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Forcing oscillatory media: phase kinks vs. synchronization
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Abstract

We consider the effect of periodic external forcing on the spatiotemporal dynamics of one-dimensional oscillatory media
modelled by the complex Ginzburg–Landau equation (CGLE). We determine the domain of existence and linear stability of
the spatially homogeneous synchronous solution found at strong forcing. Some of the synchronization scenarios observed are
described, and the “turbulent synchronized states” encountered are detailed. We show that 2π -phase kinks are the ubiquitous
objects mediating synchronization and study their nontrivial dynamics. In particular, we consider the processes of kink-
breeding and the spontaneous creation of kinks which are specific to our phase and amplitude description. The general
consequences, at the statistical level, of breaking the gauge invariance of the CGLE by a periodic forcing are discussed.
c©1999 Elsevier Science B.V All rights reserved.
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1. Introduction

One of the basic features of periodic self-sustained
oscillations is their sensitivity to external driving. Even
a small external force can affect the dynamics, pro-
vided the frequency of the forcing is close to the natu-
ral frequency of the oscillator. The effect of frequency
entrainment, known as synchronization since the pio-
neering work of Huygenii [1], is widely observed in
natural systems [2]. Much less is known of spatially
extended situations. In this paper, we consider the ef-
fect of a periodic external forcing on nonlinear oscil-
latory media.

The complex dynamics of spatially extended sys-
tems is, to a large extent, determined by the nature
of the primary instability they undergo [3,4]. In many
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cases, this instability is oscillatory: the unstable mode
has a nonzero frequency. If the instability is supercrit-
ical, a general description of the oscillatory medium
near the instability border is given by the complex
Ginzburg–Landau equation (CGLE) [5]:

∂ta = (1 + iω0)a − (1 + iα)|a|2a + (1 + iβ)∇2a,

(1)

wherea is the complex amplitude of the oscillations,
ω0 is their natural (linear) frequency, andα andβ are
the two remaining real parameters after rescaling of
time, space, anda. As is apparent in (1), the CGLE
can be seen as a direct generalization of the amplitude
equation for a local self-sustained (Hopf) oscillator
to the case of spatially variable fields with diffusive
coupling. It is thus a universal equation asymptotically
exact near the instability border, but whose validity is
now widely believed to extend far beyond the vicinity
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of the threshold (for recent experimental examples,
see, e.g. [6,7]). The CGLE has attracted a large interest
and is now quite well understood, at least in one and
two space dimensions [8–14].

In this work, we study the effect of a periodic exter-
nal forcing on an oscillatory medium described by the
CGLE. We restrict ourselves to the one-dimensional
case, for which the CGLE already exhibits a wide va-
riety of dynamical regimes [9]. We consider a weak,
nonparametric (additive) forcing, whose main effects
are expected to manifest themselves when the forcing
frequency is close to the natural frequency of the au-
tonomous system. More general parametric forcings
have been considered in [15,16], where the additive
forcing case has also been briefly discussed; a case
when the forcing term results from the mean field has
been studied in [17]. We focus in particular on the
properties of the 2π -phase kinks that appear in the
forced medium. We show that these localized objects,
characteristic of the broken gauge invariance (a →
aeiφ) of the forced CGLE, are the building blocks of
new partially synchronized dynamical regimes.

The paper is organized as follows. In Sections 2 and
3, we recall briefly the basic properties of the CGLE,
introduce forcing, and investigate the existence and
stability of the spatially homogeneous solution in full
synchrony with the external forcing. In Section 4, we
present, using numerical simulations, the synchroniza-
tion scenarios of phase-and defect-turbulence, two of
the main dynamical regimes of the CGLE. The 2π -
phase kinks are introduced in Section 5 as the natu-
ral excitations of forced oscillatory media. Their dy-
namics and its effect on the synchronization properties
of the medium are described in Section 6. We con-
clude by listing problems worth further investigation,
together with natural extensions and perspectives of-
fered by the present work.

2. Basic model

2.1. Autonomous CGLE

In this section we briefly review the basic proper-
ties of theautonomousCGLE [4]. In (1), the linear

frequencyω0 can be eliminated by a transformation to
a rotating reference frame, so that onlyα andβ (and,
possibly, initial conditions) determine the dynamics,
if we assume the system sizeL to be large enough so
as to have negligible influence. An approximate phase
diagram, showing the regions corresponding to differ-
ent regimes in the(α, β) plane, was given in [9]. These
regions are determined, to a large extent, by the sta-
bility properties of the family of plane wave solutions
to the CGLE. These solutions read, in one dimension:

a = ak exp(ikx − iωkt),

with

a2
k = 1 − k2 and ωk = −ω0 + α + (β − α)k2.

They are linearly stable if and only if

1 + αβ > 0 and k2 < k2
max(α, β). (2)

When 1+ αβ < 0, two kinds of disordered regimes
are observed:phase turbulence, where no zeroes ofa
occur – and thus the phaseφ ≡ arga is always de-
fined1 – anddefect turbulencewhere a finite density
of zeroes ofa is recorded in space–time. In the region
1 + αβ > 0, some plane wave solutions are stable,
but they do not necessarily constitute a global attrac-
tor: sustained regimes ofspatiotemporal intermittency
exist, composed of patches of stable plane wave solu-
tions separated by localized propagating objects.

The gauge invariance of the CGLE implies that the
dynamics around the plane wave solutions may be ef-
fectively described by phase-only equations exploit-
ing the marginality of the soft phase mode and the
strong damping of amplitude (R ≡ |a|) modes. Near
the 1+ αβ = 0, and in particular for 1+ αβ > 0, the
instability of the plane wave solutions is weak, and
the phase dynamics occurs on long scales in space and
time, according to

∂tφ = ω0 + (α − β)φ2
x + (1 + αβ)φxx,

1 To be comprehensive, it is actually believed that phase slips
may still occur in the infinite-size, infinite-time, limit. However,
the probability of these events is so small, in the usually delimited
phase turbulence region, that they never occur in practice [11].
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where subscripts denote partial derivatives. This equa-
tion is valid to second-order in the phase gradient, like
the corresponding expression for the modulus:

R ≈ 1 − φ2
x + βφxx

2
.

2.2. Periodically forced CGLE

Adding an external harmonic forcing of amplitude
B and frequencyωe, and going to a frame rotating
with this external forcing (a → A ≡ a exp(−iωet)),
Eq. (1) reads, in one dimension:

∂tA = (1 + iν)A − (1 + iα)|A|2A
+(1 + iβ)Axx + B, (3)

whereν = ω0−ωe is the frequency mismatch between
the frequency of the external forceωe and the linear
frequencyω0. 2

SubstitutingA = ReiΦ , we get a system of two real
equations for the modulus and the phase

∂tR = R−R3−βRΦxx−2βRxΦx−R(Φx)
2

+Rxx+B cosΦ,

R∂tΦ = νR−αR3+RΦxx+2RxΦx

−βR(Φx)
2+βRxx−B sinΦ.

(4)

Again, as in the case of the autonomous system, a
phase equation can be approximately derived if, in
addition, the parametersB andν−α are small [15,16]:

R ≈ 1 − φ2
x + βφxx − B cosΦ

2
, (5)

Φ̇ = ν − α − B sinΦ − Bα cosΦ + (α − β)Φ2
x

+(1 + αβ)Φxx. (6)

2 Note that we assume here that the frequency of the external
force is close to the frequency of the free oscillations, and thus
restrict ourselves to the resonance 1 : 1. Higher resonances can
also be considered, and in this case terms of the typeBm(A∗)n
appear on the right-hand side of Eq. (3), cf. [15,16]. For example,
if the frequency of the forcing is close to 2ω0, parametric reso-
nance appears, described by the term∼ BA∗. If the amplitude of
the oscillations and of the external force are small, higher-order
resonances can be neglected compared to the main resonance 1 : 1
(the corresponding phase-locking regions – Arnold tongues – be-
ing very narrow).

3. The spatially homogeneous state and its
stability

Spatially homogeneous solutions to the forced
CGLE are obtained by setting all spatial derivatives
to zero in (4). We get the system

Ṙ = R − R3 + B cosΦ,

RΦ̇ = ν − αR3 − B sinΦ. (7)

These equations, with a slightly different normaliza-
tion, have been thoroughly studied in [18], where a
rich bifurcation diagram was found. Here, we restrict
our analysis to the case of a relatively small forcing,
where the bifurcation structure is simple.

The fixed points are given by

R0 − R3
0 + B cosΦ0 = 0,

νR0 − αR3
0 − B sinΦ0 = 0. (8)

Excluding the phase, we get

B2 = R2
0(1 − R2

0)2 + R2
0(ν − αR2

0)2, (9)

which has either 1 or 3 positive roots. In the latter case,
two roots tend to 1 asB → 0 andν → α, thus con-
verging to the nontrivial solution of the autonomous
CGLE. These two roots describe the two spatially ho-
mogeneous solutions in synchrony with the forcing.
One is stable, the other unstable. The stable root corre-
sponds to the phase-locking of a homogeneous oscil-
lating solution of the autonomous CGLE. In full anal-
ogy with the problem of the synchronization of sin-
gle oscillators, we call the region of existence of these
two solutions the phase-locked region, or the Arnol’d
tongue. The borders of the Arnol’d tongue can be de-
termined from the condition that Eq. (9) has two co-
inciding real roots; this gives the relation

27B4
A.t.(1+ α2)2 − B2

A.t.(1 + αν)(9(ν − α)2

+ (1 + αν)2) + 4(1 + ν2)2(ν − α)2 = 0.

To first order in|ν − α|, the borders of the Arnol’d
tongue are given by

B2
A.t. = (ν − α)2

(1 + α2)
.
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Fig. 1. Phase portraits of the ODE system (7): (a)ν = −0.0775,α = −0.75, andB = 0.021; (b)ν = −0.725,α = −0.75, andB = 0.021.
Circle: the stable fixed point corresponding to a phase-locked solution, plus: an unstable saddle; star: an unstable focus.

The two synchronous solutions inside the Arnol’d
tongue are a stable node and an unstable saddle
(Fig. 1). Near the borders of the tongue, the saddle
and the node approach each other, and the system
is excitable: a small perturbation of the stable fixed
point may lead to an excursion along the unstable
manifold of the saddle, and a 2π -phase slip is ob-
served. As we will see below, the asymmetry of
the two borders of the Arnol’d tongue is important:
writing ν = α(1 + ν′), the excitation of the phase
slip occurs for weaker perturbations for positiveν′

than for negativeν′ (this asymmetry disappears for
α = 0).

We now consider the stability of the synchronized
spatially homogeneous solution with respect to spa-
tially inhomogeneous perturbations. Setting

R = R0 + r(x, t), Φ = Φ0 + φ(x, t),

and linearizing system (4), we get

∂t r = (1 − 3R2
0)r + rxx

−R0(ν − αR2
0)φ − βR0φxx,

R0∂tφ = (ν − 3αR2
0)r + βrxx

+R0(1 − R2
0)φ + R0φxx.

Solving for Fourier modes, we get the growth rateλ

for the wave numberk:

λ(k) = 1 − 2R2
0 − k2 ± [R4

0 − α2(1 − R2
0)(1 − 3R2

0)

+2αβ(1 − 2R2
0)k2 − β2k4]1/2. (10)

The location of the neutral curve maxkλ(k) = 0 can
be rewritten as

Fig. 2. The Arnol’d tongue (thick line) and the stability borders
of homogeneous solution forα = −1 and different values ofβ.
The instability region disappears forαβ = −1.

R4
0 [3(α − β)2 − (1 + αβ)2] + 4R2

0(β − α)(ν − β)

+(β − ν)2 = 0. (11)

In the B = 0 case,ν = α and R0 = 1, so this
condition reduces to the Benjamin–Feir–Newell crite-
rion (2). Otherwise, the spatially homogeneous field is
stable if the amplitude exceeds the following critical
value (see [19] for detailed analysis):

R2
c= (ν−β)2

2(α−β)(ν−β)−|ν−β|
√

(1+α2)(1+β2)
. (12)

Together with (9), this allows one to find the stabil-
ity region inside the Arnol’d tongue, as illustrated in
Fig. 2. For small forcing amplitudesB, R2

0 ≈ 1, and
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Fig. 3. Synchronization of defect turbulence: (a) Average frequency as a function of the amplitudeB and the frequencyν of the external
force. The contour lines are drawn at levels−0.5, −0.01, 0.01, 0.5. (b) Density of defects (arbitrary units). The contour line shows the
border of the defect-free region. (c) The largest Lyapunov exponent. The contour line shows the border of the turbulent region.

thus, using (10), the growth rateλ is real at threshold
with a finite wave numberk. This stationary cellular
instability, in the cases investigated numerically below,
is always supercritical: beyond threshold, a stationary
periodic structure is observed.

4. Global properties of synchronization

We now report on numerical investigations of the
synchronization of turbulent states in the CGLE. Here,
we are mostly concerned with the global synchroniza-
tion properties of the regimes encountered when in-
creasing the forcing of phase and defect turbulence.

In particular, we do not deal with the reverse scenario,
where forcing is decreased from a fully synchronized
state. Moreover, we do not attempt to describe all pos-
sible scenarios occurring in different ranges of param-
eters. We have chosen only two points on the(α, β)

plane, namelyα = −2, β = 2 for defect turbulence,
andα = −0.75, β = 2 for phase turbulence. We have
studied the different regimes observed at these param-
eter values for various values of the amplitudeB and
frequencyν of the external force. The results presented
below are thus neither universal nor complete. We be-
lieve, however, that they are typical (i.e. that these or
similar properties will be observed in large regions of
parameter space).
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Fig. 4. Different regimes of synchronization of defect turbulence:
(I) Defect turbulence, no synchronization. (II) Turbulent synchro-
nization with rare defects. (III) Turbulent synchronization with-
out defects. (IV) Regular state with zero Lyapunov exponent. The
contour lines are drawn (from bottom to top) from the graphs of
Fig. 3 at near-zero levels: forΩ at ±0.002, for the defect density
at 2× 10−4, and for the Lyapunov exponent at 0.01. The levels
deviate from zero because of the finite accuracy of calculations.

We have solved the forced CGLE (3) using a finite-
difference method with the spatial step1x = 0.4 and
the time step1t = 0.025. In all runs, we started from
a turbulent nonforced state and increased the forcing
amplitude in small steps. At each step, the statistically
stationary regime has been analyzed after discarding
transients, in particular, by measuring the average fre-
quency of rotationΩ ≡ 〈∂tΦ〉, where the average
is taken both in space and time (Ω is calculated in
the reference frame rotating with the frequency of the
external forcing, so the zero value ofΩ corresponds
to perfect synchronization). For the fully synchronous
solution (8),∂tΦ = 0 everywhere; but the average
frequencyΩ can also vanish for nontrivial spatiotem-
poral regimes, as shown below. We call such regimes,
analogous to the phase synchronized regimes found in
forced chaotic low-dimensional systems [20,21], “tur-
bulent synchronized states”.

4.1. Synchronizing defect turbulence

The results of calculations of the average frequency
Ω, of the density of defects, and of the largest Lya-
punov exponent when varying the parametersB and
ν of the external forcing are presented in Fig. 3. Here,
the basic state is taken to be the defect turbulence
regime withα = −2 andβ = 2. Another representa-
tion of the results is used in Fig. 4 showing the contour
lines for the nearly zero values ofΩ, of the density of
defects, and of the largest Lyapunov exponent.

According to these figures, we can distinguish four
typical regimes when increasing the forcing amplitude
B:
1. For smallB, defect turbulence is only slightly

disturbed, and no synchronization effects are de-
tected.

2. Stronger forcing suppresses phase rotations, so
thatΩ = 0, but the system remains turbulent. This
is the region in Fig. 4 between the zero-level lines
of Ω and of the Lyapunov exponent. We illustrate
this regime of turbulent synchronization in Fig. 5.
For larger forcing amplitudesB, no defects are
observed (Fig. 5(a)), while near the borderΩ = 0
there are states where the averaged frequency is
nearly zero, but for which some defects can still
occur (dark spots in Fig. 5(b)). The contribution
of these rare defects to the mean frequency is very
small.

3. For relatively large forcing amplitudes, turbulence
disappears and a regular (spatially and/or tempo-
rally periodic) synchronized state with zero largest
Lyapunov exponent is observed.

4. For very large forcing amplitudes, the stable syn-
chronized homogeneous solution with negative
Lyapunov exponent (8) is observed (this state is
not shown in Figs. 3 and 4 as it occurs for larger
values ofB).

4.2. Synchronizing phase turbulence

Phase turbulence is a weaker form of spatiotempo-
ral chaos than most defect turbulence regimes (as seen,
e.g., from the corresponding values of the largest Lya-
punov exponents). It is thus expected to be easier to
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Fig. 5. Turbulent synchronization of defect turbulenceβ = 2, α = −2. (a) In the region III of Fig. 4 (ν = −1.2, B = 0.35), no defects
are present. (b) In the region II of Fig. 4 (ν = −1.2, B = 0.23), rare defects (dark spots) can be observed (e.g., atx ≈ 75, t ≈ 225); their
contribution to the averaged frequencyΩ is small.

synchronize, and this is confirmed by our numerical
experiments. We have performed them for one par-
ticular set of parametersβ = 2, α = −0.75, so the
results presented below do not represent the only pos-
sible scenario for the phase turbulence state.

Fig. 6 (a) shows the results of a parameter scan as
in Fig. 3, measuringΩ, the density of defects, and
the largest Lyapunov exponent forα = −0.75 and
β = 2. Here, the synchronization region is large and
starts at small forcing amplitudes if the external fre-
quency is in resonance with the frequency of natural
rotations (note the difference in scales of Figs. 6(a)
and 3). According to the calculations of the Lyapunov
exponent (Fig. 6(c)), the synchronous state can be tur-
bulent (positive exponent), periodic in space and/or in
time (zero exponent), or constant and spatially homo-
geneous (negative exponent).

The rugged region at the border of the synchroniza-
tion region in the frequency rangeν < −0.76 corre-
sponds to the domain where there exists a finite space–
time density of defects (Fig. 6(b)). The spatiotemporal

regimes in this region are illustrated in Fig. 7. Local-
ized seagull-like structures arise from the defects and
often lead to the creation of two new defects.

In the Section 5, we focus on these localized struc-
tures and show that they are related to 2π -phase kinks.
We also characterize the state observed in Fig. 7 as a
kink-breeding regime.

5. Phase kinks as natural excitations in the forced
system

The spatially homogeneous static solutionR0, Φ0,
when linearly stable, is not necessarily the global at-
tractor of the system. Other stable solutions may exist.
Intuitively, it is easy to understand that localized 2π -
phase kinks are the natural candidates. Imagine an ini-
tial condition such thatR ≈ R0 everywhere, but with
large extremal deviations in the continuous phase pro-
file. As the external forcing imposes a preferred value
Φ0, the phase profile will develop steps at values such
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Fig. 6. Synchronization of phase turbulence. (a) The average frequencyΩ as a function of the amplitudeB and the frequencyν of the
external force. The contour line shows the border of the synchronization region. (b) The density of defects (arbitrary units). (c) The largest
Lyapunov exponent. The contour lines show the regions of positive, zero, and negative exponents.

that Φ = Φ0 mod 2π . Given the local phase portrait
(see Fig. 1), which “forbids” passing through the cen-
tral focus, these steps are expected to be rather sharp:
they should appear as 2π -phase kinks [22].

The isolated phase kink is a solitary wave propa-
gating at constant speed (see Fig. 9(a)), whose profile
is stationary in the frame moving at this velocity. It
is thus natural to look for solutions satisfying the fol-
lowing ansatz:

A = R(ξ) exp(Φ(ξ)) with ξ = x − vt

with the constraints

R(ξ) → R0 for ξ → ±∞,

Φ(ξ) → Φ0 for ξ → −∞,

Φ(ξ) → Φ0 + 2π for ξ → ∞. (13)

Substituting this ansatz in the forced CGLE leads to a
boundary value problem in a four-dimensional ODE
which is numerically rather complex to solve. Indeed,
one has to find a homoclinic trajectory in the four-
dimensional phase space that lies on the intersection of
two-dimensional stable and unstable manifolds. The
high dimension of the phase space and the absence of
symmetry in the problem renders the application of
a simple shooting algorithm hardly possible; the only
hope may be in the implementation of recent advanced
techniques [23,24].

The kink solution is, however, much easier to find
within the phase approximation given by Eq. (6). Sub-
stitutingΦ = Φ(ξ), we get the second-order ODE

−V Φ ′ = ν − α − B sinΦ − αB cosΦ

+(α − β)(Φ ′)2 + (1 + αβ)Φ ′′ (14)
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Fig. 7. Kink-breeding process in the phase turbulence forα = −0.75, β = 2, ν = −0.8, andB = 0.041. Initial conditions are small
fluctuations around the unstable synchronized plane wave. Grey scale space–time plots of Re(A) and |A| reveal the occurrence of defects
(black spots in the right panel) corresponding to zeros of|A|.

with boundary conditions (13). This problem can be
easily solved numerically by matching stable and un-
stable one-dimensional manifolds of the fixed point.
The matching condition determines the velocityV ,
and the kink profile can be obtained. We compare the
solution of the phase equation with the phase kink ob-
tained for the same parameters in the full forced CGLE
in Fig. 8. Note that, in theα = β case, Eq. (14) co-
incides with the equation for stationary waves in the
damped sine-Gordon equation [25].

The asymmetry of the kink can be seen as arising
from the presence in the phase equation of the term
Φ2

x , which breaks thex → −x symmetry forα 6= β.
Due to this asymmetry, the kink mainly propagates
in one direction. The width of the kink is smaller on
the left side of the Arnol’d tongue and its minimal
amplitude is according to (5) smaller, too.

6. Complex dynamics of phase kinks

The direct study of the stability of the kink solu-
tion is a difficult problem made even more difficult in
the absence, thus so far, of an explicit expression for
this solution. In this section, we describe the results
of numerical simulations in which a single kink is in-
troduced into the various regimes of the CGLE.

Initial conditions consist of a localized 2π variation
of the phase imposed on the homogeneous station-
ary solution (R0, Φ0) in a box with periodic boundary
conditions.

6.1. Nonturbulent background

We have chosen the parametersβ = 0 andα = 1 for
which no sustained disorder is observed in the CGLE.
The synchronized spatially homogeneous state is then
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Fig. 8. The phase kink obtained as a solution of (14) and from the
simulations of the full forced CGLE, forα = 0, β = 1, ν = 0.995,
andB = 0.02.

stable in the whole Arnol’d tongue region. We have
observed three different regimes of kink dynamics de-
pending on the forcing parameters (see Fig. 9). The
regions corresponding to these three regimes are not
symmetric inside the Arnol’d tongue (cf. Fig. 6(b)).
1. Stable stationary kink(Fig. 9(a)): The initial pro-

file evolves toward a stationary wave propagating
with a constant velocity. For small forcing ampli-
tudes, this kink is satisfactorily described by the
phase equation (6).

2. No kink solution(Fig. 9(b)): The initial profile
evolves to a rather narrow 2π -kink, which disap-
pears via the creation of a defect –R vanishes at
one point in space–time.

3. Kink-breeding: The initial kink disappears via the
occurrence of a defect, but the residual perturba-

tion grows and leads to two new kinks. This is
due to the excitability of the underlying system of
ODEs (7) in this case: a finite perturbation to the
homogeneous solution exceeds the threshold and
leads to a 2π -shift of the phase. As the pertur-
bation is local, two symmetric kinks are formed.
The process then repeats itself: each of the new
kinks dies and leads to the creation of two new
kinks, etc. The asymptotic spatiotemporal evolu-
tion is a disordered state (see Fig. 9(c)). From the
point of view of synchronization, this regime is
characterized by the intermittent behavior of each
site, which leads to the deviation of the mean fre-
quencyΩ from zero, as seen in Fig. 6(a).

6.2. Kinks and spatiotemporal intermittency

For the parameter values where spatiotemporal in-
termittency can be observed, the homogeneous plane
wave solution is stable, and thus the phase kink is a
stable localized excitation. Increasing the forcing am-
plitude B, the kink disappears via the occurrence of
a defect, and this perturbation can trigger spatiotem-
poral intermittency regimes which resemble those ob-
served without forcing (Fig. 10). One noticeable dif-
ference is that the phase within the large “laminar” re-
gions tends to be close toΦ0. For very strong forcing,
only the homogeneous synchronous state is observed.

6.3. Kinks and phase turbulence

We now return to the discussion of the kink-
breeding state observed during the synchronization
of phase turbulence (Section 4). The main difference
with the kink-breeding regime described above is that
here the disordered regime can set in even when start-
ing from zero-winding number initial states of the
CGLE, the phase turbulence fluctuations being strong
enough to trigger it.

Decreasing the forcing amplitude, the homoge-
neous state (8) looses stability at the border given
by Eq. (12), and spatially periodic stationary patterns
appear. Correspondingly (Fig. 6(c)), the maximum
Lyapunov exponent is zero in this region (because
we consider the system with periodic boundary con-
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Fig. 9. Different regimes of kink dynamics forβ = 0, α = 1: (a) ν = 1, B = 0.02; (b) ν = 1, B = 0.043; (c) ν = 1.1, B = 0.073.

Fig. 10. Triggering of spatiotemporal intermittency from an initial
kink for β = 0, α = 2, ν = 2, andB = 0.08.

ditions, spatial shifts of stationary nontrivial patterns
are marginal and give rise to the zero Lyapunov
exponent). DecreasingB further, one observes dif-

ferent regimes for different parts of the Arnol’d
tongue.
1. On the right side of the Arnol’d tongue, i.e. for

ν > α, we observe secondary instabilities of the
periodic pattern. They are however soft and lead
to a weakly turbulent regime which remains in
the vicinity of the now unstable spatially homoge-
neous state. This state transits to phase turbulence
as the forcing vanishes. Since no defects are ob-
served for the whole range ofB values, and since
the amplitude is bounded away from zero, we can
qualitatively interpret these transitions within the
framework of the phase approximation. The ex-
ternal force in Eq. (6) provides aΦ-periodic po-
tential which tends to bound the fluctuations of
the phase. If the initial rotation number is zero,
all the dynamics takes place in one valley of this
potential, and the weakly chaotic state near the
transition to turbulence is also bounded. One can
say that the phase profile is “pinned” by the pe-
riodic potential. For smaller barrier heights, ex-
cursions of the phase to neighboring valleys are
possible, and at some critical forcing amplitude,
“depinning” occurs, leading to the onset of phase
rotation and to the breakdown of synchronization.
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Fig. 11. Fluctuating kink on a turbulent background forβ = 2,
α = −0.75, ν = −0.7, andB = 0.04.

If a single 2π -phase rotation is imposed as an
initial condition on the turbulent background, we
can observe either the disappearance of the kink,
or the conservation of the initial kink. In this lat-
ter case, the background remains turbulent, and
the kink is not a perfectly stationary object in its
moving frame: its velocity and its width fluctu-
ate. Such a localized chaotic excitation is shown
in Fig. 11.

2. Another scenario is observed on the left side of
the Arnol’d tongue, i.e., forν < α. As the spa-
tially periodic, stationary pattern develops, the
spatial inhomogeneity leads to the spontaneous
creation of phase kinks below a critical forcing
(Fig. 7). The process of kink nucleation is sim-
ilar to that of the regime of kink-breeding on a
stable background: thanks to the excitability of
the medium, a small local perturbation leads to
a 2π -phase rotation from which two new kinks
develop.

This stage can also be qualitatively described
with the help of the phase approximation Eq. (6),
combined with the ODE phase portrait of Fig. 1.
Although the phase profile is mainly situated in-

side one valley of the potential, deviations from
the stable state make it locally possible to visit
the neighboring valley. As this happens for large
potential barriers, the corresponding part of the
phase profile slides to the bottom of the neighbor-
ing valley, and two relatively narrow kinks appear.
The single phase kink is unstable in this region
of parameters (so the two kinks disappear via de-
fects, etc.), and the kink-breeding process sets in.
It occupies a large region around the left border
of the Arnol’d tongue (Fig. 6).

For very small forcing amplitudes, the barriers
between potential valleys are small, the character-
istic length of the kinks is large, and they are no
more unstable. In fact, here one can hardly distin-
guish kinks from large-scale phase fluctuations,
and the whole state continuously transits to phase
turbulence asB → 0.

7. Discussion and perspectives

In this paper, we considered the dynamics of the
one-dimensional CGLE subject to periodic external
forcing. At large forcing, complete synchronization is
always achieved and the only stable solution is the spa-
tially homogeneous state oscillating in synchrony with
the forcing. For smaller forcing amplitudes, different
partially synchronized states have been observed. We
have argued that 2π -phase kinks are natural excita-
tions in the forced system, which can be seen as medi-
ating synchronization. In certain parameter regions, a
kink-breeding process is observed, which destroys the
perfect synchronization and is best described as a spa-
tiotemporal intermittency regime, where synchronized
regions are interrupted with phase slips. Moreover,
when a phase turbulent state of CGLE is forced, kinks
can appear spontaneously from the homogeneous state
due to the combined effect of excitability and spatial
instability.

We would like to emphasize that 2π -phase kinks
are the natural consequence of the gauge invariance
breaking combined with the excitability of the system.
In this respect, they are different from the localized
excitations observed in the normal CGLE (Nozaki–
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Bekki holes [26,27], homoclinic holes [28]). Such
kinks are natural for phase systems with broken gauge
invariance like the sine-Gordon equation [29,30] or an
analogous overdamped model studied recently [25].
In fact, the description of kinks in the framework of
the phase equation is very close to that for the over-
damped sine-Gordon model. The peculiar property of
the forced CGLE model is that. . . the amplitude
is also present! Kinks are not topologically stable,
they can appear and disappear through “defects”, i.e.,
points in space–time where the amplitude vanishes.
This leads in particular to the nontrivial dynamics of
kink-breeding.

The present work is only preliminary in that it does
not provide a complete description of the various syn-
chronization scenarios in the one-dimensional CGLE.
Much remains to be done to assess the genericity of
each route to and from complete synchronization. Sim-
ilarly, we have not attempted here to systematically
study the possible coexistence regions of the various
dynamical phases discovered. This numerical explo-
ration is left for future work, together with the deter-
mination of the kink solution, which should help in
clarifying how the kink existence and stability regions
influence the global synchronization properties of the
medium.

Apart from a similar study in two space dimensions
– a case of greater interest in an experimental context
– specific problems have been located which deserve
further investigations:
1. A systematic study of the influence of bro-

ken gauge invariance on the kinetic roughening
properties of the phase interface of the forced
CGLE. In the absence of defects, the phase of
the medium can be seen as “pinned” (“syn-
chronized”) at large forcing, and the subsequent
depinning (desynchronization) transition ob-
served when decreasing the forcing deserves
attention.

2. the nature of the transition from kink-breeding
to no-kink regimes: does this transition to spa-
tiotemporal intermittency exhibit any critical
region?
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