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Abstract. We present explicit relations for the generalized dimensionsDq of the spectral measure
of the Thue–Morse symbolic sequence for positive integer values ofq. EachDq is expressed
through the eigenvalue of the corresponding (q × q) matrix. It is also demonstrated how these
dimensions can be recovered from the products of the values of the autocorrelation function.

1. Introduction

The Thue–Morse symbolic sequence{Mj }(j = 1, 2, . . .) is defined through the rule
Mj = (−1)8(j−1) where8(m) denotes the sum of digits in the binary representation ofm.
There are several equivalent definitions which describe the same symbolic object. Thus, it can
be obtained from the starting pointM1 = 1 by means of repetitive substitutions (inflations)
when each symbol 1 is substituted by 1− 1 and each−1 is inflated into−1 1. Yet another
definition (which we will exploit later) is based on concatenations. This goes as follows: given
a symbolic stringKn of length 2n we append to it the stringKn in which each symbol ‘1’ of
Kn is replaced by ‘−1’ andvice versa; the recursionKn+1 = KnKn combined with the initial
conditionK0 = 1 yields the Thue–Morse sequence.

During its nearly century-long history [1–3] the Thue–Morse sequence has found
numerous applications in many domains of mathematics and mathematical physics. Being
viewed as a deterministic dynamical system in which the indexj plays the role of discrete
time, it is neither regular (periodic or quasi-periodic) nor chaotic, but demonstrates ‘marginal’
behaviour. Accordingly, its Fourier spectrum (also called ‘structure factor’ in the context of
solid-state physics) is neither discrete nor absolutely continuous with respect to the Lebesgue
measure, but purely singular continuous [3, 4]: the spectral measure is carried by the dense
non-denumerable set with zero Lebesgue measure. The combination of self-similarity and
weak disorder has made the Thue–Morse sequence an indispensable case study for studies of
long-range effects in one-dimensional classical and quantum patterns. To provide an adequate
list of work in this field is a formidable task by itself; we refer readers to the recent review [5]
and the representative list of references therein. Among other applications we should mention
the quantum rotator kicked by the force which obeys Thue–Morse law: it serves as an example
of a system driven by the external action which is neither regular nor random [6, 7]. Yet another
application has recently been found in the field of autonomous dissipative dynamical systems
where the onset of singular continuous (fractal) power spectra has been traced to Thue–Morse
symbolic coding of the respective attractor [8].

0305-4470/99/081523+08$19.50 © 1999 IOP Publishing Ltd 1523



1524 M A Zaks et al

The fractal properties of the set which supports the spectral measure of the Thue–Morse
sequence were numerically studied in the last decade. In their computer-assisted description
of multifractality for various sequences generated by substitution rules, Godrèche and Luck
[9] provided the numerical estimates for the singularity spectrumf (α) of the spectral measure.
Later Liviotti [10] employed the wavelet technique for the same purpose.

Since the Thue–Morse sequence plays a prototypic role for weakly aperiodic systems,
the exact knowledge of the characteristics of its spectral properties is of especial methodical
interest. In previous work we utilized the relation between the decay rate of the integrated
autocorrelation function and the correlation dimensionD2 of the spectral measure [11, 12]
to obtain the exact value of the correlation dimensionD2 for the spectral measure of the
Thue–Morse sequence:D2 = 3− log(1 +

√
17)/ log 2 = 0.642 98. . . [13]. Later, we will

use a different approach and express the values of the generalized dimensionsDq for integerq
through the leading eigenvalues of the appertaining (q × q) matrices. Further, we generalize
the results of [11, 12] by relatingDq to the growth rates of the higher products of the values
of the autocorrelation function. The case of the information dimensionD1 does not conform
to this scheme; we present the series which allows us to calculate it to arbitrary precision.

2. Spectral measure

A generic observable built from the Thue–Morse sequence should attain only two values.
Therefore, the spectral properties do not depend on the choice of the observable and we select
the most convenient one: the valueMj = ±1 itself. Let us take the valueω (0 6 ω 6 1)
and consider the partial Fourier sums formed by the firstln = 2n symbols of the sequence:
σn(ω) =

∑2n

j=1Mj e2π ijω and the finite-length approximations to the power spectrum
Sn(ω) = 2−n|σn(ω)|2. The concatenation rule through which the Thue–Morse sequence is built,
impliesσn+1(ω) = σn(ω)(1− e2n+1π iω) and, respectively,Sn+1(ω) = Sn(ω)(1− cos 2n+1πω).
The evolution ofSn(ω) under growingn allows us to conclude both on the nature of the power
spectrum at the given pointω and on the global distribution of the spectral measureµ

µ(ω) = lim
n→∞ Sn(ω) = lim

n→∞

n−1∏
j=0

(1− cos 2j+1πω). (1)

The properties ofµ(ω) can be reconstructed from the asymptotic features of the infinite
product (1) (also called the Riesz product [4]). It is straightforward to see thatSn(ω) vanishes
at ω = 2−km for n > k + 1 and arbitrary integersm, k [9]. For all other rational values
of ω, the ratioρ = Sn+1(ω)/Sn(ω) oscillates periodically withn. (These oscillations are
preceded by a transient whose length equals the multiplicity of factor 2 in the factorization of
the denominator ofω.) When the geometric mean value〈ρ〉 over the period of oscillations
exceeds 1, the spectral sumsSn grow ‘on average’:Sn ∼ 〈ρ〉n or, in terms of the length of the
symbolic string,Sn ∼ lγn where the growth rateγ equals log〈ρ〉/ log 2. However, no values
of ω enable the delta peaks in the spectrum (or, in diffraction jargon, the ‘Bragg peaks’):
this would requireγ = 1. This means that the discrete (atomic) component is absent in the
spectrum. The fastest growth and, respectively, largestγ is attained atω = 2−km/3 (of course,
m should not be a multiple of 3); in this caseγ = log 3/ log 2− 1 = 0.584. . . [9]. Already
this subset ofω-values is dense on the interval [0, 1]; this fact alone is sufficient to ensure
that the capacity (box-counting dimension)D0 of the set which carries the spectral measure,
equals 1. However, since the latter measure is not absolutely continuous with respect to the
Lebesgue measure, the other generalized dimensionsDq can differ from 1.

To describe the multifractal properties ofµ(ω), an appropriate partition of the interval
[0, 1] should be introduced. A standard way (see, e.g. [9] where this formalism was applied
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to spectral measures) is to divide the unit interval intoN small boxes of lengthε = 1/N , so
that the probability to locate measures in thekth subinterval ispk =

∫ kε
(k−1)ε µ(ω) dω. The

partition function is defined for any real numberq asZ(q, ε) = ∑N
k=1p

q

k . Assuming under
fixed q the scaling lawZ(q, ε) ∼ ετ(q), we arrive by the standard way [9] at the generalized
(Rényi) dimensions:Dq = τ(q)/(q − 1).

Since the normalization condition
∫ 1

0 Sn(ω) dω = 1 holds for everyn, we can use a
sequence ofSn(ω) as approximations to the probability density. In its turn, this provides a
sequence of approximations

Z̃(q, ε, n) =
1/ε∑
k=1

(∫ kε

(k−1)ε
Sn(ω) dω

)q
to the partition function. Asε tends to zero, we can replace in these approximations summation
by integration

Z̃(q, ε, n) = εq−1
1/ε∑
k=1

(
1

ε

∫ kε

(k−1)ε
Sn(ω) dω

)q
ε→ εq−1

∫ 1

0
Sqn (ω) dω. (2)

Apparently, infinite decreases ofε under fixed finitenmakes no sense: in this way, one would
approach the smoothSn(ω) and obtain the trivial scalingτ = q − 1. The decrease ofε should
be combined with a simultaneous increase ofn; this refinement of the partition allows us to
explore the asymptotical fine structure ofµ(ω). According to equation (1), the resolution
in frequency domain forSn+1(ω) is twice as good as that forSn(ω). Consequently, seeking
for the asymptotic scaling properties, one should compareZ̃(q, ε, n) with Z̃(q, ε/2, n + 1).
Therefore,τ(q) under fixedn andε is evaluated as

−(log 2)−1 log
Z̃(q, ε/2, n + 1)

Z̃(q, ε, n)
(3)

which, taking into account the asymptotics of (2), finally yields

Dq = τ(q)

q − 1
= 1− logλ(q)

(q − 1) log 2
(4)

where the growth rateλ(q) is given by

λ(q) = lim
n→∞

∫ 1
0 S

q

n+1(ω) dω∫ 1
0 S

q
n (ω) dω

= lim
n→∞

∫ 1
0 (
∏n
k=0(1− cos(2k+1πω))q dω∫ 1

0 (
∏n−1
k=0(1− cos(2k+1πω))q dω

. (5)

In this way, computation of the generalized dimensionsDq has been reduced to the evaluation
of λ(q).

3. Generalized dimensionsDq for integer values ofq

In general, the only way to find the value ofλ(q) seems to be by direct numerical integration
of the numerator and denominator in equation (5) with subsequent extrapolation to the limit
n → ∞. However, the case of integer values ofq > 1 admits a simplification. The 2n

terms in the expansion ofSn(ω) into cos 2πkω range fromk = 0 to k = 2n − 1. Therefore,
for integerq > 0 the cosine-expansion ofSqn (ω) contains the terms until cos 2π(2n − 1)qω:
S
q
n (ω) =

∑q(2n−1)
k=1 b

(n)
k cos 2πkω.

Let us pick out from the set of coefficients{b(n)k } the subset which corresponds to the
multiples of 2n: a(n)j ≡ b(n)j×2n , j = 0, 1, . . . , q − 1. Obviously, of the whole expansion only
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theω-independent terma(n)0 contributes to the integrals in (5) andλ(q) = limn→∞ a
(n+1)
0 /a

(n)
0 .

When we proceed fromSn to Sn+1, the coefficientsa(n+1)
j at cos 2πj2n+1ω come into

consideration. By combinatorial arguments it can be easily shown that eacha
(n+1)
j is a linear

combination ofa(n)k : thus, forq = 2 we have

a
(n+1)
0 = 3

2a
(n)
0 − a(n)1 a

(n+1)
1 = 1

2a
(n)
0 − a(n)1 (6)

for q = 3 the recursion relations are

a
(n+1)
0 = 5

2a
(n)
0 − 15

8 a
(n)
1 + 3

4a
(n)
2 a

(n+1)
1 = 3

2a
(n)
0 − 2a(n)1 + 5

2a
(n)
2

a
(n+1)
2 = − 1

8a
(n)
1 + 3

4a
(n)
2 (7)

and so on. In the case ofSq one has to do with the (q × q) matrix, whose elements are
combinations of binomial coefficients with the coefficients of expansion of cosn x into cosjx.
Although the general expressions are rather complicated, computation of the matrix elements
for not too largeq is straightforward.

Since equations (6), (7) etc. are linear,λ is simply the largest eigenvalue of the
corresponding matrix and can be found from the respective characteristic equation. Forq = 2
the equation is

λ2 − 1
2λ− 1= 0 (8)

which yieldsλ = (1+
√

17)/4= 1.280 770 64. . . andD2 = 1− logλ/ log 2= 0.642 981. . . .
Forq = 3 we have

λ3− 5
4λ

2 − 3
2λ− 1= 0 (9)

and, respectively,λ = 1.777 389 781. . . and D3 = 0.585 119 95. . . ; for q = 4 the
characteristic equation is

λ4 − 13
8 λ

3− 55
16λ

2 + 17
8 λ + 1= 0 (10)

with λ = 2.579 911 342. . . andD4 = 0.544 226 1703. . . , etc.

4. Generalized dimensions through the autocorrelation function

The same results can be expressed in terms of the autocorrelation functions. For an observable
ξj and integert (−∞ < t < ∞) the autocorrelation function is defined asC(t) = C(−t)
= (〈ξkξk+t 〉 − 〈ξk〉2)/(〈ξ2

k 〉 − 〈ξk〉2) where the angular brackets denote averaging with respect
to the positionk. In our case,〈Mk〉 = 0 (this follows, e.g. from the concatenation building rule)
and this definition is reduced toC(t) = 〈MkMk+t 〉. Being merely the Fourier transform of the
power spectrum,C(t) can be easily recovered from the spectral sums. In this sense, casting the
Riesz product into the form of the trigonometric sum immediately yields the cosine-transform
of the power spectrum and is especially convenient: letc

(n)
j = 2

∫ 1
0 Sn(ω) cos(2πjω) dω denote

the coefficient at cos 2πjω in Sn, then

C(j) = 1

2− δ0j
lim
n→∞ c

(n)
j (11)

(the factor1
2 at j 6= 0 enters the expression becauseSn includes contributions of bothC(j)

andC(−j)).
This presentation allows us to reformulate the analysis of the growth of the coefficienta

(n)
0

in expansions ofSqn (ω). In theqth power of the cosine-transform ofSn(ω), theω-independent
part is formed by the product terms with the vanishing net sum of trigonometrical arguments.



Generalized dimensions for the Fourier spectrum 1527

Therefore, in the time domain the integral
∫ 1

0 S
q
n (ω) dω is represented by the sum of the products

of q values ofC(j)

U(q, T ) =
∑

|j1|+|j2|+···+|jq−1|<T
C(j1)C(j2) . . . C(jq−1)C(−j1− j2 − · · · − jq−1) (12)

whereT is the length of the segment of the symbolic string, contributing toSn. This sum
grows withT according to the power law:U(q, T ) ∼ T κ(q) whereκ(q) = logλ(q)/ log 2.
Hence,

Dq = 1− κ(q)

q − 1
. (13)

Equation (13) relates the Rényi dimensions of the spectral measureDq for integerq with the
growth law for the sums ofq-products of the values of the autocorrelation function. For the
caseq = 2 it is equivalent to the formula derived in [11].

5. Cases ofq → 0 and largeq

In the case of smallq the growth rateλ can be computed explicitly

λ(q) = lim
n→∞

1 +q
∫ 1

0 logSn+1(ω) dω

1 +q
∫ 1

0 logSn(ω) dω
+ O(q2) = 1 +q

∫ 1

0
log

Sn+1(ω)

Sn(ω)
dω + O(q2)

= 1− q log 2 + O(q2). (14)

For the generalized dimension this yields

Dq = 1− logλ

(q − 1) log 2
= 1− q + O(q2). (15)

In the opposite limitq → ∞ the dominating contribution into
∫ 1

0 S
q
n (ω) dω is made by

values ofω which enable the fastest growth of local finite-length approximationsSn(ω). The
peaks inSn+1 which belong to the most rapidly growing family are 3/2 times higher than
the peaks at the same places inSn; at the same time, due to the improvement of the spectral
resolution, the width of these peaks is halved. Therefore,λ ∼= 1

2(3/2)
q . Accordingly

Dq
∼= q

q − 1

(
2− log 3

log 2

)
. (16)

As q grows,Dq tends toD∞ = 2− log 3/ log 2= 0.415 037. . . .
In fact, already moderate values ofq are ‘large’ enough: thus, the exact value ofD4 quoted

earlier differs from the estimate of (16) by less than 0.01; in the case ofq = 6 this difference
is less than 0.0007 and forq = 8 it is even less than 0.000 07.

6. Information dimensionD1

The caseq = 1 should be treated separately. Differentiation of the numerator and denominator
in (4) provides the expression for the value of the information dimension

D1 = 1− 1

log 2
lim
n→∞

∫ 1

0
(Sn+1(ω) logSn+1(ω)− Sn(ω) logSn(ω)) dω. (17)
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Let us next transform the integral in this expression∫ 1

0

( n+1∏
j=1

(1− cos 2jπω)
n+1∑
j=1

log(1− cos 2jπω)

−
n∏
j=1

(1− cos 2jπω)
n∑
j=1

log(1− cos 2jπω)

)
dω

=
∫ 1

0
Sn(ω) log(1− cos 2πω) dω −

∫ 1

0
cos 2πω

n∑
j=2

log(1− cos 2jπω) dω

+
∫ 1

0

( n+1∏
j=2

(1− cos 2jπω)
n+1∑
j=2

log(1− cos 2jπω)

−
n∏
j=1

(1− cos 2jπω)
n∑
j=1

log(1− cos 2jπω)

)
dω. (18)

Of the three integrals, the last one vanishes, since the contributions of its first and
second parts mutually balance each other. Similarly, the second integral vanishes because∑n

j=2 log(1− cos 2jπω)does not contain terms proportional to cos 2πω: its cosine-expansion
starts with cos 4πω. Thus, the only remaining part is the first term∫ 1

0
Sn(ω) log(1− cos 2πω) dω = − log 2−

2n−1∑
j=1

c
(n)
j

j
(19)

wherec(n)j , as before, is the coefficient at cos 2πjω in Sn. Taking into account equation (11)

which relatesc(n)j to the values of the autocorrelation functionC(j), we get

D1 = 1− − log 2− limn→∞
∑2n−1

j=1 (c
(n)
j /j)

log 2
= 2 +

2

log 2

∞∑
j=1

C(j)

j
. (20)

Thus, the problem is reduced to estimation of3 ≡∑∞j=1C(j)/j .
The invariance of the infinite Thue–Morse sequence with respect to the inflation and

the inverse operation of binary decimation imposes recurrent relations on the values of the
autocorrelation function [3, 13]

C(2j) = C(j) C(2j + 1) = −C(j) +C(j + 1)

2
(21)

which, combined with the normalization conditionC(0) = 1, allow us to computeC(j)
for every value ofj : C(2n) = −C(3 × 2n) = −1/3, C(5 × 2n) = C(7 × 2n) = 0,
C(9 × 2n) = −C(11× 2n) = 1/6, and so on (n = 0, 1, . . .). This information alone
does not allow us to obtain3 in a closed form. The series in (20) converges slowly (∼j−1);
however, the recursions (21) allow us to implement the ‘internal summation’ which leads to
the noticeable (in principle, indefinite) acceleration of the convergence. Let4 be a sum

4 = a +
∞∑
j=1

f (j)C(j) (22)

wherea is a constant andf (j) is some function ofj . Transforming this expression with the
help of (21), we obtain

4 = a − f (1)
2

+
∞∑
j=1

2f (2j)− f (2j − 1)− f (2j + 1)

2
C(j). (23)
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This provides the iteration scheme

am+1 = am − fm(1)
2

(24)

fm+1(j) = 2fm(2j)− fm(2j − 1)− fm(2j + 1)

2
(25)

where, in order to compute3, we should start witha0 = 0 andf0 = 1/j .
Since the expression on the right of equation (25) is the (rescaled and shifted) finite-

difference approximation for the second derivative offm(j), the result ofk iterations of
equation (24) and (25) provides a series inC(j) whose coefficientsfk(j) converge asj−1−2k.
Successive transformations yield

3 = −1

2
−
∞∑
j=1

C(j)

2j (4j2 − 1)
= − 5

12
+
∞∑
j=1

(96j2 − 9)C(j)

4j (4j2 − 1)(16j2 − 1)(16j2 − 9)
= · · · .

(26)

Although further expressions are too cumbersome to quote explicitly, their derivation is
straightforward and can be easily performed with every program for symbolic computations.
Already after the seventh iteration the coefficients atC(2), C(3) andC(4) have an order
of, respectively, 10−15, 10−18 and 10−20 and it is enough to take the first two terms in the
series (that is,a(7) and the term atC(1)), in order to produce3 with 14 correct digits:
3 = −0.439 955 182 836 29 and, respectively,D1 = 0.730 557 679 017 39. . . .

7. Discussion

The approach which we have proposed is not restricted to the particularities of the Thue–Morse
sequence. In the general case, as soon as the building rules of the symbolic sequence allow
us to explicitly interrelate the consecutive approximationsSn(ω) andSn+1(ω) to the spectral
measureµ(ω), the same technique can help to extract the generalized dimensions from the
corresponding characteristic equations.

Similarly, equation (13) which relates generalized dimensions to the growth rate of the
products of the autocorrelation function values, remains valid for a broad class of problems
and can be applied not only to binary symbolic sequences but to general (stationary) datasets
of computational or experimental origin. In the case of processes with singular continuous
or mixed Fourier spectra the direct evaluation of spectral sums (and thereby of the set which
supports the spectral measure) is sensitive to the numerical details such as frequency resolution,
etc. Compared to this, the estimation of the autocorrelation function is a robust procedure.
Thus, equation (13) allows one, in principle, to recover the generalized dimensions from
observational and numerical data. However, the rapid growth of the number of terms in the
sumsU(q, T ) (this number is proportional toT q−1) makes its application forq > 4 hardly
practical.
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