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Abstract. We present explicit relations for the generalized dimensiaef the spectral measure
of the Thue-Morse symbolic sequence for positive integer valugs dtachD, is expressed
through the eigenvalue of the correspondingx(¢) matrix. It is also demonstrated how these
dimensions can be recovered from the products of the values of the autocorrelation function.

1. Introduction

The Thue-Morse symbolic sequendd/;}(j=1,2,...) is defined through the rule

M; = (—=1)®U~D where®(m) denotes the sum of digits in the binary representatiom of
There are several equivalent definitions which describe the same symbolic object. Thus, it can
be obtained from the starting poifd; = 1 by means of repetitive substitutions (inflations)
when each symbol 1 is substituted by-11 and each-1 is inflated into—1 1. Yet another
definition (which we will exploit later) is based on concatenations. This goes as follows: given
a symbolic stringk,, of length 2 we append to it the string,, in which each symbol ‘1’ of

K, is replaced by+-1’ andvice versathe recursiork,+; = K, K, combined with the initial
conditionKy = 1 yields the Thue—Morse sequence.

During its nearly century-long history [1-3] the Thue—Morse sequence has found
numerous applications in many domains of mathematics and mathematical physics. Being
viewed as a deterministic dynamical system in which the indglays the role of discrete
time, it is neither regular (periodic or quasi-periodic) nor chaotic, but demonstrates ‘marginal’
behaviour. Accordingly, its Fourier spectrum (also called ‘structure factor’ in the context of
solid-state physics) is neither discrete nor absolutely continuous with respect to the Lebesgue
measure, but purely singular continuous [3, 4]: the spectral measure is carried by the dense
non-denumerable set with zero Lebesgue measure. The combination of self-similarity and
weak disorder has made the Thue—Morse sequence an indispensable case study for studies of
long-range effects in one-dimensional classical and quantum patterns. To provide an adequate
list of work in this field is a formidable task by itself; we refer readers to the recent review [5]
and the representative list of references therein. Among other applications we should mention
the quantum rotator kicked by the force which obeys Thue—Morse law: it serves as an example
of a system driven by the external action which is neither regular nor random [6, 7]. Yet another
application has recently been found in the field of autonomous dissipative dynamical systems
where the onset of singular continuous (fractal) power spectra has been traced to Thue—Morse
symbolic coding of the respective attractor [8].
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The fractal properties of the set which supports the spectral measure of the Thue—Morse
sequence were numerically studied in the last decade. In their computer-assisted description
of multifractality for various sequences generated by substitution rules gGlogland Luck
[9] provided the numerical estimates for the singularity spectfiyam of the spectral measure.
Later Liviotti [10] employed the wavelet technique for the same purpose.

Since the Thue—Morse sequence plays a prototypic role for weakly aperiodic systems,
the exact knowledge of the characteristics of its spectral properties is of especial methodical
interest. In previous work we utilized the relation between the decay rate of the integrated
autocorrelation function and the correlation dimensionof the spectral measure [11,12]
to obtain the exact value of the correlation dimensionfor the spectral measure of the
Thue—Morse sequence?, = 3 — log(1 ++/17)/log2 = 0.64298... [13]. Later, we will
use a different approach and express the values of the generalized dimdnsfoniitegeryg
through the leading eigenvalues of the appertaining ) matrices. Further, we generalize
the results of [11, 12] by relating, to the growth rates of the higher products of the values
of the autocorrelation function. The case of the information dimenBipdoes not conform
to this scheme; we present the series which allows us to calculate it to arbitrary precision.

2. Spectral measure

A generic observable built from the Thue—Morse sequence should attain only two values.
Therefore, the spectral properties do not depend on the choice of the observable and we select
the most convenient one: the valig, = £1 itself. Let us take the value (0 < w < 1)
and consider the partial Fourier sums formed by the first 2" symbols of the sequence:
op(w) = Zf":l MjeZ"‘f‘“ and the finite-length approximations to the power spectrum
S,(w) = 27"|0, (w)|?. The concatenation rule through which the Thue—Morse sequence is built,
implieso,s1(w) = 0, () (1 — €7 ™) and, respectivel§,+1(w) = S, (w)(1 — cos 2" w).
The evolution ofS, (w) under growing: allows us to conclude both on the nature of the power
spectrum at the given poiat and on the global distribution of the spectral meagure
n—1
u(@) = lim S,(@) = lim []1 - cos2"rw). (1)
n—oo nHOOj:O

The properties ofu(w) can be reconstructed from the asymptotic features of the infinite
product (1) (also called the Riesz product [4]). It is straightforward to see&j{lia) vanishes
atw = 27%m for n > k + 1 and arbitrary integers:, k [9]. For all other rational values
of w, the ratiop = S,+1(w)/S,(w) oscillates periodically withe. (These oscillations are
preceded by a transient whose length equals the multiplicity of factor 2 in the factorization of
the denominator of».) When the geometric mean valge) over the period of oscillations
exceeds 1, the spectral suysgrow ‘on average’s, ~ (p)" or, in terms of the length of the
symbolic string,S, ~ I, where the growth rate equals logp)/log 2. However, no values
of w enable the delta peaks in the spectrum (or, in diffraction jargon, the ‘Bragg peaks’):
this would requirey = 1. This means that the discrete (atomic) component is absent in the
spectrum. The fastest growth and, respectively, langésattained ab = 2~*m /3 (of course,
m should not be a multiple of 3); in this cage= log 3/log2— 1 = 0.584. .. [9]. Already
this subset ofv-values is dense on the interval, [IJ; this fact alone is sufficient to ensure
that the capacity (box-counting dimensiany of the set which carries the spectral measure,
equals 1. However, since the latter measure is not absolutely continuous with respect to the
Lebesgue measure, the other generalized dimengigresan differ from 1.

To describe the multifractal properties pfw), an appropriate partition of the interval
[0, 1] should be introduced. A standard way (see, e.g. [9] where this formalism was applied
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to spectral measures) is to divide the unit interval iNtemall boxes of lengte = 1/N, so
that the probability to locate measures in fib subinterval isp; = f(lf_l)s u(w)dw. The

partition function is defined for any real numhgasZ(q, ¢) = Z;iv:l pi. Assuming under
fixed g the scaling lawZ (g, &) ~ 7@, we arrive by the standard way [9] at the generalized
(Rényi) dimensionsD, = 7(¢)/(q — 1).

Since the normalization conditioﬁ)l S, (w)dw = 1 holds for everyn, we can use a
sequence of, (w) as approximations to the probability density. In its turn, this provides a
sequence of approximations

_ 1/e ke q
Z(q.e.n) =Yy (f S, (@) dw)
(

k=1 k—1)e

to the partition function. As tends to zero, we can replace in these approximations summation
by integration

5 1/e 1 ke q 1
Z(g,e,n) =gt Z <—f S, () da)) & — 8‘1’1/ S (w) dow. (2
=1 \& Jk-De 0
Apparently, infinite decreases ofinder fixed finite: makes no sense: in this way, one would
approach the smootf), (w) and obtain the trivial scaling = ¢ — 1. The decrease efshould
be combined with a simultaneous increase: pthis refinement of the partition allows us to
explore the asymptotical fine structure @fw). According to equation (1), the resolution
in frequency domain fos,+1(w) is twice as good as that fd, (w). Consequently, seeking
for the asymptotic scaling properties, one should comgatg ¢, n) with Z(g, /2, n + 1).
Thereforer (¢) under fixedn ande is evaluated as

Z(q,e/2,n+1)

—(log2)~tlo - 3
(log2)~~log 5o ®3)
which, taking into account the asymptotics of (2), finally yields
_t(g) logA(q)
q_q—l_l (g —Dlog?2 “)
where the growth rat&(q) is given by
1 1
sS4 d ?_o(1—cog2k+t 7d
)\(q) — “m fO n+l(a)) w _ “m fO (l_[k=0( i JT(,())) w (5)

n—00 fol Sr‘{ (a)) dow T fol(l—lz;(]).(l _ CO$2k+l7T(,z)))q dw.

In this way, computation of the generalized dimensibgsas been reduced to the evaluation
of A(q).

3. Generalized dimensiondD, for integer values ofq

In general, the only way to find the value ifg) seems to be by direct numerical integration
of the numerator and denominator in equation (5) with subsequent extrapolation to the limit
n — oo. However, the case of integer valuesqof> 1 admits a simplification. The”"2
terms in the expansion &f, (w) into cos Zrkw range fromk = 0 tok = 2" — 1. Therefore,
for integerg > 0 the cosine-expansion 6f (w) contains the terms until cox22" — 1)gw:
SHw) = Y 9%V b™ cos k.

Let us pick out from the set of coeﬁicien{b,(c”)} the subset which corresponds to the

multiples of 2: a{” = bY",,, j = 0.1,....q — 1. Obviously, of the whole expansion only
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thew-independent term!”’ contributes to the integrals in (5) andy) = lim,,_ . ay"™ /al".

When we proceed frons, to S,.;, the coeﬁicientwﬁ“” at cosZrj2"'w come into
consideration. By combinatorial arguments it can be easily shown than(}"é@nis a linear
combination of2\"”: thus, forg = 2 we have

(n+1) 3 (n) (n) (n+1) 1 () (n)
ag = zaon —ay a" = zaon —ay" (6)

for ¢ = 3 the recursion relations are

(n+l) _ 5 (n) 15 (n) 5 3 (n) (n+l) __ 3 _(n) (n) , 5 (n)
ag T =349 — gap t3a; ay T =34y —2a; *3a,
(n+1) 1), 3,
a, 7 =—ga; *tza, (7)

and so on. In the case ¢f one has to do with theg(x ¢) matrix, whose elements are
combinations of binomial coefficients with the coefficients of expansion dfxxo®o cos;x.
Although the general expressions are rather complicated, computation of the matrix elements
for not too largey is straightforward.

Since equations (6), (7) etc. are linear,is simply the largest eigenvalue of the
corresponding matrix and can be found from the respective characteristic equatign=For
the equation is

M—Ir-1=0 (8)

which yieldsh = (1++/17)/4 = 1.28077064..andD, = 1—logx/log2 = 0.642981 ...
Forg = 3 we have

AB-22-3-1=0 )

and, respectivelyp = 1.777389781.. and D3 = 0.58511995..; for ¢ = 4 the
characteristic equation is

4 13,3 5542 4 17
M-8 8524 1 41=0 (10)
with = 2.579911342.. and D, = 0.544 226 1703. ., efc.

4. Generalized dimensions through the autocorrelation function

The same results can be expressed in terms of the autocorrelation functions. For an observable
&; and integer (—oo < t < oo) the autocorrelation function is defined @$r) = C(—¢)

= ((&&r) — (&)D)/((ED) — (&)?) where the angular brackets denote averaging with respect

to the positiork. In our case{M,) = 0 (this follows, e.g. from the concatenation building rule)

and this definition is reduced ©(¢) = (M; M+,). Being merely the Fourier transform of the
power spectrum; (¢) can be easily recovered from the spectral sums. In this sense, casting the
Riesz product into the form of the trigonometric sum immediately yields the cosine-transform
ofthe power spectrum and is especially convenient:jﬁét: 2 fol Sn(w) o927 jw) dw denote

the coefficient at cos2jw in §,,, then

- 1w
C(J) B 2— 80]' nlﬂ;noo Cj (11)
(the factor% at j # 0 enters the expression becauseancludes contributions of botf'(;)
andC(—))).

This presentation allows us to reformulate the analysis of the growth of the coefﬁéf'i)ent
in expansions of; (w). In thegth power of the cosine-transform 8f(w), thew-independent
part is formed by the product terms with the vanishing net sum of trigonometrical arguments.
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Therefore, inthe time domain the integféls,? (w) dwis represented by the sum of the products
of g values ofC ()

U(g.T) = Z C(DCG2) .. Clg-D)C(=j1— ja =+ — Jg-1) (12)
Ljal+ljal -+ jg-al<T

whereT is the length of the segment of the symbolic string, contributing,to This sum

grows with7T according to the power lawt/ (g, T) ~ T*@ wherex(gq) = logi(q)/log 2.

Hence,

k(q)

D,=1- .
q q_l

(13)

Equation (13) relates theéRyi dimensions of the spectral measiixgfor integerg with the
growth law for the sums aof-products of the values of the autocorrelation function. For the
caseg = 2 itis equivalent to the formula derived in [11].

5. Cases ofy — 0 and largeq

In the case of smal} the growth rate. can be computed explicitly

1+ ll Sn+ d n+
rq) = lim 274 5 log 1(w) dw Su+1(®)
"= 1+q [y 10gS,(w) do Sn(w)
=1—glog2+Qg?). (14)

For the generalized dimension this yields

dw + O(¢?)

1
+0<q2>=1+q/ log
0

log

1 1 _ 2
Dy=1= s =1-a+ 0. (15)

In the opposite limiy — oo the dominating contribution intgﬁol S (w) dw is made by
values ofw which enable the fastest growth of local finite-length approximatfe). The
peaks inS,.; which belong to the most rapidly growing family arg23times higher than
the peaks at the same placesSjn at the same time, due to the improvement of the spectral
resolution, the width of these peaks is halved. Therefoeg,3(3/2)7. Accordingly

~ q log 3
Pt (o ags) 4o

As g grows, D, tends toD, = 2 —log 3/log2 = 0.415037....

In fact, already moderate valuesgpére ‘large’ enough: thus, the exact valudnfquoted
earlier differs from the estimate of (16) by less than 0.01; in the cage-0b this difference
is less than 0.0007 and fgr= 8 it is even less than 0.00007.

6. Information dimension D,

The caseg = 1 should be treated separately. Differentiation of the numerator and denominator
in (4) provides the expression for the value of the information dimension

1 1
D =1- @ lim f (Sp+1(w) |09 Sp+1(w) — Sy () |Og Sy (w)) dw. (17)
n—o0 Jo
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Let us next transform the integral in this expression

1 n+l n+l
/ ( (1—cosZrw) Z log(1 — cos 2 mw)
0 j=1 i=1

J J

— H(l —cosZrw) Z log(1 — cos an)) dow
j=1 =1

J J

1 1 n
- / S, (@) log(1 — cos Zrw) dw — / cos Zraw Z log(1 — cos 2 7 w) dw
0

0 j=2

1 n+l ) n+l )
+/ < (1—cosan)Zlog(l—cosan)
0 =2

J j=2

n n

—[]@—cos2rw) ) log(1 - cos an)> do. (18)
j=1 J=1

Of the three integrals, the last one vanishes, since the contributions of its first and

second parts mutually balance each other. Similarly, the second integral vanishes because

Z;zz log(1 — cos 2 w) does not contain terms proportional to cas:? its cosine-expansion

starts with cos#w. Thus, the only remaining part is the first term

1 2"—1 C(fl)
/ Su(@)log(1 — cos Zrw) dow = —log2— >~ —— (19)
0 j=1 J

Wherec‘(j”), as before, is the coefficient at casjv in S,,. Taking into account equation (11)

which relatesr;”) to the values of the autocorrelation functioig;), we get

—10g2—lim, o0 3757(c)" /j © C(j
D=1 g o0 2 i1 (c; /J)=2+ 2 CW).

. (20)
log 2 log 2 =

Thus, the problem is reduced to estimatiomot Zj’;l C(j)/j.

The invariance of the infinite Thue—Morse sequence with respect to the inflation and
the inverse operation of binary decimation imposes recurrent relations on the values of the
autocorrelation function [3, 13]

_C(H+CG+D
2
which, combined with the normalization conditi@®(0) = 1, allow us to compute ()
for every value ofj: C(2") = -C3x2") = -1/3,C(5x2") = C(7Tx2") = 0,
COx2) = —-C(11x2") = 1/6, and so on{ = 0,1,...). This information alone
does not allow us to obtain in a closed form. The series in (20) converges slowdy (1);
however, the recursions (21) allow us to implement the ‘internal summation’ which leads to
the noticeable (in principle, indefinite) acceleration of the convergencez beta sum

C2j)=CQ) C2j+D = (21)

[e.¢]
E=a+) f()HCQ) (22)
j=1
wherea is a constant and (j) is some function ofi. Transforming this expression with the

help of (21), we obtain
f &2f2j)—-fR2j—-1—-fR2j+1
_ T + E > C

[x]

(- (23)

=a
i=1
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This provides the iteration scheme

am+1=am_@ (24)
2fm@)) — fm@2j—1) — fn(2j +1
Frna(i) = Jm(2)) — fm(2j —1) — fu(@2j+ 1) (25)

2
where, in order to comput&, we should start witlyg = 0 and fo = 1/;.
Since the expression on the right of equation (25) is the (rescaled and shifted) finite-
difference approximation for the second derivative f3f(j), the result ofk iterations of
equation (24) and (25) provides a serie€ify) whose coefficients; (j) converge ag ~1~%.
Successive transformations yield
o0

1 C(j) 5 & (962 — 9)C(j)

= —— +
2j(4j2— 1) 12 &

A==5- - 4j(4j2 —1)(16j2— 1)(16j2—9) ~
(26)

Although further expressions are too cumbersome to quote explicitly, their derivation is
straightforward and can be easily performed with every program for symbolic computations.
Already after the seventh iteration the coefficientC&p), C(3) and C(4) have an order

of, respectively, 10'°, 10718 and 10?° and it is enough to take the first two terms in the
series (that isg” and the term atC(1)), in order to produceA with 14 correct digits:

A = —0.439955 182836 29 and, respectivaly, = 0.730557 679017 39...

7. Discussion

The approach which we have proposed is not restricted to the particularities of the Thue—Morse
sequence. In the general case, as soon as the building rules of the symbolic sequence allow
us to explicitly interrelate the consecutive approximati§p@) andsS,+1(w) to the spectral
measureu(w), the same technique can help to extract the generalized dimensions from the
corresponding characteristic equations.

Similarly, equation (13) which relates generalized dimensions to the growth rate of the
products of the autocorrelation function values, remains valid for a broad class of problems
and can be applied not only to binary symbolic sequences but to general (stationary) datasets
of computational or experimental origin. In the case of processes with singular continuous
or mixed Fourier spectra the direct evaluation of spectral sums (and thereby of the set which
supports the spectral measure) is sensitive to the numerical details such as frequency resolution,
etc. Compared to this, the estimation of the autocorrelation function is a robust procedure.
Thus, equation (13) allows one, in principle, to recover the generalized dimensions from
observational and numerical data. However, the rapid growth of the number of terms in the
sumsU (g, T) (this number is proportional t#9~1) makes its application fog > 4 hardly
practical.
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