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Renormalization group for scaling at the torus-doubling terminal point
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The quasiperiodically forced logistic map is analyzed at the terminal point of the torus-doubling bifurcation
curve, where the dynamical regimes of torus, doubled torus, strange nonchaotic attractor, and chaos meet.
Using the renormalization group approach we reveal scaling properties both for the critical attractor and for the
parameter plane topography near the critical pdiel.063-651X98)11002-4

PACS numbes): 05.45+b

[. INTRODUCTION self-similar structure of the parameter plane topography near
the TDT point.
The transition from regular to chaotic dynamics via qua-
siperiodicity has attracted great interest. Starting from the Il. THE MODEL AND BASIC REGIMES
seminal works of Landafil] and Ruelle and Taken2], ) ) o
different aspects of this transition have been studied both Our basic model is the forced logistic map,
theoretically and experimentally. Some subtle details of qua- ’
siperiodic dynamics do not manifest themselves in a straight-  Xt+1=A —X{ +£C082mwt+ ¢), 0=(5-1)12, (1)
forward way in autonomous systems, but can be considered ) o
and understood for systems under quasiperiodic externdfheree andw are the amplitude and the irrational frequency
force. Indeed, in the autonomous case the basic frequenci@$ the forcing. Alternatively, we can rewrite it as a two-
are determined by the internal dynamics. Contrary to this, irfimensional skew system:

guasiperiodically forced systems the frequencies of the forc-
Xt 1= N—X¢ +ec0g 2y =f (X, Y1),

ing can be taken arbitrary and kept independent from the )
dynamics. Recently, it has been found that the transition to

chaos in quasiperiodically forced systems is generally medi- Yt+1=Yi+ o (mod D).

ated by strange nonchaotic attract@®NA); this makes the ) ) o
whole picture highly nontrivial. In this formulation the paramete¥ corresponds to the initial

The SNAs were first described by Grebagial. in 1984 value ofy:' 2myo= ¢. Figure 1 illustrates the basic regimes
[3] and since then they have been investigated in a number &PServed in the modet).
numerical[4—17] and experimenta]18,19 studies. SNAs
exhibit some properties of regular as well as chaotic regimes 15
Like regular attractors, they have only negative Lyapunov 10l
exponentgbesides the zero exponent, connected to the phas
variables of the quasiperiodic forcingas for usual chaotic
attractors their geometric structure is fractal-like. Also, their 00 r
correlation properties lie between order and chaos: as show 05 |
in [14,20, they can generate a singular continuous spectrur
It is noteworthy that SNAs appear in studies of spectra ant
eigenfunctions of quantum systems with a quasiperiodic po -15
tential [4,21,23. Mathematical research on SNA is still in 15
the beginning phasg23,24.

In this paper we study the dynamics of the quasiperiodi-

cally forced logistic map25-28,10,17. It is known that this 0.5 & % 1 x

model demonstrates rich dynamical behavior, in particular

T 00
quasiperiodicity, torus-doubling bifurcations, SNA, and <
chaos. We focus our attention on one particular point in the 08
parameter plane of the forced logistic map, the torus 101 (a) 1 F (b
doubling terminal poin{TDT). This critical point is of cru- 5 e L
cial importance for understanding the entire picture of the =15 10 -05 ;’(? 05 1.0 15-15-10 -05 00 05 10 15

dynamics because the regimes of quasiperiodic motior

SNA, and chaos meet at this point. To describe the dynamics

at this critical point we develop the renormalization group FIG. 1. The regimes in the systeff): (a) T1 for e=0.3, A
(RG) approach. It allows one to examine the scaling=0.9;(b) T2 for e=0.15, A=0.9; (c) SNA for ¢=0.45, A=0.8;
properties of the critical attractor and to reveal the(d) C for e=0.45, A=0.9.

1063-651X/98/5{2)/15856)/$15.00 57 1585 © 1998 The American Physical Society



1586 SERGEY KUZNETSOV, ULRIKE FEUDEL, AND ARKADY PIKOVSKY 57

0.5
0.0 -
T
30
i) x
0.4 F 05
w L
0.3 101
0'%. 0.8 0.9 1.0 1.1 1.2 1.3
A FIG. 3. The tori at the points of doubling: smooth tori fer

=0.1, A=0.778 791 ands=0.2, A=0.824501, and the critical

FIG. 2. Different regimes in the quasiperiodically forced logistic torus fore.,\. For visual clarity the vertical coordinate is shifted
map, shown in a grey-scale code. From white to black: divergenc®y N\ so that the logistic map has the same form for all parameter
(D), torus (T1), doubled torus T2), strange nonchaotic attractor values. The critical torus evidently touches the lige=0.
(SNA), chaos C). The TDT (\~1.16, £~0.36) point is marked
with white cross. tions. For finite but small amplitudes these bifurcations are

transformed into torus-doubling bifurcations, at which an at-

Consider first a value of the control parameterfor  tractor consisting of 2 curves splits into an attractor consist-
which the unforced mape(=0) has a stable fixed point. ing of 2"** curves. The smaller the amplitude, the larger the
Under small quasiperiodic forcing, the fixed point is trans-number of the torus doublings seen with increasingfor
formed into a stable smooth invariant curve. Such curvesny constant amplitude this number is fin[i20,26. The
appear in continuous-time dynamical systems as Poincarerus doubling have been observed numericg2§] and ex-
mappings for the motion on a torus. Therefore with com-perimentally[31]; for mathematical background sgg2].
monly used abuse of the terminology we call this curve the In Fig. 2 one can see a curve in the parameter plane)(
torus T1 [Fig. 1(a)]. If the force of small amplitude is ap- where the first torus-doubling transitiohl« T2 occurs.
plied to a stable period-2 orbit, it gives rise to an attractorThis curve starts at the point (3/4,0). For small amplitueles
consisting of two closed smooth curves, or the doubled torughe attractor arisen from the fixed point of the logistic map is
T2 [Fig. 1(b)]. If we increase the forcing amplitude, it may represented by a smooth invariant curve located entirely in
happen that the smooth torus transforms into SRA1]; the  the regionx>0 (Fig. 3). Suppose that we increase the am-
Lyapunov exponent remains negative, but the geometricglitude ¢ and go along the torus-doubling bifurcation curve
structure of the attractor becomes complex, fractal{ikig. in the parameter plane. Then, the torus becomes larger and
1(c)]. The regimes with a positive Lyapunov exponent canlarger, and the minimum value of on it approaches zero.
be classified as chaof€]; see Fig. 1d). Finally, for largex Finally, the attractor touches the line=0, and this event
and e a trajectory generated by the mép can escape to corresponds, as we argue below, to the terminal point of the
infinity, i.e., the divergencel§) takes place. torus-doubling bifurcation curve, the TDT critical point. In-

In Fig. 2 the regions of the regimes described above aréeed, as long as the torus occupies the regie0, the map-
depicted in the parameter plane,£). At each pixel the type ping can be considered invertible, thus the mathematical
of the regime was detected by analyzing the Lyapunov extheory [32] is applicable. As the torus touches the lire
ponent and the phase sensitivity propdtt{]: tori: negative =0, the noninvertibility of the logistic map comes into play,
Lyapunov exponent without phase sensitivity; SNA: nega-and the torus doubling is destroyed. Another more construc-
tive Lyapunov exponent with high phase sensitivity; chaostive argument is based on rational approximations to the qua-
positive Lyapunov exponent. In the diagram we see differensiperiodic forcing.
transitions:T1— T2, T1«< SNA, etc. Some of these transi-  Let us consider the torus doubling in terms of rational
tions are quite well understod@9,10,18, while the descrip- approximants for the frequenay. In our case of the recip-
tion of others is still incomplete. The subject of our main rocal golden mean, these approximants are the ratios of Fi-
interest in this paper will be the “triple” point where the bonacci numbers:
domains of toriT1 andT2, SNA, and chaos meet.

wk=Fk_1/Fk, k=1,2,...,

()
Ill. TORUS-DOUBLING CURVE

AND ITS TERMINAL POINT Fo=0, F1=Fy=1, Fri1=FetFye-s.

For zero amplitude =0 Eq. (1) becomes the usual logis- Instead of thel'l torus, for a rational frequenay, we get a
tic map and exhibits a cascade of period-doubling bifurcacycle of periodF,. Increasing the control parameterwe
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tions.

Wy A e (;SE

2/3 0.89313590 0.39045526  2.388 14031
3/5 1.076 332 88 0.305 114 53 2.270929 15
8/13 114077398 0.35637173 2.47438570
13/21 1.134 538 32 0.353 262 66 2.517 043 66
34/55 1.155871 57 0.360 212 07 2.483 410 89
55/89 1.153 649 97 0.358 649 70 2.471 294 47
144/233 1.157 906 81 0.360 223 44 2.482 951 10
233/377 1.157 20706 0.35995120 2.48531755
610/987 1.158 07555 0.36024655  2.483 280 49
987/1597 1.15792494 0.36019031 2.482596 05
2584/4181 1.158094 62 0.36024806 2.483219 66
4181/6765 1.158 06354  0.36023723  2.483 35560
10946/17711 1.158 096 58 0.360 248 35

1587

TABLE I. Critical parameter values for the rational approxima- another one. This means that the system demonstrates a bi-

furcation depending on the phase of the external force. Ac-
cording to[11] this is a criterion of the presence of SNA. So,
we conclude that a small perturbation of the attractor at TDT
can lead to a SNA. Numerical analysis shows that chaotic
states also exist in the neighborhood of the TDT point. To
describe the dynamics at the critical point and in its vicinity,

we develop renormalization group approach in the next sec-
tion.

IV. RENORMALIZATION GROUP
AT THE TORUS-DOUBLING TERMINAL POINT

As usual, in a construction of a renormalization transfor-
mation for the golden-mean quasiperiodic dynamics
[34,35,13 the main idea is to represent the mappi@pover
Fy.+ iteration steps through the mappings ofgr, , andF

2.483 236 05 steps:

fPkr2(x,y) = FPR(fFRea(x,y),y + Fiey 1o). 5

expect to see a bifurcation of this cycle at some parameter

value that gives an approximation to the torus-doubling bi-PU€ t0 & known relation for the golden mean
furcation. In fact, for the rational frequencieg the bifurca-
tion point will depend on the initial phas¢. We can speak

on the torus-doubling bifurcation only if this dependence disye immediately see that the appropriate constant for renor-
appears asymptotically fde—oo (i.e., the limit does not de-

pend on the initial phase, df33]). Certamly, this is the case sponding factor for the variabbe we denote as. Substitut-
for small amplitudes, and we may gradually increase the jng in Eq. (5) the scaled function

amplitude and trace the torus-doubling curve as long as pos-

sible.

y+Fw=y—(—w)* modil, (6)

malization of the variabley is given by (—w); the corre-

gk(x,y) =akfF@*x,(— o)ky) @)

Now we are going to formulate the condition that the
doubling torus touches the line=0 in terms of rational

approximations.

So we fix a

rational

frequency,

=F._4/F¢ and find the values of and ¢ to satisfy the
following conditions:
(1) For some initial phase;bﬁ there exists a periobh
cycle starting fromx=0 (meaning that the cycle is super-
stable, with zero multiplier and the derivativedx/d¢|0,¢,lc<

vanishes(this condition means that the approximate torusfor the recurrent procedurg). Second, we have observed
touches the linx=0).

(2) The minimal multiplier reached at some other initial verge to a period-3 cycle. Finally, this period-3 solution has
phased)m is equal to—1, i.e., for this phase the perid€;

cycle is at the threshold of the period-doubling bifurcationmial approximation of the functiog(x,y) (with odd and
(this condition means that the approximate torus undergoeseéven powers foy, and only even powers fot). The result-

doubling.

we obtain the final renormalization transformation
Ok+2(%,Y) =a%gk(@ 'gks 1(X/a, — wy), 0’y +w). (8)

To find the solution of the RG equatidB) associated with
the TDT point we have used the following procedure. First,
we have taken the mappin@) at the critical point k. ,&.)

to define the pair of functiong;, g, as an initial condition
numerically that with a suitabla the iterations of(8) con-

been improved using a quasi-Newton method for a polyno-

ing numerical value of the constait is found to bea

Of course, the second condition may be true only for the=1.582 5935. However, because of the period-3 nature of
approximants with odd denominators, therefore we numerithe solution, we have to use the following scaling factors to

cally studied only such approximations. In Table | we sum-observe self-similarity: for timer=w 3=4.236 ® . . . ;
marize the data of the computations. Estimating the lknit y variable: B=(—w) 3=-4.236 ...

—oo, we get the TDT point for the mafl):

A.=1.158 0968, &.=

where ¢.=limy_ . ¢%.
For a rational frequency, , at the point from Table | we

have simultaneously a superstable cycle for the pblémd

a cycle at the period-doubling bifurcation threshold for thefinite matrix approximation based on the polynomial repre-

phases,. Obviously, by an infinitesimal shift of the param- sentation ofg, ,. The relevant eigenvalues are

eters\, ¢ from this point we can reach a situation when the

cycle remains stable at one phas@nd becomes unstable at

0.360 2485, ¢.=

2.483 23,

(4)

; for
; for x variable: «
=a%=3.963%....

To study scaling properties of the parameter plane near
the TDT critical point we need to consider the evolution of
small perturbations to the found period-3 solution under it-
erations of the RG transformation. Linearization of the RG
transformation(8) near the period-3 solution leads to an
eigenproblem that we have solved numerically. The eigen-
values were computed as eigenvalues of the corresponding

8,=1050® ..., &5,=5.188l.... (9)
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FIG. 5. Spectrum of the critical toruga) Spectrum of the pro-

FIG. 4. Scaling of the critical torus. The whole torus is depicted €SS - (D) Spectrum of the function(y).

in panel (a), the part in the box near the critical point ¥@) is

enlarged in pane(b). The central part otb), magnified with the =y = ¢ /27 and reproduce itself under enlargement with

factors g alongy anda alongx is shown in pane(c). factorsa and along the axes andy, respectively. In Figs.
4(b) and 4c) we check this prediction.

Two other eigenvalues with modulus larger than 1 are From the stated scaling law it follows that at the point
present in the spectrum; 3.9 ...=—a and—4.23% ...  =0y=y, the critical torus has a singularity of the type
= B, but they are not relevant: the first one corresponds to a
perturbation pushing the iterations of E§) out of the class
of commutative functional pairs; the second one corresponds Ina
to an infinitesimal shift of the origin for thg variable. x~ly=yel”, y= @:0'959 R

Let us define a coordinate system near the TDT critical
point in the parameter plane in such a way that a shift along
each coordinate axis gives rise to a perturbation associatedccasionally, the powey is close to one, therefore the sin-
with one eigenvalueg; or J,, respectively. In thesscaling  gularity in the critical torus visually looks like a break. Note
coordinateswe expect to see a self-similar topography: thethat due to ergodicity of the quasiperiodic rotation, the pres-
picture will reproduce itself under enlargement by the factorsence of a singularity at a single point means the presence of
4, and g, along the coordinate axes. We check the predican infinite dense set of singularities on the critical torus. So,
tions of the RG analysis in the next section. this is really a fractal object.

In Fig. 5 we present results of the spectral analysis for the
critical torus. The pandb) shows the usual Fourier spectrum
for the time series,, generated by the forced logistic map at
the TDT point. This is just the spectrum that should be ob-

As we observed in Fig. 3, on the way along the torus-served in experiment. The pan@l) presents a spectrum for
doubling bifurcation line towards the TDT point the attractor the functionx(y) representing the form of the critical torus.
is represented by a smooth closed invariant curve. At thdhis plot illustrates once more the fractal nature of the at-
critical point it becomes a closed nonsmodftactal-like)  tractor: the amplitudes of spectral components are clearly
curve and we call it theritical torus. In Fig. 4 the critical seen to fall down according to a power law.
torus is presented as a graph in the coordinaxeg) ( Ac- To illustrate scaling properties of the parameter plane to-
cording to the RG analysis, the critical torus must demon{pography near the TDT point of our model mép we need
strate self-similarity on small scales near the poirtOyy  to define the scaling coordinates in the parameter plane

V. SCALING AT THE TORUS-DOUBLING TERMINAL
POINT AND ITS VICINITY
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VI. CONCLUSIONS

In this paper we have considered the dynamics of the
quasiperiodically forced logistic map. Our particular point of
interest was the torus-doubling terminal point. Around this
point all relevant dynamical regime§orus and doubled
torus, strange nonchaotic attractor, and chaoe present.
The attractor at this poirit‘critical torus”) is represented by
a fractal-like curve, its scaling properties are described with
the renormalization group method. The RG approach devel-
oped in this paper allows us also to characterize the self-
similar structure in the parameter plane near the torus-
doubling terminal point.

The TDT point corresponds to a novel type of criticality
for quasiperiodic dynamics at the onset of chaos, and the
forced logistic map may be considered as a representative of
the corresponding universality class. We conjecture that this
class contains also the higher-dimensional systems such as
the forced Haon map. It would be interesting to observe this
type of universal behavior in experiment. For this, one
should take a nonlinear dissipative system demonstrating the
period-doubling cascade, say, an electronic circuit with peri-
odic driving (e.g., [36]), and apply an additional periodic
force to have the proper irrational ratio of the frequencies.
Then, the torus-doubling terminal point should be found, the
critical torus with its fractal properties and the universal ar-
rangement of the parameter space near the critical point
should be observed.

FIG. 6. Scaling in the vicinity of the critical point. Left column: h Tq_eD_Ir_em?.rkalble _P?(.?U“t?]l’ltty.to? tEe t%resemsld anal}/stﬁ of
different regimes grey-scale coded as in Fig. 2. Right column: thé € . ,Cn_lca po_'r_] IS that It finks the problems o .e
Lyapunov exponent coded in a grey scale. Bottom panel: a regioguas|per|od|c transition to chaos and strange nonchaotic at-

around the TDT poinmarked by white cross in Fig)2s shownin  tractors to the concepts of renormalization group, universal-
the coordinate<C;, C, (10). The small box is enlarged in the ity, and scaling. At the other known transitions to chaos, as

middle panel with the factors, ,, and the small box from the in the circle mag 34,35, there was no place for SNA. On
middle panel is enlarged in the top panel. The grey coding for thehe other hand, at the transition from a smooth torus to SNA
Lyapunov exponent is scaled with the factor analyzed in our previous worKL3] there was no place for
chaos. However, we see many open questions in the context
) ) ) of the undertaken research. What happens at other irrational
(\,€). In fact, one coordinate axis corresponding to the 'eadfrequencies? What can be said about the transitibas
ing eigenvalues; can be chosen almost arbitrarily, but the gnA and SNA s chaos? Is it possible to develop a RG
other coordinate direction should be carefully selected to ©Xanalysis for some other critical situations connected with
clude the contribution from the leading eigenvector. Numeriirth or death of SNA? What does a generalization to higher-
cally, we have found the following relations between thegimensjonal systems look like? We hope that the results of

C4

scaling coordinate€, ,C, and the parameters\ (¢): this paper will stimulate research in the directions outlined.
e=e,~Cy+0.334T,, A=A\.+Co. (10)
In Fig. 6 these coordinates are used to show the parameter ACKNOWLEDGMENTS
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