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Renormalization group for scaling at the torus-doubling terminal point

Sergey Kuznetsov, Ulrike Feudel, and Arkady Pikovsky
Institute for Theoretical Physics and Astrophysics, University of Potsdam, Am Neuen Palais, Postfach 601553,

D-14415 Potsdam, Germany
~Received 21 February 1997!

The quasiperiodically forced logistic map is analyzed at the terminal point of the torus-doubling bifurcation
curve, where the dynamical regimes of torus, doubled torus, strange nonchaotic attractor, and chaos meet.
Using the renormalization group approach we reveal scaling properties both for the critical attractor and for the
parameter plane topography near the critical point.@S1063-651X~98!11002-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The transition from regular to chaotic dynamics via qu
siperiodicity has attracted great interest. Starting from
seminal works of Landau@1# and Ruelle and Takens@2#,
different aspects of this transition have been studied b
theoretically and experimentally. Some subtle details of q
siperiodic dynamics do not manifest themselves in a strai
forward way in autonomous systems, but can be conside
and understood for systems under quasiperiodic exte
force. Indeed, in the autonomous case the basic frequen
are determined by the internal dynamics. Contrary to this
quasiperiodically forced systems the frequencies of the fo
ing can be taken arbitrary and kept independent from
dynamics. Recently, it has been found that the transition
chaos in quasiperiodically forced systems is generally m
ated by strange nonchaotic attractors~SNA!; this makes the
whole picture highly nontrivial.

The SNAs were first described by Grebogiet al. in 1984
@3# and since then they have been investigated in a numbe
numerical @4–17# and experimental@18,19# studies. SNAs
exhibit some properties of regular as well as chaotic regim
Like regular attractors, they have only negative Lyapun
exponents~besides the zero exponent, connected to the ph
variables of the quasiperiodic forcing!; as for usual chaotic
attractors their geometric structure is fractal-like. Also, th
correlation properties lie between order and chaos: as sh
in @14,20#, they can generate a singular continuous spectr
It is noteworthy that SNAs appear in studies of spectra
eigenfunctions of quantum systems with a quasiperiodic
tential @4,21,22#. Mathematical research on SNA is still i
the beginning phase@23,24#.

In this paper we study the dynamics of the quasiperio
cally forced logistic map@25–28,10,17#. It is known that this
model demonstrates rich dynamical behavior, in particu
quasiperiodicity, torus-doubling bifurcations, SNA, an
chaos. We focus our attention on one particular point in
parameter plane of the forced logistic map, the tor
doubling terminal point~TDT!. This critical point is of cru-
cial importance for understanding the entire picture of
dynamics because the regimes of quasiperiodic mot
SNA, and chaos meet at this point. To describe the dynam
at this critical point we develop the renormalization gro
~RG! approach. It allows one to examine the scali
properties of the critical attractor and to reveal t
571063-651X/98/57~2!/1585~6!/$15.00
-
e

th
-
t-
ed
al
ies
n
c-
e
to
i-

of

s.
v
se

r
n
.

d
-

i-

r,

e
-

e
n,
cs

self-similar structure of the parameter plane topography ne
the TDT point.

II. THE MODEL AND BASIC REGIMES

Our basic model is the forced logistic map,

xt115l2xt
21«cos~2pvt1f!, v5~A521!/2, ~1!

where« andv are the amplitude and the irrational frequency
of the forcing. Alternatively, we can rewrite it as a two-
dimensional skew system:

xt115l2xt
21«cos~2pyt![ f ~xt ,yt!,

~2!

yt115yt1v ~mod 1!.

In this formulation the parameterf corresponds to the initial
value ofy: 2py05f. Figure 1 illustrates the basic regimes
observed in the model~1!.

FIG. 1. The regimes in the system~1!: ~a! T1 for «50.3, l
50.9; ~b! T2 for «50.15, l50.9; ~c! SNA for «50.45, l50.8;
~d! C for «50.45, l50.9.
1585 © 1998 The American Physical Society
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Consider first a value of the control parameterl for
which the unforced map («50) has a stable fixed point
Under small quasiperiodic forcing, the fixed point is tran
formed into a stable smooth invariant curve. Such cur
appear in continuous-time dynamical systems as Poin´
mappings for the motion on a torus. Therefore with co
monly used abuse of the terminology we call this curve
torus T1 @Fig. 1~a!#. If the force of small amplitude is ap
plied to a stable period-2 orbit, it gives rise to an attrac
consisting of two closed smooth curves, or the doubled to
T2 @Fig. 1~b!#. If we increase the forcing amplitude, it ma
happen that the smooth torus transforms into SNA@3,11#; the
Lyapunov exponent remains negative, but the geometr
structure of the attractor becomes complex, fractal-like@Fig.
1~c!#. The regimes with a positive Lyapunov exponent c
be classified as chaos (C); see Fig. 1~d!. Finally, for largel
and « a trajectory generated by the map~1! can escape to
infinity, i.e., the divergence (D) takes place.

In Fig. 2 the regions of the regimes described above
depicted in the parameter plane (l,«). At each pixel the type
of the regime was detected by analyzing the Lyapunov
ponent and the phase sensitivity property@11#: tori: negative
Lyapunov exponent without phase sensitivity; SNA: neg
tive Lyapunov exponent with high phase sensitivity; cha
positive Lyapunov exponent. In the diagram we see differ
transitions:T1↔T2, T1↔ SNA, etc. Some of these trans
tions are quite well understood@29,10,16#, while the descrip-
tion of others is still incomplete. The subject of our ma
interest in this paper will be the ‘‘triple’’ point where th
domains of toriT1 andT2, SNA, and chaos meet.

III. TORUS-DOUBLING CURVE
AND ITS TERMINAL POINT

For zero amplitude«50 Eq.~1! becomes the usual logis
tic map and exhibits a cascade of period-doubling bifur

FIG. 2. Different regimes in the quasiperiodically forced logis
map, shown in a grey-scale code. From white to black: diverge
(D), torus (T1), doubled torus (T2), strange nonchaotic attracto
~SNA!, chaos (C). The TDT (l'1.16, «'0.36) point is marked
with white cross.
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tions. For finite but small amplitudes these bifurcations
transformed into torus-doubling bifurcations, at which an
tractor consisting of 2n curves splits into an attractor consis
ing of 2n11 curves. The smaller the amplitude, the larger t
number of the torus doublings seen with increasingl; for
any constant amplitude this number is finite@30,26#. The
torus doubling have been observed numerically@29# and ex-
perimentally@31#; for mathematical background see@32#.

In Fig. 2 one can see a curve in the parameter plane (l,«)
where the first torus-doubling transitionT1↔T2 occurs.
This curve starts at the point (3/4,0). For small amplitude«
the attractor arisen from the fixed point of the logistic map
represented by a smooth invariant curve located entirely
the regionx.0 ~Fig. 3!. Suppose that we increase the am
plitude « and go along the torus-doubling bifurcation cur
in the parameter plane. Then, the torus becomes larger
larger, and the minimum value ofx on it approaches zero
Finally, the attractor touches the linex50, and this event
corresponds, as we argue below, to the terminal point of
torus-doubling bifurcation curve, the TDT critical point. In
deed, as long as the torus occupies the regionx.0, the map-
ping can be considered invertible, thus the mathemat
theory @32# is applicable. As the torus touches the linex
50, the noninvertibility of the logistic map comes into pla
and the torus doubling is destroyed. Another more constr
tive argument is based on rational approximations to the q
siperiodic forcing.

Let us consider the torus doubling in terms of ration
approximants for the frequencyv. In our case of the recip-
rocal golden mean, these approximants are the ratios o
bonacci numbers:

vk5Fk21 /Fk , k51,2, . . . ,
~3!

F050, F15F251, Fk115Fk1Fk21 .

Instead of theT1 torus, for a rational frequencyvk we get a
cycle of periodFk . Increasing the control parameterl we

e

FIG. 3. The tori at the points of doubling: smooth tori for«
50.1, l50.778 791 and«50.2, l50.824501, and the critica
torus for«c ,lc . For visual clarity the vertical coordinate is shifte
by l so that the logistic map has the same form for all parame
values. The critical torus evidently touches the linext50.
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expect to see a bifurcation of this cycle at some param
value that gives an approximation to the torus-doubling
furcation. In fact, for the rational frequenciesvk the bifurca-
tion point will depend on the initial phasef. We can speak
on the torus-doubling bifurcation only if this dependence d
appears asymptotically fork→` ~i.e., the limit does not de-
pend on the initial phase, cf.@33#!. Certainly, this is the case
for small amplitudes«, and we may gradually increase th
amplitude and trace the torus-doubling curve as long as
sible.

Now we are going to formulate the condition that t
doubling torus touches the linex50 in terms of rational
approximations. So we fix a rational frequencyvk
5Fk21 /Fk and find the values ofl and « to satisfy the
following conditions:

~1! For some initial phasefc
k there exists a period-Fk

cycle starting fromx50 ~meaning that the cycle is supe
stable, with zero multiplier!, and the derivativedx/dfu0,f

c
k

vanishes~this condition means that the approximate tor
touches the linex50).

~2! The minimal multiplier reached at some other initi
phasefm

k is equal to21, i.e., for this phase the period-Fk

cycle is at the threshold of the period-doubling bifurcati
~this condition means that the approximate torus undergo
doubling!.

Of course, the second condition may be true only for
approximants with odd denominators, therefore we num
cally studied only such approximations. In Table I we su
marize the data of the computations. Estimating the limik
→`, we get the TDT point for the map~1!:

lc51.158 0968, «c50.360 2485, fc52.483 23,
~4!

wherefc5 limk→`fc
k .

For a rational frequencyvk , at the point from Table I we
have simultaneously a superstable cycle for the phasefz

k and
a cycle at the period-doubling bifurcation threshold for t
phasefm

k . Obviously, by an infinitesimal shift of the param
etersl, « from this point we can reach a situation when t
cycle remains stable at one phasef and becomes unstable

TABLE I. Critical parameter values for the rational approxim
tions.

vk l « fc
k

2/3 0.893 135 90 0.390 455 26 2.388 140 3
3/5 1.076 332 88 0.305 114 53 2.270 929 1
8/13 1.140 773 98 0.356 371 73 2.474 385 7
13/21 1.134 538 32 0.353 262 66 2.517 043 6
34/55 1.155 871 57 0.360 212 07 2.483 410 8
55/89 1.153 649 97 0.358 649 70 2.471 294 4
144/233 1.157 906 81 0.360 223 44 2.482 951 1
233/377 1.157 207 06 0.359 951 20 2.485 317 5
610/987 1.158 075 55 0.360 246 55 2.483 280 4
987/1597 1.157 924 94 0.360 190 31 2.482 596 0
2584/4181 1.158 094 62 0.360 248 06 2.483 219 6
4181/6765 1.158 063 54 0.360 237 23 2.483 355 6
10946/17711 1.158 096 58 0.360 248 35 2.483 236 0
er
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another one. This means that the system demonstrates
furcation depending on the phase of the external force.
cording to@11# this is a criterion of the presence of SNA. S
we conclude that a small perturbation of the attractor at T
can lead to a SNA. Numerical analysis shows that cha
states also exist in the neighborhood of the TDT point.
describe the dynamics at the critical point and in its vicini
we develop renormalization group approach in the next s
tion.

IV. RENORMALIZATION GROUP
AT THE TORUS-DOUBLING TERMINAL POINT

As usual, in a construction of a renormalization transf
mation for the golden-mean quasiperiodic dynam
@34,35,13# the main idea is to represent the mapping~2! over
Fk12 iteration steps through the mappings overFk11 andFk
steps:

f Fk12~x,y!5 f Fk
„f Fk11~x,y!,y1Fk11v…. ~5!

Due to a known relation for the golden mean

y1Fkv5y2~2v!k mod 1, ~6!

we immediately see that the appropriate constant for ren
malization of the variabley is given by (2v); the corre-
sponding factor for the variablex we denote asa. Substitut-
ing in Eq. ~5! the scaled function

gk~x,y!5akf Fk
„a2kx,~2v!ky… ~7!

we obtain the final renormalization transformation

gk12~x,y!5a2gk„a
21gk11~x/a,2vy!,v2y1v…. ~8!

To find the solution of the RG equation~8! associated with
the TDT point we have used the following procedure. Fir
we have taken the mapping~2! at the critical point (lc ,«c)
to define the pair of functionsg1, g2 as an initial condition
for the recurrent procedure~8!. Second, we have observe
numerically that with a suitablea the iterations of~8! con-
verge to a period-3 cycle. Finally, this period-3 solution h
been improved using a quasi-Newton method for a poly
mial approximation of the functiong(x,y) ~with odd and
even powers fory, and only even powers forx). The result-
ing numerical value of the constanta is found to bea
51.582 5935. However, because of the period-3 nature
the solution, we have to use the following scaling factors
observe self-similarity: for time:t5v2354.236 06 . . . ; for
y variable:b5(2v)23524.236 06 . . . ; for x variable:a
5a353.963 76 . . . .

To study scaling properties of the parameter plane n
the TDT critical point we need to consider the evolution
small perturbations to the found period-3 solution under
erations of the RG transformation. Linearization of the R
transformation~8! near the period-3 solution leads to a
eigenproblem that we have solved numerically. The eig
values were computed as eigenvalues of the correspon
finite matrix approximation based on the polynomial rep
sentation ofg1,2. The relevant eigenvalues are

d1510.5029 . . . , d255.1881 . . . . ~9!
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1588 57SERGEY KUZNETSOV, ULRIKE FEUDEL, AND ARKADY PIKOVSKY
Two other eigenvalues with modulus larger than 1
present in the spectrum,23.963 . . .52a and24.236 . . .
5b, but they are not relevant: the first one corresponds
perturbation pushing the iterations of Eq.~5! out of the class
of commutative functional pairs; the second one correspo
to an infinitesimal shift of the origin for they variable.

Let us define a coordinate system near the TDT criti
point in the parameter plane in such a way that a shift al
each coordinate axis gives rise to a perturbation associ
with one eigenvalue,d1 or d2, respectively. In thesescaling
coordinateswe expect to see a self-similar topography: t
picture will reproduce itself under enlargement by the fact
d1 and d2 along the coordinate axes. We check the pred
tions of the RG analysis in the next section.

V. SCALING AT THE TORUS-DOUBLING TERMINAL
POINT AND ITS VICINITY

As we observed in Fig. 3, on the way along the toru
doubling bifurcation line towards the TDT point the attract
is represented by a smooth closed invariant curve. At
critical point it becomes a closed nonsmooth~fractal-like!
curve and we call it thecritical torus. In Fig. 4 the critical
torus is presented as a graph in the coordinates (x,y). Ac-
cording to the RG analysis, the critical torus must dem
strate self-similarity on small scales near the pointx50,y

FIG. 4. Scaling of the critical torus. The whole torus is depict
in panel ~a!, the part in the box near the critical point (0,yc) is
enlarged in panel~b!. The central part of~b!, magnified with the
factorsb alongy anda alongx is shown in panel~c!.
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5yc5fc/2p and reproduce itself under enlargement w
factorsa andb along the axesx andy, respectively. In Figs.
4~b! and 4~c! we check this prediction.

From the stated scaling law it follows that at the pointx
50,y5yc the critical torus has a singularity of the type

x;uy2ycug, g5
lna

lnb
50.9539 . . . .

Occasionally, the powerg is close to one, therefore the sin
gularity in the critical torus visually looks like a break. No
that due to ergodicity of the quasiperiodic rotation, the pr
ence of a singularity at a single point means the presenc
an infinite dense set of singularities on the critical torus.
this is really a fractal object.

In Fig. 5 we present results of the spectral analysis for
critical torus. The panel~a! shows the usual Fourier spectru
for the time seriesxn generated by the forced logistic map
the TDT point. This is just the spectrum that should be o
served in experiment. The panel~b! presents a spectrum fo
the functionx(y) representing the form of the critical torus
This plot illustrates once more the fractal nature of the
tractor: the amplitudes of spectral components are cle
seen to fall down according to a power law.

To illustrate scaling properties of the parameter plane
pography near the TDT point of our model map~1! we need
to define the scaling coordinates in the parameter pl

FIG. 5. Spectrum of the critical torus.~a! Spectrum of the pro-
cessxt . ~b! Spectrum of the functionx(y).
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(l,«). In fact, one coordinate axis corresponding to the le
ing eigenvalued1 can be chosen almost arbitrarily, but th
other coordinate direction should be carefully selected to
clude the contribution from the leading eigenvector. Nume
cally, we have found the following relations between t
scaling coordinatesC1 ,C2 and the parameters (l,«):

«5«c2C110.3347C2 , l5lc1C2 . ~10!

In Fig. 6 these coordinates are used to show the param
plane arrangement around the critical point. One can see
the structure is indeed self-similar. This means that the
gimes of torus, doubled torus, SNA, and chaos, that can
seen in panels~b! and ~c!, are present also in an arbitrar
small vicinity of the TDT point.

FIG. 6. Scaling in the vicinity of the critical point. Left column
different regimes grey-scale coded as in Fig. 2. Right column:
Lyapunov exponent coded in a grey scale. Bottom panel: a re
around the TDT point~marked by white cross in Fig. 2! is shown in
the coordinatesC1 , C2 ~10!. The small box is enlarged in th
middle panel with the factorsd1,2, and the small box from the
middle panel is enlarged in the top panel. The grey coding for
Lyapunov exponent is scaled with the factort.
-

x-
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ter
at

e-
e

VI. CONCLUSIONS

In this paper we have considered the dynamics of
quasiperiodically forced logistic map. Our particular point
interest was the torus-doubling terminal point. Around th
point all relevant dynamical regimes~torus and doubled
torus, strange nonchaotic attractor, and chaos! are present.
The attractor at this point~‘‘critical torus’’ ! is represented by
a fractal-like curve, its scaling properties are described w
the renormalization group method. The RG approach de
oped in this paper allows us also to characterize the s
similar structure in the parameter plane near the tor
doubling terminal point.

The TDT point corresponds to a novel type of criticali
for quasiperiodic dynamics at the onset of chaos, and
forced logistic map may be considered as a representativ
the corresponding universality class. We conjecture that
class contains also the higher-dimensional systems suc
the forced He´non map. It would be interesting to observe th
type of universal behavior in experiment. For this, o
should take a nonlinear dissipative system demonstrating
period-doubling cascade, say, an electronic circuit with p
odic driving ~e.g., @36#!, and apply an additional periodi
force to have the proper irrational ratio of the frequenci
Then, the torus-doubling terminal point should be found,
critical torus with its fractal properties and the universal
rangement of the parameter space near the critical p
should be observed.

The remarkable peculiarity of the presented analysis
the TDT critical point is that it links the problems of th
quasiperiodic transition to chaos and strange nonchaotic
tractors to the concepts of renormalization group, univers
ity, and scaling. At the other known transitions to chaos,
in the circle map@34,35#, there was no place for SNA. O
the other hand, at the transition from a smooth torus to S
analyzed in our previous work@13# there was no place fo
chaos. However, we see many open questions in the con
of the undertaken research. What happens at other irrati
frequencies? What can be said about the transitionsT↔
SNA and SNA↔ chaos? Is it possible to develop a R
analysis for some other critical situations connected w
birth or death of SNA? What does a generalization to high
dimensional systems look like? We hope that the results
this paper will stimulate research in the directions outline
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