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Finite-size effects in a population of interacting oscillators
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We consider a large population of globally coupled noisy phase oscillators. In the thermodynamic limit
N→` this system exhibits a nonequilibrium phase transition, at which a macroscopic mean field appears. It is
shown that for large but finite system sizeN the system can be described by the noisy Stuart-Landau equation,
yielding scaling behavior of statistical characteristics of the macroscopic mean field withN. The predictions of
the theory are checked numerically.@S1063-651X~99!03802-7#
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Many nonequilibrium systems can be represented as
sembles of interacting self-sustained oscillators. Such mo
are very popular in biophysics@1,2#, but can also be applied
to the description of Josephson junctions@3#, laser arrays@4#,
charge density waves@5#, chemical reactions@6#, etc. In
these situations the interaction can be often considere
distance independent, thus leading naturally to a model w
global, or mean-field, coupling. Two types of systems
usually considered: In one case all oscillators are determ
istic, but have different natural frequencies; in the other c
the oscillators are identical, but are driven with uncorrela
noisy forces. The framework of the statistical treatment
such models, as well the models themselves, has been
posed by Kuramoto@7#. The main effect is the transition t
mutual synchronization as the coupling strength exceed
threshold value. Different aspects of this nonequilibriu
phase transition have been studied in@8–11#.

In this paper we focus on finite-size properties of the tr
sition to mutual synchronization in a population of noi
globally coupled oscillators. We study the statistics of flu
tuations that appear for finite ensemble sizesN. A similar
question regarding an ensemble of deterministic oscilla
with distributed natural frequency has been addressed
Daido @9#. Our approach differs from that of@9#, as we as-
sume the gauge invariance of the problem~there is no pre-
ferred value of the phase of the oscillations!, while the solu-
tion given in @9# breaks this invariance.

We consider a phase model of identical globally coup
noisy oscillators@7,12,13#. Each oscillator is described b
the phaseun , whose dynamics is given by the equation

dun

dt
5«

1

N (
l 51

N

sin~u l2un!1jn~ t !. ~1!

Here«.0 is the coupling constant,N is the number of os-
cillators in the population, andjn(t) is Gaussiand-correlated
driving noise

^jn~ t !&50, ^jn~ t !jm~ t8!&52Dd~ t2t8!dnm .

It is convenient to introduce the complex mean fieldM as
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and to rewrite Eq.~1! as the mean-field governed dynamic

dun

dt
5«~2X sinun1Y cosun!1jn~ t !. ~2!

It is well known that if the coupling« exceeds a critical
value, a nontrivial state with a finite macroscopic mean fi
M appears@7#. This transition can be described analytica
in the thermodynamic limitN→`. Our aim here is to dis-
cuss finite-size effectsthat appear for large but finite en
semble sizesN. We start with writing the equations for th
quantities

Ck5
1

N (
n51

N

eikun.

Note that the mean field isM5C1 . Calculating the time
derivative, we get a system of ordinary differential equatio

dCk

dt
5

ik

N (
1

N

jneikun1
«k

2
~C1Ck212C21Ck11!. ~3!

In these equations only the first term on the right-hand s
contains the noise. We estimate this term when the m
field M is small, i.e., in the disordered state, or near t
transition point. In this case the effect of the coupling on t
dynamics of the phaseun is small compared to the effect o
the noise, so we can consider the phasesun as uncorrelated
and the contributions to the term

ik

N (
1

N

jneikun

as independent. Thus we can apply the law of large numb
and write

ik

N ( jneikun'A1hk ,
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whereA is the deterministic part andh is a deviation having
the variance proportional toN21. To calculateA, we can use
the Furutsu-Novikov formula@14,15# to get

^jneikun&5D K deikun

djn
L 5Dikeikun.

Finally, we obtain the system

dCk

dt
52k2DCk1

«k

2
~C1Ck212C21Ck11!1hk . ~4!

For convenience, we write down the equations for the fi
three modes:

Ċ152DC12
«

2
~C2C1* 2C1!1h1~ t !,

Ċ2524DC22
«

2
~C3C1* 2C1

2!1h2~ t !, ~5!

Ċ3529DC32
«

2
~C4C1* 2C1C2!1h3~ t !.

In the thermodynamic limitN→` the noisy termshk
vanish and we get a deterministic system. In this limit t
transition is a Hopf bifurcation~with zero frequency of os-
cillations! in the system~5! and the normal form equatio
describing this bifurcation~also called the Stuart-Landa
equation! can be obtained using the expansion in the sm
parameter«/22D!1 @7#. Here we follow this approach tak
ing into account noisy terms as well. One can see from E
~5! that the modesCk with largek decay fast, while the firs
modeC1 becomes unstable at the critical coupling«c52D
and its dynamics is slow. Thus, near the bifurcation point,
can express the higher modes algebraically through the
modeC1 . It is sufficient to assume thatuCku'0 for k.2

and from the conditionĊ2'0 ~the second mode decays fa
on the time scale of the instability! we get the relation be
tweenC2 and C1 :C2'(«/8D)C1

21(1/4D)h2 . Substituting
this into the equation forC1 , we get the standard form of th
Hopf-Andronov bifurcation

Ċ15S «

2
2D DC12

«2

16D
uC1u2C12

«

8D
h2C1* 1h1 . ~6!

This equation describes the bifurcation in the presence
both multiplicative and additive noise. As the noise intens
is small for largeN, near the bifurcation point the multipli
cative noise does not lead to additional instability and th
can be neglected when compared to the additive noise.
result, we get

Ṁ5S «

2
2D D M2

«2

16D
uM u2M1h1 . ~7!

In this equation the precise statistical properties of
noise termh1 are unknown. We can only hypothesize, usi
the law of large numbers, that it is Gaussiand correlated
with an amplitude proportional toN21/2. We can justify this
by the following argument: Near the transition point«'«c
t
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the deterministic part of the dynamics of the mean field
extremely slow, thus the correlation of the noisy term dec
fast on the appropriate time scale. So rewriting Eq.~7! as a
system of two real equations, we obtain

Ẋ5S «

2
2D DX2

«2

16D
~X21Y2!X1hx~ t !, ~8!

Ẏ5S «

2
2D DY2

«2

16D
~X21Y2!Y1hy~ t !, ~9!

with

^hx&5^hy&50,

^hx~ t !hx~ t8!&5^hy~ t !hy~ t8!&52dd~ t2t8!,

^hx~ t !hy~ t8!&50.

The noise intensity scales asd}N21, so we can writed
5sN21, wheres5O(1).

Different statistical characteristics can be determined
the model~8! and ~9!. Writing out the Fokker-Planck equa
tion ~see, e.g.,@16#! for the system~8! and ~9! in the form

]W~X,Y,t !

]t
5

]

]XF]V~X,Y!

]X
WG1

]

]YF]V~X,Y!

]Y
WG

1dS ]2W

]X2
1

]2W

]Y2 D ,

with the potential function

V~X,Y!52S «

4
2

D

2 D ~X21Y2!1
«2

64D
~X21Y2!2,

one easily gets the stationary solution

W0~X,Y!5c expS 2
V~X,Y!

d D5c expS 2
NV~X,Y!

s D .

~10!

It is convenient to describe statistical properties of t
complex mean fieldM using its representation through th
phaseF and the amplitudeR: M5ReiF. The stationary dis-
tribution ~10! is phase independent and after simple calcu
tions we get a scaling law for the average amplitude of
mean field

^R&5N21/4F~aN1/2!, ~11!

wherea5«2«c is the bifurcation parameter. We check th
relation numerically in Fig. 1. One can see that the scal
relation~11! is valid in a wide range of the coupling consta
«.

We now discuss the correlations of the mean field. As
~7! describes the noisy Hopf-Andronov bifurcation, one c
directly apply here the results of the theory of noisy se
sustained oscillations@17#. To the best of our knowledge,
clear picture exists only for states far beyond the Ho
Andronov bifurcation point. The reason is that only far b
yond the transition point can one separate the dynamic
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the phase from that of the amplitude. Indeed, for largea the
probability distribution of the amplitude~10!

W0~R!}R expFN

s S a

4
R22

«2

64D
R4D G

has a sharp maximum atRmax'4ADa«21. The phase of
this state is well defined~because the amplitude does n
vanish! and its distribution is uniform. On the plan
Re(M )-Im(M ) the trajectory of the mean fieldM (t) fills a
narrow~width proportioanl toN21/2) circle aroundRmax ~see
Fig. 2!. Fluctuations of the amplitude are small and fa
while the phase exhibits a slow random-walk motion; s
Fig. 2. As it has been shown in@17#, both the variance of the
amplitude and the diffusion constant of the phase are pro
tional to the intensity of the noise, i.e., in our case toN21.
We confirm these scalings with numerical simulations in F
3.

In conclusion, we have demonstrated that finite-size
fects near the transition point in the population of globa
coupled oscillators can be described using the noisy nor
form equation. The effective noise in this equation sca
with the system size asN21. In the vicinity of the bifurcation
the fluctuations of the macroscopic mean field obey the s
ing relation~11!. Beyond the transition, one can separate
fluctuations of the amplitude and the phase; both scale
N21. The scaling predictions can be directly applied to t

FIG. 1. Average amplitude of the mean fieldR in the original
~bottom panel! and scaled~top panel! representations forD51 and
various population sizes: crests,N5100; filled squares,N5200;
open squares,N5500; open circles,N51000; and filled circles,
N52000.
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FIG. 2. Time evolution of the mean field for«52.5, D51, and
N5500. ~a! The ‘‘phase portrait’’ on theX-Y plane: After initial
transients the trajectory fills a ring of width proportional toN21/2.
~b! The time dependence of the phase and the amplitude.

FIG. 3. Dependence of the variance of the amplitudeVR

~squares! ~the slope of the fit is21.04) and the phase diffusion
constantDF ~circles! ~the slope of the fit is20.99) on the popula-
tion sizeN for D51 and«52.5.
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interpretation of possible experiments with physical@3#,
chemical, or biological@1,2# systems. For example, in lase
arrays@4#, the gain in the radiation quality depends on t
number of coupled lasers. On the other hand, in some cas
comparison of the fluctuations of individual oscillators wi
those of the mean field could allow one to estimate the
fective number of interacting subsystems.

The finite-size scaling above differs from the analogo
results for the population of deterministic phase oscillat
@9#, where the effective fluctuations are different on the t
sides of the transition. One possible reason for this disc
ancy is that in the deterministic case one can clearly sepa
all oscillators into entrained and nonentrained, with differe
contributions to fluctuations. Another difference is in t
very definition of the order parameter: In@9# it is not gauge
A

. B

ys

E

ce
s a

f-

s
s

p-
te
t

invariant; in this work it is assumed that^M &Þ0 and this
quantity is taken as an order parameter, while from the ph
diffusion picture~Fig. 2! it follows ^M &50. It is suggestive
to investigate the relation between the two problems in m
detail. Also the question of finite-size effects in populatio
of oscillators with both noise and distribution of natural fr
quencies remains unsolved.
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