] interval. We hope that the use of a particular definition can be always understood from the context.
2For the amplitudes, the relaxation time of perturbation is determined by the inverse of Lyapunov exponents; perturbations
of the phase do not decay at all.
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If the rotation number is rational, the observed fre-
quency is in the rational relation with the frequency
of the external force

Ω =
m

n
ω

and this regime is called m : n synchronization.
We now discuss the above definition in more

detail, taking for simplicity the case of 1:1 syn-
chronization. Usually, this phenomenon is under-
stood as the appearance of a certain relation be-
tween phases, or as phase locking. In the literature,
this notion is used in different senses. Most restric-
tively, one speaks of phase locking if the phases of
two or more oscillators coincide exactly. In our case
it would mean φ = ϕ. More generally, a constant
phase shift is allowed: φ = ϕ + const. Both these
definitions mean that the phase of the oscillator ro-
tates uniformly with the frequency of the external
force. From Eq. (2), however, it follows that we
cannot expect these properties to be valid even for
small forcing. Indeed, Eq. (2) admits the solution
dφ/dt = ω only in a particular case when the cou-
pling function Q depends on the phase difference
only: Q(φ, ϕ) = q(φ − ϕ). To illustrate this, let
us introduce the phase difference ψ = φ − ϕ and
rewrite Eq. (2) as

dψ

dt
= ω0 − ω + εq(ψ) . (4)

In the synchronous state this equation should have
(at least one) stable point. This happens if the
frequency mismatch (detuning) is small enough,
εqmin < ω − ω0 < εqmax, and this condition de-
termines the synchronization (phase-locking, mode-
locking) region on the (ω, ε) plane. Within this re-
gion, the phase difference remains constant, ψ = δ,
and the value of this constant depends on the de-
tuning, δ = q−1[(ω−ω0)/ε] (here the stable branch
of the inverse function should be chosen).

Generally, the coupling function Q(φ, ϕ) can-
not be reduced to a function of the phase difference
ψ. Then, even in a synchronous regime ψ is not
constant but fluctuates, although these fluctuations
are bounded. Thus, we can define phase locking
according to relation

|φ− ϕ− δ| < const , (5)

from which the condition of frequency locking Ω =
〈φ̇〉 = ω naturally follows.

The latter definition of phase locking will be
used in the treatment of chaotic oscillations (Sec. 4),

but even for periodic regimes it has an advantage
when the forced oscillations are not close to the orig-
inal limit cycle.

As an example we consider synchronization
transition in a periodically forced weakly nonlinear
oscillator (note, that now the forcing is not neces-
sarily small). Additionally, we assume for simplic-
ity that the autonomous oscillator is isochronous,
so that ω0 does not depend on the amplitude A. As
we are looking for synchronous regimes, it is conve-
nient to seek for the solution u(t) at the frequency
of the external force

u(t) = Re(Aeiφ) = Re(Aeiψeiωt) = Re(a(t)eiωt) .
(6)

For the complex amplitude a(t) one obtains aver-
aged (truncated) equations (see, e.g. [Bogoliubov &
Mitropolsky, 1961; Glendinning, 1994])

ȧ = −iνa+ a− |a|2a− iε . (7)

Here ν = ω−ω0 is the frequency mismatch, and ε is
the (renormalized) amplitude of the force. For small
ν, Eq. (7) has a solution a(t) = Aeiψ = const that
corresponds to the synchronous regime when the
phases of the oscillator and external force are locked
with the constant phase shift, φ − ϕ = δ = const.
With increase of the frequency mismatch, a transi-
tion out of the synchronous state occurs. The form
of this transition essentially depends on the ampli-
tude of the external force; we discuss the essential
features below (for details of bifurcation analysis see
[Holmes & Rand, 1978; Argyris et al., 1994]).

2.1. Synchronization transition
at small amplitudes of the
external force

Fixing the parameter ε at a small value (. 0.6), we
start from the synchronous state (ν ≈ 0) and in-
crease the absolute value of the detuning |ν| until
we observe a loss of synchronization, as is illustrated
in Fig. 1. First, there are three fixed points: one un-
stable focus, one stable node and one unstable sad-
dle. With the increase of |ν| the saddle and node
come closer and eventually collide at the bifurcation
point, giving birth to the limit cycle. The rotation
velocity of the phase increases smoothly, amplitude
modulation is small (Fig. 2). This transition can
be as well described by Eq. (2), i.e. using the phase
approximation. There a stable and unstable cycle
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Fig. 1. Loss of synchronization via a saddle-node bifurcation. (a) In the middle of the synchronization region there exist an
unstable focus (shown by triangle), a stable (filled circle) and an unstable (open circle) fixed points. (b) Stable and unstable
fixed points come closer near the border of synchronization. (c) A stable limit cycle exists outside the synchronization region;
it is born from an invariant curve formed by the unstable manifolds of the saddle.
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Fig. 2. Oscillations in the forced oscillator (7) at small forcing amplitudes. Inside the synchronization region the amplitude
and the phase difference are constant (a, b). Just after the transition out of synchronization the phase difference ψ rotates
nonuniformly, epochs of nearly constant ψ are intermingled with 2π-slips (c); the amplitude is slightly modulated.

annihilate and a quasiperiodic motion on the torus
appear. This is not surprising, as Eq. (2) should be
universally valid for very small forcing amplitudes.

2.2. Synchronization transition
at large amplitudes of the
external force

Now we fix the parameter ε at a large value (& 0.6)
and vary ν. The transition from synchronous state
occurs via the Andronov–Hopf bifurcation (Fig. 3).
In the middle of the synchronization region there
is a stable node. When |ν| increases, it becomes a

stable focus. At the transition point it loses sta-
bility, and a stable limit cycle appears. First, the
amplitude of the limit cycle is small, so a point on
it does not rotate around the origin. It means that
the process u(t) has the amplitude and the phase
modulation, but the frequency of the oscillator re-
mains the same as that of the external force [see
Fig. 4(a)]. The phase difference is not constant any
more, but remains bounded, so that the phase lock-
ing condition (5) is fulfilled. The situation changes
if the cycle envelopes the origin [Fig. 4(b)]. Now
the phase difference ψ rotates and the observed
frequency 〈φ̇〉 6= ω.
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Fig. 3. Loss of synchronization via the Andronov–Hopf bifurcation. (a) Near the center of the synchronization region ν ≈ 0
all trajectories are attracted to a stable node. (b) Near the boundary of synchronization the fixed point is of focus type.
(c) A stable limit cycle appears via Hopf bifurcation, however, this cycle does not envelope the origin, so that the observed
frequency is still the same as that of the external force. (d) As the amplitude of the limit cycle grows, it envelopes the origin
and the synchronization breaks.

A phase diagram of different regimes in Eq. (7)
is shown in Fig. 5, where the lines of saddle-node
and Andronov–Hopf bifurcations are shown. The
transition from region D to region C [i.e. from

Fig. 4(a) to Fig. 4(b)] is not a bifurcation, it can
be characterized as the state where the amplitude
of forced oscillations vanishes at some moment of
time.
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Fig. 4. Oscillations in the forced oscillator (7) at large forcing amplitudes. (a) Inside the synchronization region, but near the
transition border, the phase difference is modulated, although bounded; (b) the amplitude is modulated as well. (c) After the
transition, the phase difference ψ rotates nonuniformly, but without epochs of “nearly-synchronous” behavior [cf. Fig. 2(c)].
(d) The amplitude modulation is relatively strong [cf. Fig. 2(d)].
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Fig. 5. The bifurcation diagram for Eq. (7) in dependence
on the frequency mismatch ν and the forcing amplitude ε. In
regions A, B there is a stable fixed point, corresponding to a
stable synchronized state (in A there is additionally a pair of
unstable fixed points). In regions C, D there is a stable limit
cycle. The difference is in the form and amplitude of the cy-
cle: in D it does not envelope the origin, while in C a point
on the cycle rotates around the origin. A transition from A

to C occurs via saddle-node bifurcation (bold line), it is il-
lustrated in Fig. 1. A transition B → D → C is illustrated in
Fig. 3; the Andronov–Hopf bifurcation is shown by a dashed
line; the transition from frequency-locked to nonsynchronous
state is shown by dashed–dotted line. In the region shown
by a box, complex bifurcations around the Takens–Bogdanov
point occur, see [Holmes & Rand, 1978; Argyris et al., 1994]
for details.

3. Noisy Oscillators

In this section we describe briefly the influence of
noise on phase synchronization [Stratonovich, 1958,

1963]. The most simple way to model a noisy envi-
ronment is to add a noisy term to Eq. (2), or, for
the simplest possible situation, add to Eq. (4):

dψ

dt
= ω0 − ω + εq(ψ) + ξ(t) . (8)

The dynamics of the phase can be treated as the
dynamics of an overdamped particle in a potential

V (φ) = (ω − ω0)φ− ε
∫ φ

q(x)dx .

The average slope of the potential is determined
by the mismatch of frequencies of the autonomous
oscillator and external force; the depth of the min-
ima (if they exist) is determined by the amplitude
of the forcing, Fig. 6. Without noise, the parti-
cle would either rest in a minimum, or slide down-
wards along the potential, if there are no local
minima; this corresponds to synchronous and non-
synchronous states, respectively.

+

∆

∆

V

V

-

Fig. 6. Phase as a particle in an inclined potential, inside
and outside of the synchronization region.
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Fig. 7. (a) Fluctuation of the phase difference in a noisy oscillator. Without forcing, the behavior of the ψ is diffusive: It
performs a motion that reminds a random walk (blue curve); the distribution of the ψmod 2π is shown in (b), it is practically
uniform. External forcing with nonzero detuning suppresses the diffusion, the phase of the oscillator is nearly locked (red
curve), but sometimes phase slips occur; the respective distribution (c) becomes rather narrow and unimodal. Stronger noise
(black curve) causes more phase slips, so that there are only rather short epochs where ψ oscillates around a constant level;
the distribution of the ψmod 2π remains nevertheless unimodal (d).

Suppose first that the noise is small and
bounded, then its influence results in fluctuations of
the particle around a stable equilibrium, i.e. in fluc-
tuations of the phase difference around some con-
stant value. We thus have a situation of phase lock-
ing in the sense of relation (5); here the observed
frequency coincides with that of the external force.

Contrary to this, if the noise is unbounded
(e.g. Gaussian), there is always a probability for the
particle to overcome a potential barrier ∆V and to
hop in a neighboring minimum of the potential. The
time series looks like a sequence of these phase slips
(see Fig. 7) and relation (5) does not hold. Never-
theless, at least for small noise, the phase synchro-
nization is definitely detectable, although it is not
perfect: between slips we observe epochs of phase
locking. Averaged locally over such an epoch, the
frequency of the oscillator coincides with that of
the external force. The observed frequency that
is computed via averaging over a large period of
time differs from that of the external force, but this
difference is small if the slips are rare.

Phase locking in noisy systems can be also un-
derstood in a statistical sense, as an existence of
a preferred value of the phase difference ψmod 2π.
Indeed, the particle spends most of the time around
a position of stable equilibrium, then rather quickly
it jumps to a neighboring equilibrium, where the

phase difference differs by a multiple of 2π. This
can be reflected by distribution of ψmod 2π: A non-
synchronous state would have a broad distribution,
whereas synchronization would correspond to a
unimodal distribution (Fig. 7).

The synchronization transition in noisy oscilla-
tors appears as a continuous decrease of character-
istic time intervals between slips, and is smeared:
We cannot unambiguously determine the border of
this transition.

4. Chaotic Oscillators

For a periodic oscillator the phase was introduced in
Eq. (1) as a variable corresponding to the shift along
the limit cycle, and, hence, to the zero Lyapunov ex-
ponent. Any autonomous continuous-time dynami-
cal system with chaotic behavior possesses one zero
Lyapunov exponent that corresponds to shifts along
the flow, therefore we expect that phase can be
introduced for this case as well.

Suppose we define a Poincaré secant surface for
our chaotic system. Then, for each piece of a tra-
jectory between two cross-sections with this surface
we define the phase as a linear function of time, so
that the phase increment is 2π at each rotation:

φP (t) = 2π
t− tn

tn+1 − tn
+ 2πn , tn ≤ t < tn+1 . (9)
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Here tn is the time of the nth crossing of the secant
surface.

Obviously, this definition is ambiguous, because
it depends on the choice of the Poincaré surface.
Nevertheless, defined in this way, the phase has
a physically important property: Its perturbations
neither grow nor decay in time, so it does corre-
spond to the direction with the zero Lyapunov ex-
ponent in the phase space. Note that for periodic
oscillations corresponding to a fixed point of the
Poincaré map, this definition gives the correct phase
satisfying Eq. (1).

It is important to emphasize that the phase of
a chaotic oscillator can be also introduced by means
of two other techniques:

(1) Quite often we can find a projection of the
strange attractor onto a plane such that the tra-
jectory always revolves around some point that
can be taken as the origin. In this case the in-
stantaneous phase φ(t) can be identified with
the angle between some chosen direction in this
plane and a vector drawn from the origin to a
corresponding point of the trajectory.

(2) Taking any oscillatory observable s(t) of a
chaotic system, one can construct the so-called
analytic signal [Gabor, 1946]

ζ(t) = s(t) + isH(t) = A(t)eiφ(t) , (10)

where sH(t) is the Hilbert transform (HT) of
s(t) and unambiguously obtain the instanta-
neous phase φ(t); introduction to the method
can be found in [Panter, 1965], practical imple-
mentation is discussed in [Rosenblum & Kurths,
1998; Rosenblum et al., 2000]. It is important
to mention that these three different approaches
to phase determination give practically coincid-
ing results, at least if the system is a “good”
one [Pikovsky et al., 1997b].

In contrast to the case of periodic oscillations,
the growth of the phase of a chaotic system can-
not generally be expected to be uniform. Indeed,
the Poincaré return times (they can be taken as an
instantaneous period) depend usually on the coordi-
nate of the intersection with the Poincaré surface,
i.e. on the irregular amplitude. This dependence
can be considered as an influence of some effec-
tive “noise”, although this irregularity has of course
purely deterministic origin. Thus, the synchroniza-
tion phenomena for a chaotic system are similar
to those in noisy periodic oscillations [Rosenblum
et al., 1996; Pikovsky et al., 1997b].

We illustrate the effect of phase synchronization
in chaotic systems with two characteristic examples
(for other examples see [Anishchenko et al., 1992;
Rosenblum et al., 1997]). First, we consider the
periodically forced Rössler system

ẋ = −y − z + ε cos ωt ,

ẏ = x+ 0.15y ,
ż = 0.4 + z(x− 8.5) .

(11)

For the chosen parameter values the structure of the
strange attractor is rather simple, and the phase
can be easily computed by means of any of the
above techniques. As a result we find, that the syn-
chronization properties of this system are similar to
those of a periodic oscillator subject to a bounded
noise. Indeed, there exist a certain range of the
frequency of external force ω such that the phase
of the Rössler system is locked to the phase of the
external force: The phase difference fluctuates in
a random manner around some constant level, and
the condition (5) is fulfilled. No phase slips are
observed; they appear and become more and more
frequent when ω approaches the border of the syn-
chronization region. Synchronization here can be
also understood in terms of instantaneous periods:
The times Ti of return to a Poincaré secant surface
are not constant, but in the synchronous state the
average return time becomes equal to the period of
the external drive, 〈Ti〉 = 2π/ω (Fig. 8).

We emphasize that the phase synchronization
of a chaotic system appears exactly as the relation
(5) between phases of the oscillator and external
force; the amplitudes remain chaotic and are practi-
cally not correlated with the amplitude of the force.

As the second example we take the well-known
Lorenz system

ẋ = 10(y − x) ,

ẏ = 28x− y − xz ,
ż = −8/3 · z + xy + ε cos ωt

(12)

with the additional term describing the periodic
forcing. In the traditional representation of the
attractor (projection onto the (x, y) plane) trajec-
tory rotates around two centers, and introduction
of the phase seems to be impossible. Nevertheless,
if we consider the projection of the phase space
onto the plane (u =

√
x2 + y2, z) [see Fig. 9(a)],

then the phase can be easily determined either via
Poincaré section, or as the angle in this plane,
i.e. φ(t) = arctan[(z − z∗)/(u − u∗)], where z∗ and
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Fig. 8. Distribution of return times for the (a) autonomous and (b) forced Rössler oscillator. For the forced system, the
average return time is equal to the period of the driving force.
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Fig. 9. (a) Attractor of the Lorenz system in coordinates (u =
√
x2 + y2, z). The coordinates of 500 initially closed points

are shown by red dots. (c) This illustrates the phase diffusion in the unforced system: The trajectories with initial practically
coinciding phases now have phases that are almost uniformly distributed. (b and d) In the presence of forcing, the phase
diffusion is suppressed, and the phases of almost all different trajectories follow the phase of the drive.
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u∗ are the coordinates of the point that is enclosed
by the trajectory. Alternatively, the phase can be
computed with the help of the Hilbert transform
from the oscillatory observable z(t); all the meth-
ods giving practically coinciding results.

Consideration of the phase difference shows
that synchronization of the Lorenz system can be
achieved, but it is not perfect: epochs of the phase
locking are always interrupted by phase slips. These
slips are persistent, and occur predominantly in one
direction, so that the frequency of the oscillator
differs slightly from that of the external force, for
details see [Zaks et al., 1999].

Here we illustrate synchronization in the Lorenz
system in the following way. Let us follow the evo-
lution of trajectories in an ensemble of 500 identical
oscillators driven by the same force. The initial con-
ditions for all the oscillators are very close, they dif-
fer by less than 10−5. As the systems are chaotic,
these initially close trajectories diverge; in Fig. 9
we show the coordinates of all the systems after
some evolution time t. In the absence of forcing, the
points scatter over the whole attractor [Fig. 9(a)];
in other words, the oscillators with practically the
same initial phase have now a value of phase that
is almost equally distributed in the interval [−π, π]
[Fig. 9(c)]. External forcing suppresses this phase
diffusion, and the phases of the elements of the en-
semble concentrate now near the phase of the drive;
the distribution becomes rather narrow [Figs. 9(b)
and 9(d)]. Such a statistical method of characteri-
zation of synchronization becomes especially impor-
tant in the case when the phase of an oscillator is
not well-defined, see [Pikovsky et al., 1997b].

We conclude this section with three important
comments:

(1) We have defined the phase of a chaotic sys-
tem as a coordinate corresponding to the zero
Lyapunov exponent. Low-dimensional systems
have only one zero exponent, therefore the os-
cillator can have only one phase, in spite of
the fact that sometimes the trajectory rotates
around two centers. In this case one has to look
for an appropriate projection, although there
are no general recipes how to do it.

(2) Another problem arises if there is no distinct
center of rotation at all; nevertheless, the exis-
tence of zero Lyapunov exponent suggests that
the phase should exist as well. In this case,
synchronization can be characterized indirectly,
without explicit computation of the phase itself
[Pikovsky et al., 1997b].

(3) Finally, we would like to mention the works
[Pikovsky et al., 1997a; Rosa Jr. et al., 1998;
Lee et al., 1998] where the synchronization–
desynchronization transition has been studied.
This transition can be viewed as a generaliza-
tion of the saddle-node bifurcation (described
in Sec. 2 above) to the case of chaotic attrac-
tors. The transition is smeared; the best way
to see this is to look on the unstable cycles em-
bedded in the chaotic set (for the synchroniza-
tion properties of unstable cycles inside chaos
see also [Zaks et al., 1999, 2000]). Each of these
cycles undergoes the saddle-node bifurcation,
and these bifurcations occur at different values
of the parameters. The whole transition can
be understood as a repeller–attractor collision,
where the repeller and the attractor consist of
the trajectories that are unstable and stable
with respect to the phase, correspondingly. The
situation here is similar to the smeared pitch-
fork bifurcation at the transition to complete
synchronization of interacting chaotic systems
(called symmetry-breaking or blowout bifurca-
tion, see, e.g. [Pikovsky & Grassberger, 1991;
Maistrenko et al., 1998]).

5. From Theory to Data Analysis

In this section we discuss how the concept of phase
synchronization can be used in order to reveal the
presence of interaction between systems from exper-
imental data. We have already summarized that
synchronization of weakly coupled oscillators ap-
pears as some relation between their phases and
frequencies. In the context of data analysis we are
going to exploit this fact to tackle the inverse prob-
lem: Our goal is to infer the presence of synchro-
nization from data. To this end we have to estimate
from the signals the phases and the frequencies, and
to look for relations between them.

Generally, we try to access the following prob-
lem: Suppose we observe a system with a complex
structure that is not known exactly, and measure
two time series at its outputs. Our goal is not only
to find out whether these signals are dependent or
not (this can be done by means of traditional statis-
tical techniques), but to extract additional informa-
tion on the interaction of some subsystems within
the system under study. Naturally, we need some
additional knowledge about the observed objects in
order to assume that they are self-sustained oscil-
lators having their own rhythms, that may be (or
may be not) adjusted due to interaction.
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An advantage of this approach is that it allows
one to study rather weak interactions between the
two oscillatory subsystems. Indeed, the notion of
phase synchronization implies only some interde-
pendence between phases, whereas the irregular am-
plitudes may remain uncorrelated. The irregularity
of amplitudes can mask the phase locking so that
traditional techniques treating not the phases but
the signals themselves may be less sensitive in the
detection of the systems’ interrelation [Rosenblum
et al., 1997, 1998].

The first step in this data analysis is to estimate
the phases from scalar signals. For this goal we can
adapt the above discussed methods of phase deter-
mination. Sometimes the signal can be reduced to a
sequence of events (spike train). A typical example
is a human electrocardiogram (ECG) that can be
substituted by a series of R-peaks that appears at
time instants tk. The interval between two R-peaks
corresponds to one complete cardiocycle, therefore
the phase increase during this time is exactly 2π.
Hence, we can assign to the times tk the values of
phase φ(tk) = 2πk, and take it linearly growing for
the interval tk < t < tk+1. The determination of
phase via marker events in time series can be con-
sidered as the analogy to the technique of Poincaré
section [see Eq. (9)], although we do not need to
assume that the system under study is a dynamical
one.

If the signal looks like a sine-wave with slowly
varying frequency and amplitude, then its phase can
be obtained by means of the analytic signal con-
cept based on the Hilbert Transform [Eq. (10)]. We
can look at this technique also from another view-
point: It can be considered as a two-dimensional
embedding in coordinates (s(t), sH(t)). Note that
in these coordinates a harmonic oscillation is rep-
resented by a circle for any ω. This circle can be
considered as an analog to the phase portrait of the
harmonic oscillator. The phase obtained from this
portrait increases linearly in time φ(t) = ωt + φ0,
as we expect it for this system. Note, however,
that the often used coordinates (s(t), ṡ(t)) and de-
lay coordinates (s(t), s(t−τ)) generally produce an
ellipse; the phase obtained as an angle from such
plots demonstrates periodic deviation from the lin-
ear growth (i.e. [φ(t)−ωt] oscillates periodically) as
an artifact of embedding.3

The next step in the data processing is to an-
alyze the behavior of the estimated phase differ-
ence ψ = φ1 − φ2, or, in a more general case,
ψn,m = nφ1 −mφ2 (for the phases estimated from
the signals we use the same notation as for correct
phases that have been introduced in Sec. 2). Some-
times synchronization can be detected in a straight-
forward way: by plotting ψn,m versus time and look-
ing for horizontal plateaus in this presentation.

To illustrate this, we describe the results of ex-
periments on posture control in humans [Rosenblum
et al., 1998]. During these tests a subject is asked to
stay quietly on a special rigid force plate equipped
with four tensoelectric transducers. The output of
the setup provides current coordinates (x, y) of the
center of pressure under the feet of the standing sub-
ject. These bivariate data are called stabilograms;
they are known to contain rich information on the
state of the central nervous system [Gurfinkel et al.,
1965; Cernacek, 1980; Furman, 1994; Lipp &
Longridge, 1994]. Every subject was asked to per-
form three tests of quiet upright standing (3 min)
with

(a) eyes opened and stationary visual surrounding
(EO);

(b) eyes closed (EC);
(c) eyes opened and additional video-feedback

(AF).

132 bivariate records obtained from 3 groups of
subjects (17 healthy persons, 11 subjects with an
organic pathology and 17 subjects with a phsy-
chogenic pathology) were analyzed by means of
cross-spectra and generalized mutual information.
It is important that the interrelation between body
sway in anterior–posterior and lateral directions
was found in pathological cases only. Another ob-
servation is that stabilograms can be qualitatively
rated into two groups: noisy and oscillatory pat-
terns. The latter appears considerably less fre-
quently — only some few per cent of the records can
be identified as oscillatory — and only in the case of
pathology.

The appearance of oscillatory regimes in sta-
bilograms suggests excitation of self-sustained os-
cillations in the control system responsible for
the maintenance of the constant upright posture;
this system is known to contain several nonlinear

3Obviously, to obtain for a harmonic signal a circle in the embedding, one can use the coordinates (s(t), ṡ(t)/ω) or delay
coordinates with τ = π/2ω, but this requires a prior knowledge of ω and cannot be implemented for a signal with slowly
varying frequency.
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Fig. 10. Stabilogram of an neurological patient. (a) x (black curve) and y (red curve) represent the body sway while quite
stance with open eyes in anterior–posterior and lateral directions, respectively. (b) The phases of these signals, and the phase
difference are shown by black, red and blue. The transition to a synchronous regime is clearly seen at ≈ 110 sec. (c) The plot
of y versus x shows no structure indicating the interrelation between the signals.
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Fig. 11. Stabilogram of the same patient as in Fig. 10 obtained during the test with the eyes closed. All the notations are
the same as in Fig. 10. From the phase difference one can see that the body sway in two directions are synchronous within
the whole test, although the amplitudes are irregular and essentially different.

feedback loops with time delay. On the other hand,
the independence of body sway in two perpendic-
ular directions for all healthy subjects and many
cases of pathology suggests that two separate sub-

systems are involved in the regulation of the upright
stance. A plausible hypothesis is that when self-
sustained oscillations are excited in both these sub-
systems, synchronization may take place. To test
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whether the interdependence of two components of
a stabilogram may be due to synchronization, we
have performed the analysis of the relative phase.

Here we present the results for one trial (female
subject, 39 years old, functional ataxia). We can
see that in the EO and EC tests the stabilograms
are clearly oscillatory (Figs. 10 and 11). The dif-
ference between these two records is that with eyes
opened the oscillations in two directions are not syn-
chronous during approximately the first 110s, but
are phase locked during the last 50s. In the EC test,
the phases of oscillations are perfectly entrained all
the time. The behavior is essentially different in the
AF test; here no phase locking is observed. We em-
phasize, that the traditional techniques fail to de-
tect the cross-dependence of these signals because
of the nonstationarity and insufficient length of the
time series.

This simple method of synchronization analysis
proved to be efficient in the investigation of model
systems as well as for some experimental data. Nev-
ertheless, quite often the noise level and the nonsta-
tionarity in the system are very high, and the syn-
chronization region is rather narrow, so that direct
inspection of phase dynamics is hardly successful.
In these cases special data processing techniques
are required in order to reveal the evidence of a
very weak interaction and quantify it, see [Schäfer
et al., 1998; Tass et al., 1998; Schäfer et al., 1999;
Rosenblum et al., 2000].

6. Conclusions

In this tutorial article we have discussed the main
concepts of phase synchronization. This phe-
nomenon lacks a unique definition. For periodi-
cal systems synchronization can be understood as
phase or frequency locking; in the general case of
n : m synchronization these conditions can be writ-
ten as |nφ1 −mφ2 − δ| < const and nΩ1 = mΩ2,
where Ω1,2 = 〈φ̇1,2〉 and φ1,2 are phases of two in-
teracting oscillators. For noisy and chaotic systems,
understanding of synchronization may be ambigu-
ous, and the transition to the synchronous state
is always smeared. Sometimes, synchronization in
these systems also appears as the phase locking in
the above sense, but more often this property is
observed as a tendency, or as a temporary event
on some finite time intervals only. Here a statisti-
cal description of phase difference is required. In a
noisy/chaotic case there may be no parameter range

where the frequencies of coupled oscillators coincide
exactly, but they get closer due to interaction.

Theory of synchronization is a rapidly devel-
oping branch of nonlinear science. Finally we
mention some ongoing directions. An interesting
field is synchronization in large ensembles of os-
cillators (population of globally coupled systems,
chains and lattices), it is related i.e. to behavior in
neural ensembles and other biological systems, see
[Gerstner, 1995; Ernst et al., 1998] and references
there. A popular paradigmatic model in this con-
text is a system of pulse-coupled integrate-and-fire
oscillators, see e.g. [Mirollo & Strogatz, 1990]. Syn-
chronization in spatially-distributed systems was
considered, e.g. in [Osipov et al., 1997; Goryachev
et al., 1998; Chaté et al., 1999]. Other synchronous
states in chaotic systems, namely full (identical),
generalized and lag synchronization, as well as syn-
chronization transitions are described in [Ditto &
Showalter, 1997; Schuster, 1999] and references
therein. The extension of the notion of phase syn-
chronization to stochastic systems exhibiting the ef-
fects of stochastic and coherence resonance can be
found in [Shulgin et al., 1995; Neiman et al., 1999;
Han et al., 1999].
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tions,” Bailliére’s Clinical Neurology, Vol. 3 (Bailliére
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